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Preface

Almost every field of study is generating an unprecedented amount of data. Retail
companies collect data on every sales transaction, organizations log each click made
on their web sites, and biologists generate millions of pieces of information related
to genes daily. The volume of data being generated is leading to information
overload and the ability to make sense of all this data is becoming increasingly
important. It requires an understanding of exploratory data analysis and data mining
as well as an appreciation of the subject matter, business processes, software
deployment, project management methods, change management issues, and so on.

The purpose of this book is to describe a practical approach for making sense
out of data. A step-by-step process is introduced that is designed to help you avoid
some of the common pitfalls associated with complex data analysis or data mining
projects. It covers some of the more common tasks relating to the analysis of data
including (1) how to summarize and interpret the data, (2) how to identify nontrivial
facts, patterns, and relationships in the data, and (3) how to make predictions from
the data.

The process starts by understanding what business problems you are trying to
solve, what data will be used and how, who will use the information generated and
how will it be delivered to them. A plan should be developed that includes this
problem definition and outlines how the project is to be implemented. Specific and
measurable success criteria should be defined and the project evaluated against
them.

The relevance and the quality of the data will directly impact the accuracy of the
results. In an ideal situation, the data has been carefully collected to answer the
specific questions defined at the start of the project. Practically, you are often dealing
with data generated for an entirely different purpose. In this situation, it will be
necessary to prepare the data to answer the new questions. This is often one of the
most time-consuming parts of the data mining process, and numerous issues need to
be thought through.

Once the data has been collected and prepared, it is now ready for analysis.
‘What methods you use to analyze the data are dependent on many factors including
the problem definition and the type of data that has been collected. There may be
many methods that could potentially solve your problem and you may not know
which one works best until you have experimented with the different alternatives.
Throughout the technical sections, issues relating to when you would apply the
different methods along with how you could optimize the results are discussed.

Once you have performed an analysis, it now needs to be delivered to your
target audience. This could be as simple as issuing a report. Alternatively, the
delivery may involve implementing and deploying new software. In addition to any
technical challenges, the solution could change the way its intended audience

xi
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operates on a daily basis, which may need to be managed. It will be important to
understand how well the solution implemented in the field actually solves the
original business problem.

Any project is ideally implemented by an interdisciplinary team, involving
subject matter experts, business analysts, statisticians, IT professionals, project
managers, and data mining experts. This book is aimed at the entire interdisciplinary
team and addresses issues and technical solutions relating to data analysis or data
mining projects. The book could also serve as an introductory textbook for students
of any discipline, both undergraduate and graduate, who wish to understand
exploratory data analysis and data mining processes and methods.

The book covers a series of topics relating to the process of making sense of
data, including

e Problem definitions
e Data preparation

e Data visualization
o Statistics

e Grouping methods
e Predictive modeling
e Deployment issues
e Applications

The book is focused on practical approaches and contains information on how
the techniques operate as well as suggestions for when and how to use the different
methods. Each chapter includes a further reading section that highlights additional
books and online resources that provide background and other information. At the
end of selected chapters are a set of exercises designed to help in understanding the
respective chapter’s materials.

Accompanying this book is a web site (http://www.makingsenseofdata.com/)
containing additional resources including software, data sets, and tutorials to help in
understanding how to implement the topics covered in this book.

In putting this book together, I would like to thank the following individuals for
their considerable help: Paul Blower, Vinod Chandnani, Wayne Johnson, and Jon
Spokes. I would also like to thank all those involved in the review process for the
book. Finally, I would like to thank the staff at John Wiley & Sons, particularly
Susanne Steitz, for all their help and support throughout the entire project.



Chapter 1

Introduction

1.1 OVERVIEW

Disciplines as diverse as biology, economics, engineering, and marketing measure,
gather and store data primarily in electronic databases. For example, retail
companies store information on sales transactions, insurance companies keep track
of insurance claims, and meteorological organizations measure and collect data
concerning weather conditions. Timely and well-founded decisions need to be
made using the information collected. These decisions will be used to maximize
sales, improve research and development projects and trim costs. Retail companies
must be able to understand what products in which stores are performing well,
insurance companies need to identify activities that lead to fraudulent claims,
and meteorological organizations attempt to predict future weather conditions. The
process of taking the raw data and converting it into meaningful information
necessary to make decisions is the focus of this book.

It is practically impossible to make sense out of data sets containing more than a
handful of data points without the help of computer programs. Many free and
commercial software programs exist to sift through data, such as spreadsheets, data
visualization software, statistical packages, OLAP (On-Line Analytical Processing)
applications, and data mining tools. Deciding what software to use is just one of the
questions that must be answered. In fact, there are many issues that should be thought
through in any exploratory data analysis/data mining project. Following a predefined
process will ensure that issues are addressed and appropriate steps are taken.

Any exploratory data analysis/data mining project should include the following
steps:

1. Problem definition: The problem to be solved along with the projected
deliverables should be clearly defined, an appropriate team should be put
together, and a plan generated for executing the analysis.

2. Data preparation: Prior to starting any data analysis or data mining
project, the data should be collected, characterized, cleaned, transformed,
and partitioned into an appropriate form for processing further.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.



2 Chapter 1 Introduction

3. Implementation of the analysis: On the basis of the information from steps
1 and 2, appropriate analysis techniques should be selected, and often these
methods need to be optimized.

4. Deployment of results: The results from step 3 should be communicated
and/or deployed into a preexisting process.

Although it is usual to follow the order described, there will be some inter-
actions between the different steps. For example, it may be necessary to return to
the data preparation step while implementing the data analysis in order to make
modifications based on what is being learnt. The remainder of this chapter
summarizes these steps and the rest of the book outlines how to execute each of
these steps.

1.2 PROBLEM DEFINITION

The first step is to define the business or scientific problem to be solved and to
understand how it will be addressed by the data analysis/data mining project. This
step is essential because it will create a focused plan to execute, it will ensure that
issues important to the final solution are taken into account, and it will set correct
expectations for those both working on the project and having a stake in the project’s
results. A project will often need the input of many individuals including a specialist
in data analysis/data mining, an expert with knowledge of the business problems or
subject matter, information technology (IT) support as well as users of the results.
The plan should define a timetable for the project as well as providing a comparison
of the cost of the project against the potential benefits of a successful deployment.

1.3 DATA PREPARATION

In many projects, getting the data ready for analysis is the most time-consuming step
in the process. Pulling the data together from potentially many different sources can
introduce difficulties. In situations where the data has been collected for a different
purpose, the data will need to be transformed into an appropriate form for analysis.
During this part of the project, a thorough familiarity with the data should be
established.

1.4 IMPLEMENTATION OF THE ANALYSIS

Any task that involves making decisions from data almost always falls into one of
the following categories:

e Summarizing the data: Summarization is a process in which the data is
reduced for interpretation without sacrificing any important information.
Summaries can be developed for the data as a whole or any portion of the
data. For example, a retail company that collected data on its transactions
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could develop summaries of the total sales transactions. In addition, the
company could also generate summaries of transactions by products or
stores.

e Finding hidden relationships: This refers to the identification of important
facts, relationships, anomalies or trends in the data, which are not obvious
from a summary alone. To discover this information will involve looking at
the data from many angles. For example, a retail company may want to
understand customer profiles and other facts that lead to the purchase of
certain product lines.

e Making predictions: Prediction is the process where an estimate is
calculated for something that is unknown. For example, a retail company
may want to predict, using historical data, the sort of products that specific
consumers may be interested in.

There is a great deal of interplay between these three tasks. For example, it is
important to summarize the data before making predictions or finding hidden
relationships. Understanding any hidden relationships between different items in the
data can help in generating predictions. Summaries of the data can also be useful in
presenting prediction results or understanding hidden relationships identified. This
overlap between the different tasks is highlighted in the Venn diagram in Figure 1.1.

Exploratory data analysis and data mining covers a broad set of techniques for
summarizing the data, finding hidden relationships, and making predictions. Some
of the methods commonly used include

e Summary tables: The raw information can be summarized in multiple ways
and presented in tables.

e Graphs: Presenting the data graphically allows the eye to visually identify
trends and relationships.

Summarizing Making
the data predictions

Finding hidden
relationships

Figure 1.1. Data analysis tasks
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e Descriptive statistics: These are descriptions that summarize information
about a particular data column, such as the average value or the extreme
values.

¢ Inferential statistics: Methods that allow claims to be made concerning the
data with confidence.

e Correlation statistics: Statistics that quantify relationships within the data.

e Searching: Asking specific questions concerning the data can be useful if
you understand the conclusion you are trying to reach or if you wish to
quantify any conclusion with more information.

e Grouping: Methods for organizing a data set into smaller groups that
potentially answer questions.

e Mathematical models: A mathematical equation or process that can make
predictions.

The three tasks outlined at the start of this section (summarizing the data, finding
hidden relationships, and making predictions) are shown in Figure 1.2 with a circle
for each task. The different methods for accomplishing these tasks are also
positioned on the Venn diagram. The diagram illustrates the overlap between the
various tasks and the methods that can be used to accomplish them. The position of
the methods is related to how they are often used to address the various tasks.
Graphs, summary tables, descriptive statistics, and inferential statistics are
the main methods used to summarize data. They offer multiple ways of describing
the data and help us to understand the relative importance of different portions of the
data. These methods are also useful for characterizing the data prior to developing
predictive models or finding hidden relationships. Grouping observations can be
useful in teasing out hidden trends or anomalies in the data. It is also useful for
characterizing the data prior to building predictive models. Statistics are used

Descriptive
Statistics

Mathematical

Summarizing Models

the data

Making
predictions
Inferential
Statistics

Correlation
Statistics

Searching

Finding hidden
relationships

Figure 1.2. Data analysis tasks and methods
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throughout, for example, correlation statistics can be used to prioritize what data to
use in building a mathematical model and inferential statistics can be useful when
validating trends identified from grouping the data. Creating mathematical models
underpins the task of prediction; however, other techniques such as grouping can
help in preparing the data set for modeling as well as helping to explain why certain
predictions were made.

All methods outlined in this section have multiple uses in any data analysis or
data mining project, and they all have strengths and weaknesses. On the basis of
issues important to the project as well as other practical considerations, it is
necessary to select a set of methods to apply to the problem under consideration.
Once selected, these methods should be appropriately optimized to improve the
quality of the results generated.

1.5 DEPLOYMENT OF THE RESULTS

There are many ways to deploy the results of a data analysis or data mining project.
Having analyzed the data, a static report to management or to the customer of the
analysis is one option. Where the project resulted in the generation of predictive
models to use on an ongoing basis, these models could be deployed as standalone
applications or integrated with other softwares such as spreadsheets or web pages. It
is in the deployment step that the analysis is translated into a benefit to the business,
and hence this step should be carefully planned.

1.6 BOOK OUTLINE

This book follows the four steps outlined in this chapter:

1. Problem definition: A discussion of the definition step is provided in
Chapter 2 along with a case study outlining a hypothetical project plan. The
chapter outlines the following steps: (1) define the objectives, (2) define the
deliverables, (3) define roles and responsibilities, (4) assess the current
situation, (5) define the timetable, and (6) perform a cost/benefit analysis.

2. Data preparation: Chapter 3 outlines many issues and methods for
preparing the data prior to analysis. It describes the different sources of
data. The chapter outlines the following steps: (1) create the data tables, (2)
characterize the data, (3) clean the data, (4) remove unnecessary data, (5)
transform the data, and (6) divide the data into portions when needed.

3. Implementation of the analysis: Chapter 4 provides a discussion of how
summary tables and graphs can be used for communicating information about
the data. Chapter 5 reviews a series of useful statistical approaches to
summarizing the data and relationships within the data as well as making
statements about the data with confidence. It covers the following topics:
descriptive statistics, confidence intervals, hypothesis tests, the chi-square test,
one-way analysis of variance, and correlation analysis. Chapter 6 describes a
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series of methods for grouping data including clustering, associative rules, and
decision trees. Chapter 7 outlines the process and methods to be used in
building predictive models. In addition, the chapter covers a series of methods
including simple regression, k-nearest neighbors, classification and regression
trees, and neural networks.

. Deployment of results: Chapter 8 reviews some of the issues around

deploying any results from data analysis and data mining projects including
planning and executing deployment, measuring and monitoring the solu-
tion’s performance, and reviewing the entire project. A series of common
deployment scenarios are presented. Chapter 9 concludes the book with a
review of the whole process, a case study, and a discussion of data analysis

Table 1.1. Summary of project steps

Steps

Description

1. Problem definition Define

Objectives

Deliverables

Roles and responsibilities
Current situation
Timeline

e Costs and benefits

2. Data preparation Prepare and become familiar with the data:

Pull together data table

e Categorize the data

e Clean the data

o Remove unnecessary data
e Transform the data

e Partition the data

3. Implementation Three major tasks are
of the analysis e Summarizing the data

4. Deployment

e Finding hidden relationships
e Making prediction
Select appropriate methods and design multiple experiments
to optimize the results. Methods include
e Summary tables
e Graphs
e Descriptive statistics
e Inferential statistics
e Correlation statistics
e Searching
e Grouping
e Mathematical models
e Plan and execute deployment based on the definition in step 1
e Measure and monitor performance
e Review the project




Further Reading 7

and data mining issues associated with common applications. Exercises are
included at the end of selected chapters to assist in understanding the
material.

This book uses a series of data sets to illustrate the concepts from Newman
(1998). The Auto-Mpg Database is used throughout to compare how the different
approaches view the same data set. In addition, the following data sets are used in the
book: Abalone Database, Adult Database, and the Pima Indians Diabetes Database.

1.7 SUMMARY

The four steps in any data analysis or data mining project are summarized in Table 1.1.

1.8 FURTHER READING

The CRISP-DM project (CRoss Industry Standard Process for Data Mining) has published a
data mining process and describes details concerning data mining stages and relationships
between the stages. It is available on the web at: http://www.crisp-dm.org/

SEMMA (Sample, Explore, Modify, Model, Assess) describes a series of core tasks for
model development in the SAS®™ Enterprise Miner  software and a description can be found
at: http://www.sas.com/technologies/analytics/datamining/miner/semma.html



Chapter 2

Definition

2.1 OVERVIEW

This chapter describes a series of issues that should be considered at the start of any
data analysis or data mining project. It is important to define the problem in
sufficient detail, in terms of both how the questions are to be answered and how the
solutions will be delivered. On the basis of this information, a cross-disciplinary
team should be put together to implement these objectives. A plan should outline the
objectives and deliverables along with a timeline and budget to accomplish the
project. This budget can form the basis for a cost/benefit analysis, linking the total
cost of the project to potential savings or increased revenues. The following sections
explore issues concerning the problem definition step.

2.2 OBJECTIVES

It is critical to spend time defining how the project will impact specific business
objectives. This assessment is one of the key factors to achieving a successful data
analysis/data mining project. Any technical implementation details are secondary to
the definition of the business objective. Success criteria for the project should be
defined. These criteria should be specific and measurable as well as related to the
business objective. For example, the project should increase revenue or reduce costs
by a specific amount.

A broad description of the project is useful as a headline. However, this
description should be divided into smaller problems that ultimately solve the broader
issue. For example, a general problem may be defined as: ‘““Make recommendations
to improve sales on the web site.” This question may be further broken down into
questions that can be answered using the data such as:

1. Identify categories of web site users (on the basis of demographic informa-
tion) that are more likely to purchase from the web site.

2. Categorize users of the web site on the basis of usage information.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.
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3. Determine if there are any relationships between buying patterns and web
site usage patterns.

All those working on the project as well as other interested parties should have a
clear understanding of what problems are to be addressed. It should also be
possible to answer each problem using the data. To make this assessment, it is
important to understand what the collection of all possible observations that would
answer the question would look like or population. For example, when the question
is how America will vote in the upcoming presidential election, then the entire
population is all eligible American voters. Any data to be used in the project
should be representative of the population. If the problems cannot be answered with
the available data, a plan describing how this data will be acquired should be
developed.

2.3 DELIVERABLES

It is also important to identify the deliverables of the project. Will the solution be a
report, a computer program to be used for making predictions, a new workflow or a
set of business rules? Defining all deliverables will provide the correct expectations
for all those working on the project as well as any project stakeholders, such as the
management who is sponsoring the project.

When developing predictive models, it is useful to understand any required level
of accuracy. This will help prioritize the types of approaches to consider during
implementation as well as focus the project on aspects that are critical to its success.
For example, it is not worthwhile spending months developing a predictive model
that is 95% accurate when an 85% accurate model that could have been developed in
days would have solved the business problem. This time may be better devoted to
other aspects that influence the ultimate success of the project. The accuracy of the
model can often relate directly to the business objective. For example, a credit card
company may be suffering due to customers moving their accounts to other
companies. The company may have a business objective of reducing this turnover
rate by 10%. They know that if they are able to identify a customer that is likely to
abandon their services, they have an opportunity of targeting and retaining this
customer. The company decides to build a prediction model to identify these
customers. The level of accuracy of the prediction, therefore, has to be such that the
company can reduce the turnover by the desired amount.

It is also important to understand the consequences of answering questions
incorrectly. For example, when predicting tornadoes, there are two possible
scenarios: (1) incorrectly predicting a tornado and (2) incorrectly predicting no
tornado. The consequence of scenario (2) is that a tornado hits with no warning.
Affected neighborhoods and emergency crews would not be prepared for potentially
catastrophic consequences. The consequence of scenario (1) is less dramatic with
only a minor inconvenience to neighborhoods and emergency services since they
prepared for a tornado that did not hit. It is usual to relate business consequences to
the quality of prediction according to these two scenarios.
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One possible deliverable is a software application, such as a web-based
data mining application that suggests alternative products to customers while they
are browsing an online store. The time to generate an answer is dependent, to a
large degree, on the data mining approach adopted. If the speed of the compu-
tation is a factor, it must be singled out as a requirement for the final solution.
In the online shopping example, the solution must generate these items rapidly
(within a few seconds) or the customer will become frustrated and shop
elsewhere.

In many situations, the time to create a model can have an impact on the success
of the project. For example, a company developing a new product may wish to use a
predictive model to prioritize potential products for testing. The new product is
being developed as a result of competitive intelligence indicating that another
company is developing a similar product. The company that is first to the market will
have a significant advantage. Therefore, the time to generate the model may be an
important factor since there is only a window of opportunity to influence the project.
If the model takes too long to develop, the company may decide to spend
considerable resources actually testing the alternatives as opposed to making use of
any models generated.

There are a number of deployment issues that may need to be considered during
the implementation phase. A solution may involve changing business processes. For
example, a solution that requires the development of predictive models to be used by
associates in the field may change the work practices of these individuals. These
associates may even resist this change. Involving the end-users in the project may
facilitate acceptance. In addition, the users may require that all results are
appropriately explained and linked to the data from which the results were
generated, in order to trust the results.

Any plan should define these and other issues important to the project as these
issues have implications as to the sorts of methods that can be adopted in the
implementation step.

2.4 ROLES AND RESPONSIBILITIES

It is helpful to consider the following roles that are important in any project.

e Project leader: Someone who is responsible for putting together a plan and
ensuring the plan is executed.

e Subject matter experts and/or business analysts: Individuals who have
specific knowledge of the subject matter or business problems including
(1) how the data was collected, (2) what the data values mean, (3) the level
of accuracy of the data, (4) how to interpret the results of the analysis, and
(5) the business issues being addressed by the project.

e Data analysis/data mining expert: Someone who is familiar with statistics,
data analysis methods and data mining approaches as well as issues of data
preparation.
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o IT expert: A person or persons with expertise in pulling data sets together
(e.g., accessing databases, joining tables, pivoting tables, etc.) as well as
knowledge of software and hardware issues important for the implementa-
tion and deployment steps.

e Consumer: Someone who will ultimately use the information derived from
the data in making decisions, either as a one-off analysis or on a routine
basis.

A single member of the team may take on multiple roles such as an individual
may take on the role of project leader and data analysis/data mining expert. Another
scenario is where multiple persons are responsible for a single role, for example, a
team may include multiple subject matter experts, where one individual has
knowledge of how the data was measured and another individual has knowledge of
how the data can be interpreted. Other individuals, such as the project sponsor, who
have an interest in the project should be brought in as interested parties. For
example, representatives from the finance group may be involved in a project where
the solution is a change to a business process with important financial implications.

Cross-disciplinary teams solve complex problems by looking at the data from
different perspectives and should ideally work on these types of projects. Different
individuals will play active roles at different times. It is desirable to involve all
parties in the definition step. The IT expert has an important role in the data
preparation step to pull the data together in a form that can be processed. The data
analysis/data mining expert and the subject matter expert/business analyst should
also be working closely in the preparation step to clean and categorize the data. The
data analysis/data mining expert should be primarily responsible for transforming
the data into an appropriate form for analysis. The third implementation step is
primarily the responsibility of the data analysis/data mining expert with input from
the subject matter expert/business analyst. Also, the IT expert can provide a valuable
hardware and software support role throughout the project.

With cross-disciplinary teams, communication challenges may arise from time-
to-time. A useful way of facilitating communication is to define and share glossaries
defining terms familiar to the subject matter experts or to the data analysis/data
mining experts. Team meetings to share information are also essential for
communication purposes.

2.5 PROJECT PLAN

The extent of any project plan depends on the size and scope of the project.
However, it is always a good idea to put together a plan. It should define the problem,
the proposed deliverables along with the team who will execute the analysis, as
described above. In addition, the current situation should be assessed. For example,
are there constraints on the personnel that can work on the project or are there
hardware and software limitations that need to be taken into account? The sources
and locations of the data to be used should be identified. Any issues, such as privacy
or legal issues, related to using the data should be listed. For example, a data set
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containing personal information on customers’ shopping habits could be used in a
data mining project. However, information that relates directly to any individual
cannot be presented as results.

A timetable of events should be put together that includes the preparation,
implementation, and deployment steps. It is very important to spend the appropriate
amount of time getting the data ready for analysis, since the quality of the data
ultimately determines the quality of the analysis results. Often this step is the most
time-consuming, with many unexpected problems with the data coming to the
surface. On the basis of an initial evaluation of the problem, a preliminary
implementation plan should be put together. Time should be set aside for iteration of
activities as the solution is optimized. The resources needed in the deployment step
are dependent on how the deliverables were previously defined. In the case where the
solution is a report, the whole team should be involved in writing the report. Where
the solution is new software to be deployed, then a software development and
deployment plan should be put together, involving a managed roll-out of the solution.

Time should be built into the timetable for reviews after each step. At the end of
the project, a valuable exercise is to spend time evaluating what worked and what did
not work during the project, providing insights for future projects. It is also likely
that the progress will not always follow the predefined sequence of events, moving
between stages of the process from time-to-time. There may be a number of high-
risk steps in the process, and these should be identified and contingencies built into
the plan. Generating a budget based on the plan could be used, alongside the
business success criteria, to understanding the cost/benefits for the project. To
measure the success of the project, time should be set aside to evaluate if the
solutions meets the business goals during deployment. It may also be important to
monitor the solution over a period of time.

2.6 CASE STUDY
2.6.1 Overview

The following is a hypothetical case study involving a financial company’s credit
card division that wishes to reduce the number of customers switching services. To
achieve this, marketing management decides to initiate a data mining project to help
predict which customers are likely to switch services. These customers will be
targeted with an aggressive direct marketing campaign. The following is a
summarized plan for accomplishing this objective.

2.6.2 Problem

The credit card division would like to increase revenues by $2,000,000 per year by
retaining more customers. This goal could be achieved if the division could predict
with a 70% accuracy rate which customers are going to change services. The 70%
accuracy number is based on a financial model described in a separate report. In
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addition, factors that are likely to lead to customers changing service will be useful
in formulating future marketing plans.

To accomplish this business objective, a data mining project is established to
solve the following problems:

1. Create a prediction model to forecast which customers are likely to change
credit cards.

2. Find hidden facts, relationships, and patterns that customers exhibit prior to
switching credit cards.

The target population is all credit card customers.

2.6.3 Deliverables

There will be two deliverables:

1. Software to predict customers likely to change credit cards.
2. A report describing factors that contribute to customers changing credit
cards.

The prediction is to be used within the sales department by associates
who market to at risk customers. No explanation of the results is required. The
consequence of missing a customer that changes service is significantly greater than
mistakenly identifying a customer that is not considering changing services. It should
be possible to rank customers based on most-to-least likely to switch credit cards.

2.6.4 Roles and Responsibilities

The following individuals will work directly on the project:

e Pam (Project leader and business analyst)

e Lee (IT expert)

e Tony (Data mining consultant)

The following will serve on the team as interested parties, as they represent the
customers of the solution:

o Jeff (Marketing manager and project sponsor)

e Kim (Sales associate)

2.6.5 Current Situation

A number of databases are available for use with this project: (1) a credit card
transaction database and (2) a customer profile database containing information on
demographics, credit ratings, as well as wealth indicators. These databases are
located in the IT department.
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2.6.6 Timetable and Budget

Prior to starting the project, a kick-off meeting will take place where the goals will
be fine-tuned and any cross-team education will take place.
The following outlines the steps required for this project:

1. Preparation: Access, characterize and prepare the data sets for analysis and
develop an appreciation of the data content.

2. Implementation: A variety of data analysis/data mining methods will be
explored and the most promising optimized. The analysis will focus on
creating a model to predict customers likely to switch credit cards with an
accuracy greater than 70% and the discovery of factors contributing to
customers changing cards.

3. Deployment: A two phase roll-out of the solution is planned. Phase one will
assess whether the solution translates into the business objectives. In this
phase, the sales department responsible for targeting at risk customers will
be divided into two random groups. The first group will use the prediction
models to prioritize customers. The second group will be assigned a random
ranking of customers. The sales associates will not know whether they are
using the prediction model or not. Differences in terms of retention of
customers will be compared between the two groups. This study will
determine whether the accuracy of the model translates into meeting the
business objectives. When phase one has been successfully completed, a
roll-out of the solution will take place and changes will be made to the
business processes.

A meeting will be held after each stage of the process with the entire group to
review what has been accomplished and agree on a plan for the next stage.

There are a number of risks and contingencies that need to be built into the plan.
If the model does not have a required accuracy of 70%, any deployment will not result
in the desired revenue goals. In this situation, the project should be reevaluated. In the
deployment phase, if the projected revenue estimates from the double blind test does
not meet the revenue goals then the project should be reevaluated at this point.

Figure 2.1 shows a timetable of events and a summarized budget for the project.

2.6.7 Cost/Benefit Analysis

The cost of the project of $35,500 is substantially less than the projected saving of
$2,000,000. A successfully delivered project would have a substantial return on
investment.

2.7 SUMMARY

Table 2.1 summarizes the problem definition step.
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Table 2.1. Project definitions summary

Steps

Details

Define objectives

Define deliverables

Define roles and
responsibilities

Assess current

situation

Define timetable

Analyze cost/benefit

e Define the business objectives

e Define specific and measurable success criteria

e Broadly describe the problem

e Divide the problem into sub-problems that are unambiguous and
that can be solved using the available data

e Define the target population

o [f the available data does not reflect a sample of the target
population, generate a plan to acquire additional data

e Define the deliverables, e.g., a report, new software, business
processes, etc.

e Understand any accuracy requirements

e Define any time-to-compute issues

e Define any window-of-opportunity considerations

e Detail if and how explanations should be presented

e Understand any deployment issues

e Project leader

o Subject matter expert/business analyst

e Data analysis/data mining expert

o [T expert

e Consumer

e Define data sources and locations

e List assumptions about the data

e Understand project constraints (e.g., hardware, software,
personnel, etc.)

e Assess any legal, privacy or other issues relating to the
presentation of the results

o Set aside time for education upfront

e Estimate time for the data preparation, implementation, and
deployment steps

o Set aside time for reviews

e Understand risks in the timeline and develop contingency plans

e Generate a budget for the project

e List the benefits to the business of a successful project

e Compare costs and benefits

2.8 FURTHER READING

This chapter has focused on issues relating to large and potentially complex data analysis and
data mining projects. There are a number of publications that provide a more detailed
treatment of general project management issues including Berkun (2005), Kerzner (2006), and
the Project Management Institute’s “A Guide to the Project Management Body of

Knowledge.”



Chapter 3

Preparation

3.1 OVERVIEW

Preparing the data is one of the most time-consuming parts of any data analysis/data
mining project. This chapter outlines concepts and steps necessary to prepare a data
set prior to any data analysis or data mining exercise. How the data is collected and
prepared is critical to the confidence with which decisions can be made. The data
needs to be pulled together into a table. This may involve integration of the data from
multiple sources. Once the data is in a tabular format it should be fully characterized.
The data should also be cleaned by resolving any ambiguities, errors, and removing
redundant and problematic data. Certain columns of data can be removed if it is
obvious that they would not be useful in any analysis. For a number of reasons, new
columns of data may need to be calculated. Finally, the table should be divided,
where appropriate, into subsets that either simplify the analysis or allow specific
questions to be answered more easily.

Details concerning the steps taken to prepare the data for analysis should be
recorded. This not only provides documentation of the activities performed so far,
but also provides a methodology to apply to a similar data set in the future. In
addition, the steps will be important when validating the results since these records
will show any assumptions made about the data.

The following chapter outlines the process of preparing data for analysis. It
includes information on the sources of data along with methods for characterizing,
cleaning, transforming, and partitioning the data.

3.2 DATA SOURCES

The quality of the data is the single most important factor to influence the quality of
the results from any analysis. The data should be reliable and represent the defined
target population. Data is often collected to answer specific questions using the
following types of studies:

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.
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e Surveys or polls: A survey or poll can be useful for gathering data to answer
specific questions. An interview using a set of predefined questions is usually
conducted either over the phone, in person or over the Internet. They are
often used to elicit information on people’s opinions, preferences and
behavior. For example, a poll may be used to understand how a population
of eligible voters will cast their vote in an upcoming election. The specific
questions to be answered along with the target population should be clearly
defined prior to any survey. Any bias in the survey should be eliminated. To
achieve this, a true random sample of the target population should be taken.
Bias can be introduced in situations where only those responding to the
questionnaire are included in the survey since this group may not represent
an unbiased random sample. The questionnaire should contain no leading
questions, that is, questions that favor a particular response. It is also
important that no bias relating to the time the survey was conducted, is
introduced. The sample of the population used in the survey should be large
enough to answer the questions with confidence. This will be described in
more detail within the chapter on statistics.

e Experiments: Experiments measure and collect data to answer a specific
question in a highly controlled manner. The data collected should be reliably
measured, that is, repeating the measurement should not result in different
values. Experiments attempt to understand cause and affect phenomena by
controlling other factors that may be important. For example, when studying
the effects of a new drug, a double blind study is usually used. The sample of
patients selected to take part in the study is divided into two groups. The new
drug will be delivered to one group, whereas a placebo (a sugar pill) is given
to the other group. Neither the patient nor the doctor administering the
treatment knows which group the patient is in to avoid any bias in the study
on the part of the patient or the doctor.

e Observational and other studies: In certain situations it is impossible on
either logistical or ethical grounds to conduct a controlled experiment. In
these situations, a large number of observations are measured and care taken
when interpreting the results.

As part of the daily operations of an organization, data is collected for a variety
of reasons. Examples include

e Operational databases: These databases contain ongoing business transac-
tions. They are accessed constantly and updated regularly. Examples include
supply chain management systems, customer relationship management
(CRM) databases and manufacturing production databases.

e Data warehouses: A data warehouse is a copy of data gathered from other
sources within an organization that has been cleaned, normalized, and
optimized for making decisions. It is not updated as frequently as operational
databases.
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o Historical databases: Databases are often used to house historical polls,
surveys and experiments.

e Purchased data: In many cases data from in-house sources may not be
sufficient to answer the questions now being asked of it. One approach is to
combine this internal data with data from other sources.

Pulling data from multiple sources is a common situation in many data mining
projects. Often the data has been collected for a totally different purpose than the
objective of the data mining exercise it is currently being used for. This introduces a
number of problems for the data mining team. The data should be carefully prepared
prior to any analysis to ensure that it is in a form to answer the questions now being
asked. The data should be prepared to mirror as closely as possible the target
population about which the questions will be asked. Since multiple sources of data
may now have been used, care must be taken bringing these sources together since
errors are often introduced at this time. Retaining information on the source of the
data can also be useful in interpreting the results.

3.3 DATA UNDERSTANDING
3.3.1 Data Tables

All disciplines collect data about things or objects. Medical researchers collect data
on patients, the automotive industry collects data on cars, retail companies collect
data on transactions. Patients, cars and transactions are all objects. In a data set there
may be many observations for a particular object. For example, a data set about cars
may contain many observations on different cars. These observations can be
described in a number of ways. For example, a car can be described by listing
the vehicle identification number (VIN), the manufacturer’s name, the weight, the
number of cylinders, and the fuel efficiency. Each of these features describing a car
is a variable. Each observation has a specific value for each variable. For example, a
car may have:

VIN = IM8GDY9A_KP042788

Manufacturer = Ford

Weight = 2984 pounds

Number of cylinders = 6

Fuel efficiency = 20 miles per gallon

Data sets used for data analysis/data mining are almost always described in
tables. An example of a table describing cars is shown in Table 3.1. Each row of the
table describes an observation (a specific car). Each column describes a variable (a

specific attribute of a car). In this example, there are two observations and these
observations are described using five variables: VIN, Manufacturer, Weight,
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Table 3.1. Example of a table describing cars

Number of
VIN Manufacturer Weight cylinders Fuel efficiency
IMSGD9A_KP042788 Ford 2984 6 20
IC4GE9A_DQ1572481 Toyota 1795 4 34

Number of cylinders and Fuel efficiency. Variables will be highlighted throughout
the book in bold.

A generalized version of the table is shown in Table 3.2. This table describes a
series of observations (from O, to O,). Each observation is described using a series
of variables (X; to Xj). A value is provided for each variable of each observation.
For example, the value of the first observation for the first variable is x;;.

Getting to the data tables in order to analyze the data may require generating the
data from scratch, downloading data from a measuring device or querying a database
(as well as joining tables together or pivoting tables), or running a computer software
program to generate further variables for analysis. It may involve merging the data
from multiple sources. This step is often not trivial. There are many resources
describing how to do this, and some are described in the further reading section of
this chapter.

Prior to performing any data analysis or data mining, it is essential to thoroughly
understand the data table, particularly the variables. Many data analysis techniques
have restrictions on the types of variables that they are able to process. As a result, these
techniques may be eliminated from consideration or the data must be transformed into
an appropriate form for analysis. In addition, certain characteristics of the variables
have implications in terms of how the results of the analysis will be interpreted. The
following four sections detail a number of ways of characterizing variables.

3.3.2 Continuous and Discrete Variables

A useful initial categorization is to define each variable in terms of the type of values
that the variable can take. For example, does the variable contain a fixed number of

Table 3.2. General format for a table of observations

Variables
Observations X1 X5 X3 ... Xy
(O X11 X12 X13 X1k
0O, X21 X22 X23 ce X2k
O3 X31 X32 X33 cee X3k

On Xn1 Xn2 Xn3 cee Xnk
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distinct values or could it take any numeric value? The following is a list of
descriptive terms for categorizing variables:

e Constant: A variable where every data value is the same. In many defini-
tions, a variable must have at least two different values; however, it is a
useful categorization for our purposes. For example, a variable Calibration
may indicate the value a machine was set to in order to generate a particular
measurement and this value may be the same for all observations.

e Dichotomous: A variable where there are only two values, for example,
Gender whose values can be male or female. A special case is a binary
variable whose values are 0 and 1. For example, a variable Purchase may
indicate whether a customer bought a particular product and the convention
that was used to represent the two cases is 0 (did not buy) and 1 (did buy).

e Discrete: A variable that can only take a certain number of values (either text
or numbers). For example, the variable Color where values could be black,
blue, red, yellow, and so on, or the variable Score where the variable can
only take values 1, 2, 3, 4, or 5.

e Continuous: A variable where an infinite number of numeric values are
possible within a specific range. An example of a continuous value is
temperature where between the minimum and maximum temperature, the
variable could take any value.

It can be useful to describe a variable with additional information. For example,
is the variable a count or fraction, a time or date, a financial term, a value derived
from a mathematical operation on other variables, and so on? The units are also
useful information to capture in order to present the result. When two tables are
merged, units should also be aligned or appropriate transformations applied to
ensure all values have the same unit.

3.3.3 Scales of NMeasurement

The variable’s scale indicates the accuracy at which the data has been measured.
This classification has implications as to the type of analysis that can be performed
on the variable. The following terms categorize scales:

e Nominal: Scale describing a variable with a limited number of different
values. This scale is made up of the list of possible values that the variable
may take. It is not possible to determine whether one value is larger than
another. For example, a variable Industry would be nominal where it takes
values such as financial, engineering, retail, and so on. The order of these
values has no meaning.

e Ordinal: This scale describes a variable whose values are ordered; however,
the difference between the values does not describe the magnitude of the
actual difference. For example, a scale where the only values are low,
medium, and high tells us that high is larger than medium, and medium is
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Table 3.3. Scales of measurement summary

Meaningful order Meaningful difference Natural zero
Nominal No No No
Ordinal Yes No No
Interval Yes Yes No
Ratio Yes Yes Yes

larger than low. However, it is impossible to determine the magnitude of the
difference between the three values.

e Interval: Scales that describe values where the interval between the values
has meaning. For example, when looking at three data points measured on the
Fahrenheit scale, 5 °F, 10 °F, 15 °F, the differences between the values from 5
to 10 and from 10 to 15 are both 5 and a difference of 5 °F in both cases has
the same meaning. Since the Fahrenheit scale does not have a lowest value at
zero, a doubling of a value does not imply a doubling of the actual
measurement. For example, 10 °F is not twice as hot as 5 °F. Interval scales
do not have a natural zero.

e Ratio: Scales that describe variables where the same difference between
values has the same meaning (as in interval) but where a double, tripling, etc.
of the values implies a double, tripling, etc. of the measurement. An example
of a ratio scale is a bank account balance whose possible values are $5, $10,
and $15. The difference between each pair is $5 and $10 is twice as much as
$5. Since ratios of values are possible, they are defined as having a natural
ZerO0.

Table 3.3 provides a summary of the different types of scales.

3.3.4 Roles in Analysis

It is also useful to think about how the variables will be used in any subsequent
analysis. Example roles in data analysis and data mining include

e Labels: Variables that describe individual observations in the data.

e Descriptors: These variables are almost always collected to describe an
observation. Since they are often present, these variables are used as the
input or descriptors to be used in both creating a predictive model and
generating predictions from these models. They are also described as
predictors or X variables.

e Response: These variables (usually one variable) are predicted from
a predictive model (using the descriptor variables as input). These variables
will be used to guide the creation of the predictive model. They will also be
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predicted, based on the input descriptor variables that are presented to the
model. They are also referred to as Y variables.

The car example previously described had the following variables: vehicle
identification number (VIN), Manufacturer, Weight, Number of cylinders, and
Fuel efficiency. One way of using this data is to build a model to predict Fuel
efficiency. The VIN variable describes the individual observations and is assigned as
a label. The variables Manufacturer, Weight, and Number of cylinders will be
used to create a model to predict Fuel efficiency. Once a model is created, the
variables Manufacturer, Weight, and Number of cylinders will be used as inputs
to the model and the model will predict Fuel efficiency. The variables
Manufacturer, Weight, and Number of cylinders are descriptors, and the variable
Fuel efficiency is the response variable.

3.3.5 Frequency Distribution

For variables with an ordered scale (ordinal, interval, or ratio), it is useful to look at
the frequency distribution. The frequency distribution is based on counts of values or
ranges of values (in the case of interval or ratio scales). The following histogram
shows a frequency distribution for a variable X. The variable has been classified into
a series of ranges from —6 to —5, —5 to —4, —4 to —3, and so on, and the graph in
Figure 3.1 shows the number of observations for each range. It indicates that the
majority of the observations are grouped in the middle of the distribution between
—2 and +1, and there are relatively fewer observations at the extreme values. The
frequency distribution has an approximate bell-shaped curve as shown in Figure 3.2.
A symmetrical bell-shaped distribution is described as a normal (or Gaussian)
distribution. It is very common for variables to have a normal distribution. In
addition, many data analysis techniques assume an approximate normal distribution.
These techniques are referred to as parametric procedures (nonparametric
procedures do not require a normal distribution).
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Figure 3.1. Frequency distribution for variable X
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Figure 3.2. Frequency distribution for variable X with the normal distribution superimposed

3.4 DATA PREPARATION
3.4.1 Overview

Having performed a preliminary data characterization, it is now time to analyze
further and transform the data set prior to starting any analysis. The data must be
cleaned and translated into a form suitable for data analysis and data mining. This
process will enable us to become familiar with the data and this familiarity will be
beneficial to the analysis performed in step 3 (the implementation of the analysis).
The following sections review some of the criteria and analysis that can be
performed.

3.4.2 Cleaning the Data

Since the data available for analysis may not have been originally collected with this
project’s goal in mind, it is important to spend time cleaning the data. It is also
beneficial to understand the accuracy with which the data was collected as well as
correcting any errors.

For variables measured on a nominal or ordinal scale (where there are a fixed
number of possible values), it is useful to inspect all possible values to uncover
mistakes and/or inconsistencies. Any assumptions made concerning possible values
that the variable can take should be tested. For example, a variable Company may
include a number of different spellings for the same company such as:

General Electric Company
General Elec. Co

GE

Gen. Electric Company
General electric company

G.E. Company
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These different terms, where they refer to the same company, should be con-
solidated into one for analysis. In addition, subject matter expertise may be needed
in cleaning these variables. For example, a company name may include one of the
divisions of the General Electric Company and for the purpose of this specific
project it should be included as the ““General Electric Company.”

It can be more challenging to clean variables measured on an interval or ratio
scale since they can take any possible value within a range. However, it is useful to
consider outliers in the data. Outliers are a single or a small number of data values
that are not similar to the rest of the data set. There are many reasons for outliers. An
outlier may be an error in the measurement. A series of outlier data points could be a
result of measurements made using a different calibration. An outlier may also be a
genuine data point. Histograms, scatterplots, box plots and z-scores can be useful in
identifying outliers and are discussed in more detail within the next two chapters.
The histogram in Figure 3.3 displays a variable Height where one value is eight
times higher than the average of all data points.

There are additional methods such as clustering and regression that could also
be used to identify outliers. These methods are discussed later in the book.
Diagnosing an outlier will require subject matter expertise to determine whether it is
an error (and should be removed) or a genuine observation. If the value or values are
correct, then the variable may need some mathematical transformation to be applied
for use with data analysis and data mining techniques. This will be discussed later in
the chapter.

Another common problem with continuous variables is where they include
nonnumeric terms. Any term described using text may appear in the variable, such as
“above 50 or ““out of range.” Any numeric analysis would not be able to interpret a
value that is not an explicit number, and hence, these terms should be converted to a
number, based on subject matter expertise, or should be removed.

In many situations, an individual observation may have data missing for a
particular variable. Where there is a specific meaning for a missing data value, the
value may be replaced on the basis of the knowledge of how the data was collected.
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Figure 3.3. Potential error in the data
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Alternatively, the observation should be removed from the table. There are methods
that attempt to estimate a value for missing data; however, these methods should be
used with care. Literature describing these methods has been listed in the further
reading section of this chapter.

A particular variable may have been measured over different units. For
example, a variable Weight may have been measured using both pounds and
kilograms for different observations and should be standardized to a single scale.
Another example would be where a variable Price is shown in different currencies
and should be standardized to one for the purposes of analysis. In situations where
data has been collected over time, there may be changes related to the passing of
time that is not relevant for the analysis. For example, when looking at a variable
Cost of production where the data has been collected over many years, the rise
in costs attributable to inflation may need to be factored out for this specific
analysis.

By combining data from multiple sources, an observation may have been
recorded more than once and any duplicate entries should be removed.

3.4.3 Removing Variables

On the basis of an initial categorization of the variables, it may be possible to remove
variables from consideration at this point. For example, constants and variables with
too many missing data points should be considered for removal. Further analysis of
the correlations between multiple variables may identify variables that provide no
additional information to the analysis and hence could be removed. This type of
analysis is described in the chapter on statistics.

3.4.4 Data Transformations

Overview

It is important to consider applying certain mathematical transformations to the data
since many data analysis/data mining programs will have difficulty making sense of
the data in its raw form. Some common transformations that should be considered
include normalization, value mapping, discretization, and aggregation. When a new
variable is generated, the transformation procedure used should be retained. The
inverse transformation should then be applied to the variable prior to presenting any
analysis results that include this variable. The following section describes a series of
data transformations to apply to data sets prior to analysis.

Normalization

Normalization is a process where numeric columns are transformed using a
mathematical function to a new range. It is important for two reasons. First, any
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analysis of the data should treat all variables equally so that one column does
not have more influence over another because the ranges are different. For example,
when analyzing customer credit card data, the Credit limit value is not given
more weightage in the analysis than the Customer’s age. Second, certain
data analysis and data mining methods require the data to be normalized prior to
analysis, such as neural networks or k-nearest neighbors, described in Sections 7.3
and 7.5. The following outlines some common normalization methods:

e Min-max: Transforms the variable to a new range, such as from 0 to 1. The
following formula is used:

, Value — OriginalMin
Value' =

— — — (NewMax — NewMin) + NewMin

OriginalMax — OriginalMin
where Value' is the new normalized value, Value is the original variable
value, OriginalMin is the minimum possible value of the original variable,
OriginalMax is the maximum original possible value, NewMin is the
minimum value for the normalized range, and NewMax is the maximum
value for the normalized range. This is a useful formula that is widely used.
The minimum and maximum values for the original variable are needed. If
the original data does not contain the full range, either a best guess at the
range is needed or the formula should be restricted for future use to the range
specified.

e z-score: It normalizes the values around the mean (or average) of the set,
with differences from the mean being recorded as standardized units on the
basis of the frequency distribution of the variable. The following formula is
used:

Value' Value — x
alue’ = ———

where X is the mean or average value for the variable and s is the standard
deviation for the variable. Calculations and descriptions for mean and
standard deviation calculations are provided in the chapter on statistics.

e Decimal scaling: This transformation moves the decimal to ensure the range
is between 1 and —1. The following formula is used:

Value
10"

Value' =

Where n is the number of digits of the maximum absolute value. For
example, if the largest number is 9948 then n would be 4. 9948 would
normalize to 9948/ 104, 9948/10,000, or 0.9948.

The normalization process is illustrated using the data in Table 3.4. To
calculate the normalized values using the min-max equation, first the minimum
and maximum values should be identified: OriginalMin =7 and OriginalMax = 53.
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Table 3.4. Single column to be normalized

Variable

33
21

7
53
29
42
12
19
22
36

The new normalized values will be between 0 and 1: NewMin=0 and
NewMax = 1. To calculate the new normalized value (value’) using the formula
for the value 33:

Value — OriginalMin

e OriginalMax — OriginalMin (NewMax — NewMin) + NewMin
33 -7
Value/ = ﬁ (1 — O) +O

Value' = 0.565

Table 3.5 shows the calculated normalized values for all data points.

A variable may not conform to a normal distribution. Certain data analysis
methods require the data to follow a normal distribution. Methods for visualizing
and describing a normal frequency distribution are described in the following two
chapters. To transform the data into a more appropriate normal distribution, it may
be necessary to take the log (or negative log), exponential or perform a Box-Cox

Table 3.5. Variable normalized to the range 0—1

Variable Normalized (0 to 1)
33 0.565
21 0.304
7 0
53 1
29 0.478
42 0.761
12 0.109
19 0.261
22 0.326

36 0.630
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Table 3.6. Example of transformation to
generate a normal distribution

Value Exp (Value)
5.192957 180
5.799093 330
6.063785 430
6.068426 432

transformation. The formula for a Box-Cox transformation is:

Value* — 1
A

Value' =

where A is a value greater than 1.

In Table 3.6 the original variable is transformed using an exponential function
and the distribution is now more normal (see Figure 3.4). The table shows a sample
of the original (Value) and the newly calculated column: Exp (Value).

Value Mapping

To use variables that have been assigned as ordinal and described using text values
within certain numerical analysis methods, it will be necessary to convert the
variable’s values into numbers. For example, a variable with low, medium, and high
values may have low values replaced by 0, medium values replaced by 1, and high
values replaced by 2. However, this conversion should be approached with care and
with as much subject matter expertise as possible to assign the appropriate score to
each value.

Another approach to handling nominal data is to convert each value into a
separate column with values 1 (indicating the presence of the category) and 0
(indicating the absence of the category). These new variables are often referred to as

160 100 ]
2 -
5 120 - 5
Z 5
= 801 Z 50
E o
= =
40+ 25
0 - = 0 |
0 1 2 3 4 5 6 3 0 200 400 600 BOO 1000 1200
Original variable Normal distribution after

exponential transformation

Figure 3.4. Frequency distribution before and after the transformation
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Table 3.7. Mapping nominal data onto a series of dummy variables

Original column New variables (value-mapping)

Color = Color = Color = Color = Color =
Color Red Green Blue Orange Yellow
red 1 0 0 0 0
green 0 1 0 0 0
blue 0 0 1 0 0
red 1 0 0 0 0
blue 0 0 1 0 0
orange 0 0 0 1 0
yellow 0 0 0 0 1
red 1 0 0 0 0

dummy variables. For example, the variable Color has now been divided into 5
separate columns, one for each value, as shown in Table 3.7.

Discretization

By converting continuous data into discrete values, it would appear that we are
loosing information. However, this conversion is desirable in a number of situations.
Firstly, where a value is defined on an interval or ratio scale but when knowledge
about how the data was collected suggests the accuracy of the data does not warrant
these scales, a variable may be a candidate for discretization. This is often referred to
as data smoothing. It may be more desirable to convert the data into more broadly
defined categories that reflect the true variation in the data. Secondly, certain
techniques can only process categorical data and hence converting continuous data
into discrete values makes the variable accessible to these methods. For example, a
continuous variable Credit score may be divided into four categories: poor, average,
good and excellent.

This type of conversion or binning can be illustrated with an example. A
variable Weight that has a range from 0 to 3501bs may be divided into five
categories: less than 100 Ib, 100-150 1b, 150-200 1b, 200-250 1b and above 250 Ib.
All values for the variable Weight must now be assigned to a category and assigned
an appropriate value such as the mean of the assigned category. It is often useful to
use the frequency distribution to understand appropriate binning cut-offs.

Discretization can also be applied to nominal variables. This is often useful in
situations where there is a large number of values for a given nominal variable. If the
data set were to be summarized using each of the values, the number of observations
for each value may be too small to meaningfully reach any conclusions. However, a
new column could be generated that generalizes the values using a mapping of
terms. For example, a data set concerning customer transactions may contain a
variable Company that details the individual customer’s company. There may only
be a handful of observations for each company. However, this variable could be
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mapped onto a new variable, Industries. The mapping of specific companies onto
generalized industries must be defined using a concept mapping (i.e., which
company maps onto which industry). Now, when the data set is summarized using
the values for the Industries variable, meaningful trends may be seen.

Aggregation

The variable that you are trying to use may not be present in the data set, but it may
be derived from other variables present. Any mathematical operation, such as
average or sum, could be applied to one or more variables in order to create an
additional variable. For example, a project may be trying to understand issues
around a particular car’s fuel efficiency (Fuel Efficiency) using a data set of different
journeys where the fuel level at the start (Fuel Start) and the end (Fuel End) of a
trip is measured along with the distance covered (Distance). An additional column
may be calculated using the following formula:

Fuel Efficiency = (Fuel End — Fuel Start) /Distance

3.4.5 Segmentation

Generally, larger data sets take more computational time to analyze. Segmenting
(creating subsets) the data can speed up any analysis. One approach is to take a
random subset. This approach is effective where the data set closely matches the
target population. Another approach is to use the problem definition to guide how the
subset is constructed. For example, a problem may have been defined as: analyze an
insurance dataset of 1 million records to identify factors leading to fraudulent
claims. The data set may only contain 20,000 fraudulent claims. Since it will be
essential to compare fraudulent and nonfraudulent claims in the analysis, it will be
important to create a data set of examples of both. The 20,000 fraudulent claims
could be combined with a random sample of 20,000 nonfraudulent claims. This
process will result in a smaller subset for analysis.

A data set may have been built up over time and collected to answer a series of
questions. Now, this data set may be used for a different purpose. It may be necessary
to select a diverse set of observations that more closely matches the new target
population. For example, a car safety organization has been measuring the safety of
individual cars on the basis of specific requests from the government. Over time, the
government may have requested car safety studies for certain types of vehicles. Now,
if this historical data set is to be used to answer questions on the safety of all cars, this
data set does not reflect the new target population. However, a subset of the car
studies could be selected to represent the more general questions now being asked of
the data. The chapter on grouping will discuss how to create diverse data sets when
the data does not represent the target population.

When building predictive models from a data set, it is important to keep the
models as simple as possible. Breaking the data set down into subsets based on
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Table 3.8. Summary of the steps when preparing data

Steps Details

1. Create data table e Query databases to access data
e Integrate multiple data sets and format as a data table

2. Characterize variables Characterize the variables based on:
e Continuous/discrete
e Scales of measurement
e Roles in analysis
e Frequency distribution

3. Clean data Clean the data:
e Consolidate observations by merging appropriate terms
o Identify potential errors (outliers, non-numeric characters,
etc.)
e Appropriately set nonnumeric values (or remove)
e Ensure measurements are taken over the same scale
e Remove duplicate observations

4. Remove variables Remove variables that will not contribute to any analysis
(e.g., constants or variables with too few values)

5. Transform variables Transform the variable, if necessary, retaining how the variable
was transformed using the following operations:
e Normalize
e Value mapping
e Discretization
e Aggregation

6. Segment table Create subsets of the data to:
e Facilitate more rapid analysis
o Simplify the data set to create simpler models
e Answer specific questions

your knowledge of the data may allow you to create multiple but simpler models.
For example, a project to model factors that contribute to the price of real estate
may use a data set of nationwide house prices and associated factors. However,
your knowledge of the real estate market suggests that factors contributing to
house prices are contingent on the area. Factors that contribute to house prices in
coastal locations are different from factors that contribute to house prices in the
mountains. It may make sense, in this situation, to divide the data into smaller sets
based on location and to model these locales separately. When doing this type of
subsetting, it is important to note the criteria you are using to subset the data. These
criteria will be needed when data to be predicted is presented for modeling by
assigning the data to one or more models. In situations where multiple predictions
are generated for the same unknown observation, a method for consolidating these
predictions will be required. This topic will be discussed further in the chapter on
prediction.
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3.5 SUMMARY

Table 3.8 details the steps and issues from this stage of the project. The steps performed on the
data should be documented. The deliverables from this stage in the project are a prepared data
set for analysis as well as a thorough understanding of the data.

3.6 EXERCISES

A set of 10 hypothetical patient records from a large database is presented in Table 3.9.
Patients with a diabetes value of 1 have type II diabetes and patients with a diabetes value of
0 do not have type II diabetes. It is anticipated that this data set will be used to predict
diabetes based on measurements of age, systolic blood pressure, diastolic blood pressure, and
weight.

1. For the following variables from Table 3.9, assign them to one of the following
categories: constant, dichotomous, binary, discrete, and continuous.

Name

Age

Gender

Blood group

Weight (kg)

Height (m)

Systolic blood pressure

Diastolic blood pressure

Temperature

Diabetes

TErp@R e a0 o

2. For each of the following variables, assign them to one of the following scales:
nominal, ordinal, interval, ratio.

Name

Age

Gender

. Blood group

. Weight (kg)

Height (m)

. Systolic blood pressure

. Diastolic blood pressure

Temperature

Diabetes

SR E@R Tthe Ao o

3. On the basis of the anticipated use of the data to build a predictive model, identify:
a. A label for the observations
b. The descriptor variables
c. The response variable

4. Create a new column by normalizing the Weight (kg) variable into the range O to 1
using the min-max normalization.

5. Create a new column by binning the Weight variable into three categories: low (less
than 60 kg), medium (60-100 kg), and high (greater than 100 kg).
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6. Create an aggregated column, body mass index (BMI), which is defined by the
formula:

_ Weight (kg)

BMI = /
Height (m)

7. Segment the data into data sets based on values for the variable Gender.

3.7 FURTHER READING

This chapter has reviewed some of the sources of data used in exploratory data analysis and
data mining. The following books provide more information on surveys and polls: Fowler
(2002), Rea (2005), and Alreck (2004). There are many additional resources describing
experimental design including Montgomery (2005), Cochran (1957), Barrentine (1999), and
Antony (2003). Operational databases and data warehouses are summarized in the following
books: Oppel (2004) and Kimball (2002). Oppel (2004) also summarizes access and
manipulation of information in databases. Principal component analysis provides the
opportunity to reduce the number of variables into a smaller set of principal components and is
often used as a data reduction method. It is outlined in Jolliffe (2002) and Jackson (2003). For
additional data preparation approaches including the handling of missing data see Pearson
(2005), Pyle (1999), and Dasu (2003).



Chapter 4

Tables and Graphs

4.1 INTRODUCTION

The following chapter describes a series of techniques for summarizing data using
tables and graphs. Tables can be used to present both detailed and summary level
information about a data set. Graphs visually communicate information about
variables in data sets and the relationship between them. The following chapter
describes a series of tables and graphs useful for exploratory data analysis and data
mining.

4.2 TABLES

4.2.1 Data Tables

The most common way of looking at data is through a table, where the raw data is
displayed in familiar rows of observations and columns of variables. It is essential
for reviewing the raw data; however, the table can be overwhelming with more than
a handful of observations or variables. Sorting the table based on one or more
variables is useful for organizing the data. It is virtually impossible to identify any
trends or relationships looking at the raw data alone. An example of a table
describing different cars is shown in Table 4.1.

4.2.2 Contingency Tables

Contingency tables (also referred to as two-way cross-classification tables) provide
insight into the relationship between two variables. The variables must be
categorical (dichotomous or discrete), or transformed to a categorical variable. A
variable is often dichotomous; however, a contingency table can represent variables
with more than two values. Table 4.2 describes the format for a contingency table
where two variables are compared: Variable x and Variable y.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.
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Table 4.1. Table of car records

Displace- Horse- Acce- Model
Names Cylinders ment power Weight leration Year Origin MPG
Chevrolet Chevelle 8 307 130 3504 12 1970 1 18
Malibu
Buick Skylark 320 8 350 165 3693 1.5 1970 1 15
Plymouth Satellite 8 318 150 3436 11 1970 1 18
Amc Rebel SST 8 304 150 3433 12 1970 1 16
Ford Torino 8 302 140 3449 105 1970 1 17
Ford Galaxie 500 8 429 198 4341 10 1970 1 15
Chevrolet Impala 8 454 220 4354 9 1970 1 14
Plymouth Fury III 8 440 215 4312 85 1970 1 14
Pontiac Catalina 8 455 225 4425 10 1970 1 14
Amc Ambassador 8 390 190 3850 85 1970 1 15

Dpl

e Count, ;. the number of observations where Variable x has “Value 17,
irrespective of the value of Variable y.

e Count,,: the number of observations where Variable x has “Value 27,
irrespective of the value of Variable y.

e Count;,: the number of observations where Variable y has “Value 17,
irrespective of the value of Variable x.

e Count,,: the number of observations where Variable y has “Value 2”,
irrespective of the value of Variable x.

The total number of observations in the data set is shown as Total count. The
number of observations where the value of Variable x equals “Value 17 and the
value of Variable y equals “Value 1" is shown in the cell Count;;. Count,;, Count;,,
and Count,, show counts for the overlaps between all other values. The counts can
also be annotated and/or replaced with percentages.

In Table 4.3, the data set is summarized using two variables: sex and age. The
variable sex is dichotomous and the two values (male and female) are shown as a
header on the x-axis. The other selected variable is age and has been broken down
into nine categories: 10-20, 20-30, 30—40, and so on. For each value of each variable
a total is displayed. For example, there are 21,790 observations where sex is equal to

Table 4.2. Contingency table format

Variable x Totals
Value 1 Value 2
. Value 1 Count County; Count;
Variable y Value 2 Count;, County, Count, .

Count, ; Count Total count
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Table 4.3. Contingency table summarizing the number of males and females within age
ranges

Sex = Male Sex = Female Totals
Age (10.0 to 20.0) 847 810 1,657
Age (20.0 to 30.0) 4,878 3,176 8,054
Age (30.0 to 40.0) 6,037 2,576 8,613
Age (40.0 to 50.0) 5,014 2,161 7,175
Age (50.0 to 60.0) 3,191 1,227 4,418
Age (60.0 to 70.0) 1,403 612 2,015
Age (70.0 to 80.0) 337 171 508
Age (80.0 to 90.0) 54 24 78
Age (90.0 to 100.0) 29 14 43
Totals 21,790 10,771 32,561

male and there are 1657 observations where age is between 10 and 20. The total
number of observations summarized in the table is shown in the bottom right hand
corner (32,561). The cells in the center of the table show the number of observations
with different combinations of values. For example, there are 847 males between the
ages of 10 and 20 years.

Where one of the variables is a response, it is common to place this variable
on the y-axis. In Table 4.4, 392 observations about cars are summarized according to
two variables: number of cylinders (Cylinders) and miles per gallon (MPG). This
table describes the relationship between the number of cylinders in a car and the
car’s fuel efficiency. This relationship can be seen by looking at the relative
distribution of observations throughout the grid. In the column where Cylinders is 4,
the majority of the data lies between 20 and 40 MPG. Whereas the column where
Cylinders is 8, the majority of observations lies between 10 and 20 MPG, indicating
that 8-cylinder vehicles appear to be less fuel efficient than 4-cylinder vehicles.

Table 4.4. Contingency table summarizing counts of cars based on the number of
cylinders and ranges of fuel efficiency (MPG)

Cylinders Cylinders Cylinders Cylinders Cylinders

=3 =4 =5 =6 =8 Totals
MPG (5.0 to 10.0) 0 0 0 0 1 1
MPG (10.0 to 15.0) 0 0 0 0 52 52
MPG (15.0 to 20.0) 2 4 0 47 45 98
MPG (20.0 to 25.0) 2 39 1 29 4 75
MPG (25.0 to 30.0) 0 70 1 4 1 76
MPG (30.0 to 35.0) 0 53 0 2 0 55
MPG (35.0 to 40.0) 0 25 1 1 0 27
MPG (40.0 to 45.0) 0 7 0 0 0 7
MPG (45.0 to 50.0) 0 1 0 0 0 1
Totals 4 199 3 83 103 392
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Contingency tables have many uses including understanding the relationship
between two categorical variables. In the chapter on statistics, this relationship will
be further quantified using the chi-square test. They are also useful for looking at
the quality of predictions and this will be discussed further in the chapter on
prediction.

4.2.3 Summary Tables

A summary table (or aggregate table) is a common way of understanding data. For
example, a retail company may generate a summary table to communicate the
average sales per product or per store. A single categorical variable (or a continuous
variable converted into categories) is used to group the observations. Each row of the
table represents a single group. Summary tables will often show a count of the
number of observations (or percentage) that have that particular value (or range).
Any number of other variables can be shown alongside. Since each row now refers to
a set of observations, any other columns of variables must now contain summary
information. Descriptive statistics that summarize a set of observations can be used.
The calculations for these statistics are described in the next chapter. The following
statistics are commonly used:

e Mean: The average value.

e Median: The value at the mid-point.

e Sum: The sum over all observations in the group.

e Minimum: The minimum value.

e Maximum: The maximum value.

e Standard deviation: A standardized measure of the deviation of a variable

from the mean.

A common format for a summary table is shown in Table 4.5. The first column is
the variable used to group the table (Variable a). Each value (either a specific value
or a range) is listed in the first column alongside a count (or percentage) of
observations belonging to the group. Each row now represents a collection of
observations. Other columns present summaries for other variables. Variable x and
Variable y are examples of those additional summarized columns.

Table 4.5. Format for a summary table

Variable a Count Variable x summary Variable y summary

a; Count (a;) Statistic(x) for group a; Statistic(y) for group a;
a Count (ay) Statistic(x) for group a, Statistic(y) for group a,
a3 Count (asz) Statistic(x) for group a; Statistic(y) for group as

a, Count (a,) Statistic(x) for group a, Statistic(y) for group a,
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Table 4.6. Summary table showing average MPG for
different cylinder vehicles

Cylinders Count Mean (MPG)
3.0 4 20.55
4.0 199 29.28
5.0 3 27.37
6.0 83 19.97
8.0 103 14.96

In Table 4.6, the automobile data set is broken down into groups based on the
number of Cylinders (3, 4, 5, 6 and 8). A count of the number of observations in
each group is shown in the next column. The third column is based on another
variable, miles per gallon (MPG), and the statistic selected is mean. The table
succinctly summarizes how the average fuel efficiency of the set of automobiles
differs based on the number of cylinders in the car.

Summary tables summarize the contents of a data table without showing all the
details. It is possible to identify trends and these tables are easy to understand.

4.3 GRAPHS

4.3.1 Overview

Tables allow us to look at individual observations or summaries, whereas graphs
present the data visually replacing numbers with graphical elements. Tables are
important when the actual data values are important to show. Graphs enable us to
visually identify trends, ranges, frequency distributions, relationships, outliers and
make comparisons. There are many ways of visualizing information in the form of a
graph. This section will describe some of the common graphs used in exploratory
data analysis and data mining: frequency polygrams, histograms, scatterplots, and
box plots. In addition, looking at multiple graphs simultaneously and viewing
common subsets can offer new insights into the whole data set.

4.3.2 Frequency Polygrams and Histograms

Frequency polygrams plot information according to the number of observations
reported for each value (or ranges of values) for a particular variable. An example of
a frequency polygram is shown in Figure 4.1. In this example, a variable (Model
Year) is plotted. The number of observations for each year is counted and plotted.
The shape of the plot reveals trends, that is, the number of observations each year
fluctuates within a narrow range of around 25-40.

In Figure 4.2, a continuous variable (Displacement) is divided into ranges from
50 to 100, from 100 to 150, and so on. The number of values for each range is plotted
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Figure 4.1. Frequency polygram displaying a count for cars per year

and the shape indicates that most of the observations are for low displacement
values.

Histograms present very similar information to frequency polygrams, that is, the
frequency distribution of a particular variable. The length of the bar is proportional
to the size of the group. Variables that are not continuous can be shown as a
histogram, as shown in Figure 4.3. This graph shows the dichotomous variable
Diabetes, which has two values: yes and no. The length of the bars represents the
number of observations for the two values. This type of chart for categorical
variables is also referred to as a bar chart.

For continuous variables, a histogram can be very useful in displaying the
frequency distribution. In Figure 4.4, the continuous variable Length is divided into 10
groups and the frequency of the individual group is proportional to the length of the bar.

Histograms provide a clear way of viewing the frequency distribution for a
single variable. The central values, the shape, the range of values as well as any
outliers can be identified. For example, the histogram in Figure 4.5 illustrates an
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Figure 4.2. Frequency polygram showing counts for ranges of Displacement
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Figure 4.3. Histogram showing categorical variable Diabetes
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Figure 4.4. Histogram representing counts for ranges in the variable Length

4000

3000 1
z :
£ Outlier
Z 2000
2
s 9

1000 A

0 '
0 0.2 0.4 0.6 0.8 I 1.2

Height
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Figure 4.6. Scatterplot showing the relationship between the Length and Diameter variables

outlier (in the range 1-1.2) that is considerably larger than the majority of other
observations. It is also possible to deduce visually if the variable approximates a
normal distribution.

4.3.3 Scatterplots

Scatterplots can be used to identify whether any relationship exists between two
continuous variables based on the ratio or interval scales. The two variables are
plotted on the x- and y-axes. Each point displayed on the scatterplot is a single
observation. The position of the point is determined by the value of the two
variables. The scatterplot in Figure 4.6 presents many thousands of observations on a
single chart.

Scatterplots allow you to see the type of relationship that may exist between
the two variables. For example, the scatterplot in Figure 4.7 shows that the

0.97
0.87
0.7
0.6
0.5
0.4

Length

0 T T T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Diameter

Figure 4.7. Scatterplot showing an outlier (X)
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Figure 4.8. Scatterplot showing a nonlinear relationship

relationship between Length and Diameter is primarily linear, that is, as
Length increases Diameter increases proportionally. The graph also shows that
there are points (e.g., X) that do not follow this linear relationship. These are
referred to as outliers based on the dimensions plotted. Where the points follow
a straight line or a curve, a simple relationship exists between the two variables.
In Figure 4.8, the points follow a curve indicating that there is a nonlinear
relationship between the two variables, that is, as Length increases Viscera
weight increases, but the rate of increase is not proportional. Scatterplots can
also show the lack of any relationship. In Figure 4.9, the points are scattered
throughout the whole graph indicating that there is no immediately obvious
relationship between Plasma—Glucose and BMI in this data set. Scatterplots can
also indicate where there is a negative relationship. For example, it can be seen
in Figure 4.10 that as values for Horsepower increase, values for MPG
decrease.

60
55 1 o
50
45
40
351
30 1
250
20 1

15 T T T T T T T 1
40 60 80 100 120 140 160 180 200

Plasma-Glucose
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Figure 4.9. Scatterplot showing no discernable relationship
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MPG
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40 60 80 100 120 140 160 180 200 220 220 24
Horsepower

Figure 4.10. Scatterplot showing a negative relationship

4.3.4 Box Plots

Box plots (also called box-and-whisker plots) provide a succinct summary of the
overall distribution for a variable. Five points are displayed: the lower extreme value,
the lower quartile, the median, the upper quartile, the upper extreme and the mean,
as shown in Figure 4.11. The values on the box plot are defined as follows:

o Lower extreme: The lowest value for the variable.

e Lower quartile: The point below which 25% of all observations fall.

e Median: The point below which 50% of all observations fall.

e Upper quartile: The point below which 75% of all observations fall.

e Upper extreme: The highest value for the variable.

e Mean: The average value for the variable.

Figure 4.12 provides an example of a box plot for one variable (MPG). The plot
visually displays the lower (around 9) and upper (around 47) bounds of the variable.

Lower Lower Upper  Upper
extreme quartile quartile extreme
Median

A

Mean

Figure 4.11. Box plot format



46 Chapter 4 Tables and Graphs

I "

5 10 15 20 25 30 35 40 45 50

Figure 4.12. Example of box plot for the variable MPG

Fifty percent of observations begin at the lower quartile (around 17) and end at the
upper quartile (around 29). The median and the mean values are close, with the mean
slightly higher (around 23.5) than the median (around 23). Figure 4.13 shows a box
plot and a histogram side-by-side to illustrate how the distribution of a variable is
summarized using the box plot.

In certain version of the box plot, outliers are not included in the plot. These
extreme values are replaced with the highest and lowest values not considered as an
outlier. Instead these outliers are explicitly drawn (using small circles) outside the
main plot.

4.3.5 Multiple Graphs

It is often informative to display multiple graphs at the same time in a table format,
often referred to as a matrix. This gives an overview of the data from multiple angles.
In Figure 4.14, a series of variables have been plotted profiling the frequency
distribution for variables in the data set.

— [ 1 |

1007
751
a»
5
=]
g 501
o
257
0 y 1
5 10 15 20 25 30 35 40 45 50

MPG

Figure 4.13. Box plot and histogram side-by-side
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Displacement

IRAE Horsepower
o

Weight

Acceleration

MPG

Figure 4.15. Scatterplot matrix showing relationship between five variables

In Figure 4.15, a series of variables are plotted: Displacement, Horsepower,
Weight, Acceleration, and MPG. This scatterplot matrix shows a series of
scatterplots for all pairs of the five variables displayed. The first row shows the
relationships between Displacement and the four other variables: Horsepower,
Weight, Acceleration, and MPG. The Displacement variable is plotted on the
y-axis for these four graphs. The second row shows the relationship between
Horsepower and the four other variables. Similarly, the first column shows the
relationship between Displacement and the four other variables, with Displacement
plotted on the x-axis. Scatterplot matrices are useful to understand key relationships
when a data set has many variables.

In Figure 4.16, a set of observations concerning cars have been broken
down by year, from 1970 to 1982. Each box plot summarizes the frequency
distribution for the variable MPG (miles per gallon), for each year. The graph
shows how the distribution of car fuel efficiency (MPG) has changed over the
years.
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Figure 4.16. Series of box plots showing the frequency distributions over time

Highlighting common subsets of the data can further identify trends in the data
set and is illustrated using the automobile example. In Figure 4.17, the shaded area
of the graphs are observations where the number of cylinders is 8 (as shown in the
top left graph). The other graphs highlight where cars with 8 cylinders can be found
on the other frequency distributions. For example, these cars are associated with
poor fuel efficiency as shown in the graph in the bottom right (MPG). In Figure 4.18,
4-cylinder vehicles are highlighted and it can be seen that the fuel efficiency is
generally higher.

4.4 SUMMARY

Table 4.7 summarizes the use of tables and graphs described in this chapter and their use in
exploratory data analysis and data mining.
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Table 4.7. Table summarizing different tables and graphs and their use in analyzing

data
Summary Data Uses
Tables Raw data Any variables Showing details
table of the data
Contingency Two categorical Understanding
table variables relationships between
categorical variables
Summary Single variable to Summarizing groups of data
table group observations,
other variables to
be summarized
Graphs Frequency Single variable, Viewing trends, ranges,
polygram any type frequency distribution,
and outliers
Histogram Single variable, Viewing trends, ranges,
any type frequency distribution,
and outliers
Scatterplot Two ratio or interval Viewing relationships
variables between continuous
variables and outliers
Box plot Single ratio, or Viewing ranges,
interval variable frequency distributions,
and outliers
Multiple Data dependent on Viewing multi-
graphs individual graph dimensional
relationships, multi-
dimensional
summaries, and
comparisons

4.5 EXERCISES

Table 4.8 shows a series of retail transactions monitored by the main office of a computer

store.

1. Generate a contingency table summarizing the variables Store and Product category.

2. Generate the following summary tables:
a. Grouping by Customer and the showing a count of the number of observations
and the sum of Sale price ($) for each row.

b. Grouping by Store and showing a count of the number of observations and the
mean Sale price ($) for each row.

c. Grouping by Product category and showing a count of the number of observa-

tions and the sum of the Profit ($) for each row.
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Table 4.8. Retail transaction data set
Product Product Sale price

Customer Store category description %) Profit ($)
B.March New York, NY Laptop DR2984 950 190
B.March New York, NY Printer FW288 350 105
B.March New York, NY Scanner BW9338 400 100
J.Bain New York, NY Scanner BW9443 500 125
T.Goss Washington, DC Printer FW199 200 60
T.Goss Washington, DC Scanner BW39339 550 140
L.Nye New York, NY Desktop LR21 600 60
L.Nye New York, NY Printer FW299 300 90
S.Cann Washington, DC Desktop LR21 600 60
E.Sims Washington, DC Laptop DR2983 700 140
P.Judd New York, NY Desktop LR22 700 70
P.Judd New York, NY Scanner FJ3999 200 50
G.Hinton Washington, DC Laptop DR2983 700 140
G.Hinton Washington, DC Desktop LR21 600 60
G.Hinton Washington, DC Printer FW288 350 105
G.Hinton Washington, DC Scanner BW9443 500 125
H.Fu New York, NY Desktop 7X88 450 45
H.Taylor New York, NY Scanner BW9338 400 100

3. Create a histogram of Sales Price ($) using the following intervals: O to less than

250, 250 to less than 500, 500 to less than 750, 750 to less than 1000.

4. Create a scatterplot showing Sales price ($) against Profit ($).

4.6 FURTHER READING

For further reading on communicating information, see Tufte (1990), Tufte (1997), and Tufte

(2001). The books also outline good and bad practices in the design of graphs.

The graphs outlined here are essential for exploratory data analysis. There are many
alternative charts in addition to the ones described in this chapter. The following web sites
describe numerous ways of displaying information graphically: http://www.itl.nist.gov/
div898/handbook/eda/eda.htm, http://www.statcan.ca/english/edu/power/toc/contents.htm.



Chapter 5

Statistics

5.1 OVERVIEW

The ability to generate summaries and make general statements about the data, and
relationships within the data, is at the heart of exploratory data analysis and data
mining methods. In almost every situation we will be making general statements
about entire populations, yet we will be using a subset or sample of observations.
The distinction between a population and a sample is important:

e Population: A precise definition of all possible outcomes, measurements or
values for which inferences will be made about.

e Sample: A portion of the population that is representative of the entire
population.

Parameters are numbers that characterize a population, whereas statistics are
numbers that summarize the data collected from a sample of the population. For
example, a market researcher asks a portion or a sample of consumers of a particular
product, about their preferences, and uses this information to make general
statements about all consumers. The entire population, which is of interest, must be
defined (i.e. all consumers of the product). Care must be taken in selecting the
sample since it must be an unbiased, random sample from the entire population.
Using this carefully selected sample, it is possible to make confident statements
about the population in any exploratory data analysis or data mining project.
The use of statistical methods can play an important role including:

e Summarizing the data: Statistics, not only provide us with methods for
summarizing sample data sets, they also allow us to make confident
statements about entire populations.

e Characterizing the data: Prior to building a predictive model or looking for
hidden trends in the data, it is important to characterize the variables and the
relationships between them and statistics gives us many tools to accomplish
this.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.

54
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e Making statements about ‘‘hidden” facts: Once a group of observations,
within the data has been defined as interesting through the use of data mining
techniques, statistics give us the ability to make confident statements about
these groups.

The following chapter describes a number of statistical approaches for making
confident decisions. The chapter describes a series of descriptive statistics that
summarize various attributes of a variable such as the average value or the range of
values. Inferential statistics cover ways of making confident statements about
populations using sample data. Finally, the use of comparative statistics allows us to
understand relationships between variables.

5.2 DESCRIPTIVE STATISTICS
5.2.1 Overview

Descriptive statistics describe variables in a number of ways. The histogram in
Figure 5.1 for the variable Length displays the frequency distribution. It can be seen
that most of the values are centered around 0.55, with a highest value around 0.85,
and a lowest value around 0.05. Most of the values are between 0.3 and 0.7 and the
distribution is approximately normal; however, it is slightly skewed.

Descriptive statistics allow us to quantify precisely these descriptions of the
data. They calculate different metrics for defining the center of the variable (central
tendency), they define metrics to understand the range of values (variation), and they
quantify the shape of the distribution.

1600 7

1200 A

800 A

Frequency

400 A

0 |
0 01 02 03 04 05 06 07 08 09
Length

Figure 5.1. Histogram of variable Length
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5.2.2 Central Tendency

Mode

The mode is the most commonly reported value for a particular variable. It is
illustrated using the following variable whose values are:

3,4,5,6,7,7,7,8,8,9

The mode would be the value 7 since there are three occurrences of 7 (more than
any other value). It is a useful indication of the central tendency of a variable,
since the most frequently occurring value is often towards the center of the variable
range.

When there is more than one value with the same (and highest) number of
occurrences, either all values are reported or a mid-point is selected. For example,
for the following values, both 7 and 8 are reported three times:

3,4,5,6,7,7,7,8,8,8,9

The mode may be reported as {7, 8} or 7.5.

Mode provides the only measure of central tendency for variables measured on
a nominal scale. The mode can also be calculated for variables measured on the
ordinal, interval, and ratio scales.

Median

The median is the middle value of a variable once it has been sorted from low to
high. For variables with an even number of values, the mean of the two values closest
to the middle is selected (sum the two values and divide by 2).

The following set of values will be used to illustrate:

3,4,7,2,3,7,4,2,4,7,4
Before identifying the median, the values must be sorted:
2,2,3,3,4,4,4,4,7,7,7

There are 11 values and therefore the sixth value (five values above and five values
below) is selected, which is 4:

2,2,3,3,4,4,4,4,7,7,7

The median can be calculated for variables measured on the ordinal, interval, and
ratio scales. It is often the best indication of central tendency for variables measured
on the ordinal scale. It is also a good indication of the central value for a variable
measured on the interval or ratio scales since, unlike the average, it will not be
distorted by any extreme values.
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Mean

The mean (also referred to as average) is the most commonly used indication of
central tendency for variables measured on the interval or ratio scales. It is defined as
the sum of all the values divided by the number of values. For example, for the
following set of values:

3,4,5,7,7,8,9,9,9

The sum of all nine valuesis (3 +4+54+7+7+8+9+9+9) or 61. The sum
divided by the number of values is 61 =9 or 6.78.

For a variable representing a sample population (such as x) the mean is
commonly referred to as x. The formula for calculating a mean, where n is the
number of observations and x; is the individual values, is usually written:

n

Computing the mode, median and mean for a single variable measured on the
interval or ratio scale is useful. It is possible to gain an understanding of the shape of
the distribution using these values since, if both the mean and median are
approximatly the same, the distribution should be fairly symmetrical.

Throughout the book X will be used to describe the mean of a sample and p will
be used to describe the population mean.

5.2.3 Variation

Range

The range is a simple measure of the variation for a particular variable. It is
calculated as the difference between the highest and lowest values. The following
variable will be used to illustrate:

2,3,4,6,7,7,8,9

The range is 7 calculated from the highest value (9) minus the lowest value (2).
Range can be used with variables measured on an ordinal, interval or ratio scale.

Quartiles

Quartiles divide a variable into four even segments based on the number of
observations. The first quartile (Q1) is at the 25% mark, the second quartile (Q2) is at
the 50% mark, and the third quartile (Q3) is at the 75% mark. The calculations for
Q1 and Q3 are similar to the calculation of the median. Q2 is the same as the median
value. For example, using the following set of values:

3,4,7,2,3,7,4,2,4,7,4
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The values are sorted:
2,2,3,3,4,4,4,477,7,7

Next, the median or Q2 is located in the center:
2,2,3,3,4,4,4,47,7,7

If we now look for the center of the first half (shown underlined) or Q1:
2,2,3,3,4,4,4 47,77

Q1 is recorded as 3. If we now look for the center of the second half (shown
underlined) or Q3:

2,2,3,3,4,4,4,4,7,7,7

Q3is 7.
Where the boundaries of the quartiles do not fall on a specific value, then
the quartile value is calculated based on the two numbers adjacent to the boundary.
The interquartile range is defined as the range from Q1 to Q3. In this example it
would be 7 — 3 or 4.

Variance

The variance describes the spread of the data. It is a measure of the deviation of a
variable from the mean. For variables that do not represent the entire population, the
sample variance formula is:

(xi—ff)z
1
n—1

n

2 i

The sample variance is referred to as s%. The actual value (x;) minus the mean value
(%) is squared and summed for all values of a variable. This value is divided by the
number of observations minus 1 (n — 1).

The following example illustrates the calculation of a variance for a particular
variable:

3,4,4,5,5,5,6,6,6,7,7,8,9
Where the mean is:

34+44+44+54+54+54+6+6+6+7+7+8+9
13

=l
Il

5.8

=l
I

Table 5.1 is used to calculate the sum, using the mean value of 5.8. To calculate 52,
we substitute the values from Table 5.1 into the variance formula:
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Table 5.1. Variance intermediate steps

x X (x; — %) (x; —%)?
3 5.8 238 7.84
4 5.8 —1.8 3.24
4 5.8 -138 3.24
5 5.8 0.8 0.64
5 5.8 —0.8 0.64
5 5.8 0.8 0.64
6 5.8 0.2 0.04
6 5.8 0.2 0.04
6 5.8 0.2 0.04
7 5.8 1.2 1.44
7 5.8 1.2 1.44
8 5.8 22 4.84
9 5.8 32 10.24
Sum = 176.88
n
(x; — %)
2 i=1
S n—1
, 176.88
ST =
13 -1
s? = 14.74

The variance reflects the average squared deviation. It can be calculated from
variables measured on the interval or ratio scale.
The population variance is defined as ¢> and is calculated using the formula:

(xi —%)°
0_2 _ i=1
n

Standard Deviation

The standard deviation (also described as root mean square) is the square root of the
variance. For a sample population, the formula is:

Where s is the sample standard deviation, x; is the actual data value, x is the mean for
the variable and n is the number of observations. For a calculated variance, for
example 14.74, the standard deviation is calculated as v/14.74 or 3.84.
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16% 16%
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|
+— n _— >
—oo -1 +1 400

Number of standard deviations

Figure 5.2. Area under normal distribution from —1 to +1 standard deviations from the mean

The standard deviation is the most widely used expression of the deviation in
the range of a variable. The higher the value, the more widely distributed the variable
data values are around the mean. Assuming the frequency distribution is
approximately normal, about 68% of all observations will fall within one standard
deviation of the mean (34% less than and 34% greater than). For example, a variable
has a mean value of 45 with a standard deviation value of 6. Approximately 68% of
the observations should be in the range 39 to 51 (45 + /— one standard deviation).
Figure 5.2 shows that for a normally distributed variable, about 68% of observations
fall between —1 and +1 standard deviation. Approximately 95% of all observations
fall within two standard deviations of the mean, as shown in Figure 5.3.

Standard deviations can be calculated for variables measured on the interval or
ratio scales.

The standard deviation of an entire population will be referred to as o, which is
the square root of the population variance (¢?).

Z-score

A z-score represents how far from the mean a particular value is, based on the
number of standard deviations. If a z-score is calculated for a particular variable,
then the z-score mean will be zero and each value will reflect the number of standard
deviations above or below the mean. Approximately 68% of all observation would
be assigned a number between —1 and +1 and approximately 95% of all
observations would be assigned a z-score between —2 and +2. The following
equation is used to calculate a z-score:
Xi — X

Z:
N
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Figure 5.3. Area under the normal distribution from —2 to +2 standard deviations from the mean

where x; is the data value, X is the sample mean and s is the standard deviation of the
sample. For example, a variable Age has values that range from 22 to 97, with a
mean of 63.55 and a standard deviation of 13.95. Table 5.2 illustrates a few example
calculations for the z-score.

5.2.4 Shape

Skewness

There are methods for quantifying the lack of symmetry or skewness in the
distribution of a variable. The formula to calculate skewness, for a variable x, with
individual values x;, with n data points, and a standard deviation of s is:

3

M=

(xi — X)

skewness = ——————
(n—1)s3
Table 5.2. Examples of z-score calculation
Age (x) x X =% 7=
35 63.55 —28.55 -2.05
57 63.55 —6.55 —0.47
63 63.55 -0.55 —0.04
69 63.55 5.45 0.39

81 63.55 17.45 1.25
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X Y z
_.—J_I<|—H—’_|_L

Skewness = 0.49 Skewness = 0.03 Skewness =-0.2

Figure 5.4. Examples illustrating skewness

53 is the standard deviation cubed or s X s x s. A skewness value of zero indicates that
the distribution is symmetrical. If the right tail is longer than the left tail then the value
is positive and if the left tail is longer than the right tail then the skewness score is
negative. Figure 5.4 shows example skewness values for three variables.

Kurtosis

In addition to the symmetry of the distribution, the type of peak that the distribution
has, is important to consider. This measurement is defined as kurtosis. The following
formula can be used for calculating kurtosis for a variable x, with x; representing the
individual values, with n data points and a standard deviation of s:

(x — %)
i=1

(n—1)s*

Variables with a pronounced peak toward the mean have a high kurtosis score and
variables with a flat peak have a low kurtosis score. Figure 5.5 illustrates kurtosis
scores for two variables.

[NgE

kurtosis =

5.2.5 Example

Figure 5.6 presents a series of descriptive statistics for a variable Age. In this
example, there are four values for Age that occur the most (mode): 69, 76, 64 and 63.

A B

Kurtosis = 0.08 Kurtosis = 1.97

Figure 5.5. Examples illustrating kurtosis
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Number of observations: 759

Central tendency
Mode: 69, 76, 64, 63
Median: 64
Mean: 63.55

240
180

120 Variation

Frequency

Minimum: 22
“ Maximum: 97

R R R S T Range: 75
Age Quartiles: 54 (Q1), 64 (Q2), 75 (Q3)
Variance: 194.65
Standard deviation: 13.95

Shape
Skewness: —0.22
Kurtosis: —0.47

Figure 5.6. Descriptive statistics for variable Age

The median age is 64 with the mean slightly lower at 63.55. The minimum value
is 22 and the maximum value is 97. Half of all observations fall within the range
54-75. The variance is 194.65 and the standard deviation is calculated at 13.95. The
distribution is slightly skewed with a longer tail to the left, indicated by the skewness
score of —0.22 and the peak is fairly flat indicated by the kurtosis score of —0.47.

5.3 INFERENTIAL STATISTICS
5.3.1 Overview

In almost all situations, we are making statements about populations using data
collected from samples. For example, a factory producing packets of sweets believes
that there are more than 200 sweets in each packet. To determine a reasonably
accurate assessment, it is not necessary to examine every packet produced. Instead
an unbiased random sample from this total population could be used.

If this process of selecting a random sample was repeated a number of times, the
means from each sample would be different. Different samples will contain different
observations and so it is not surprising that the results will change. This is referred to
as sampling error. If we were to generate many random samples, we might expect that
most of the samples would have an average close to the actual mean. We might also
expect that there would be a few samples with averages further away from the mean.
In fact, the distribution of the mean values follows a normal distribution for sample
sizes greater than 30. We will refer to this distribution as the sampling distribution, as
shown in Figure 5.7.

The sampling distribution is normally distributed because of the central limit
theorem, which is discussed in the further readings section of the chapter. In fact, the
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Sampling distribution of X

Figure 5.7. Sampling distribution for mean values of x

variation of this sampling distribution is dependent on the variation of the variable
from which we are now measuring sample means.

We might also expect that increasing the number in each sample would result in
more of the sample means being closer to the actual mean. As the sample size
increases, the distribution of the means will in fact become narrower, as illustrated in
Figure 5.8.

The relationship between the variation of the original variable and the number
of observations in the sample to the sampling distribution is summarized in the
following formula:

NG

As the number of samples increases, the sampling distribution becomes more narrow

Ox =

»
>

Figure 5.8. Tllustration showing that when the number of samples increases, the sampling
distribution becomes more narrow
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The standard deviation for the distribution of the sample means (%) is based on the
standard deviation of the population (¢) and the number of observations in
the sample (n). As the number of sample observations increases, the standard
deviation of the sample means decreases. The standard deviation of the sample
means is also called the standard error of the mean. Since we rarely have the
population standard deviation (o), the sample standard deviation (s) can be used as
an estimate.

We can use this sampling distribution to assess the chance or probability that
we will see a particular range of average values, which is central to inferential
statistics. For example, a sweet manufacturer wishes to make the claim that the
average sweets per packet is greater than 200. The manufacturer collects a sample
of 500 packets and counts the number of sweets in each of these packets. The
average number of sweets per pack is calculated to be 201 with a standard deviation
(s) of 12.

We now need to assess the probability that this value is greater than 200 or
whether the difference is simply attributable to the sampling error. We can use the
sampling distribution to make this assessment. The area under this curve can be used
for assessing probabilities. A probability of 1 indicates a certain event and a
probability of 0 indicates an event will never happen. Values between these two
extremes reflect the relative likelihood of an event happening. The total area under
the normal distribution curve is equal to 1. The area between specific z-score ranges
represents the probability that a value would lie within this range. Therefore, we
need to understand where on the normal distribution curve the recorded value lies
(see Figure 5.9).

First we calculate the standard error using the sample standard deviation of 12
and the sample size of 500:

12

oy = ——==0.54
V500

| < >
<

200(1) ?

Sample means

Figure 5.9. Determining where the recorded value lies on the sampling distribution
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To understand how many standard deviations the value 201 is away from the mean,
we must convert the value into a z-score:

where X is the mean recorded (201), u is the population mean in the statement
(200) and o5 is the standard error (0.54). Substituting these values into the
formula:

201 — 200
= 054 1.85

We can now plot the recorded value (converted to a z-score) on to the sampling
distribution to understand where on this curve the value lies (Figure 5.10). The z-score
of 1.85 indicates that the 201 value recorded from the sample is higher than the
200 claimed value. The area under the curve to the right of 1.85 can be used to assess
the claim. A formal procedure for making these claims will be introduced in this
section.

If data is recorded for a categorical variable, instead of examining the average
value, we can calculate the proportion of observations with a specific value. For
example, a factory producing clothes wishes to understand the number of garments it
produces with defects. They use a representative sample of the entire population and
record which garments did and did not have defects. To get an overall assessment of
the number of defects, a proportion (p) is calculated taking the number of defects and
dividing it by the number of observations in the sample. If it is determined that there
were 20 defects and the sample size was 200, then the proportion of defects will be
20 =200 or 0.1 (i.e 10%).

| e
o) 1.85

Number of standard deviations

Figure 5.10. Sampling distribution with the observed value plotted using the z-score
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In most situations, if we took many different samples and determined the
proportions for these samples, the distribution of these proportions would again
follow a normal distribution. This normal distribution has a standard deviation (o)
which is calculated using the formula:

o) — p(1—p)
n

In this equation # is the sample size and p is the proportion calculated (substituted
for the population proportion since it is not usually available). The standard
deviation of the proportions is also referred to as the standard error of proportion.
The sampling distribution of the proportions can be used to estimate a probability
that a specific range of proportions would be seen.

In the following sections, we will make use of these standard error calculations
and present a number of methods for making statements about data with confidence.
The following methods will be discussed:

e Confidence intervals: A confidence interval allows us to make statements
concerning the likely range that a population parameter (such as the mean)
lies within. For example, we may describe the average value falling between
201 and 203 sweets per packet to reflect our level of confidence in the
estimate.

e Hypothesis tests: A hypothesis test determines whether the data collected
supports a specific claim. A hypothesis test can refer to a single group, for
example, a hypothesis test may be used to evaluate the claim that the
number of sweets per packet is greater than 200. In this example, we are only
looking at a single population of packets of sweets. A hypothesis claim can also
refer to two groups, for example, to understand if there is a difference in the
number of sweets per packet produced by two different machines.

e Chi-square: The chi-square test is a statistical test procedure to understand
whether a relationship exists between pairs of categorical variables. For
example, whether there is a difference in the number of defective garments
between three similar factories.

e One-way analysis of variance: This test determines whether a relationship
exists between three or more group means. For example, if there were more
than two machines generating packets of sweets, it would test whether there
is a difference between them.

Table 5.3 summarizes the tests discussed in this section.

5.3.2 Confidence Intervals

Overview

A single statistic could be used as an estimate for a population (commonly referred
to as a point estimate). A single value, however, would not reflect any amount of
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Table 5.3. Summary of inferential statistical tests

Number of Number of
Continuous Categorical groups variables
Confidence intervals Yes Yes 1 1
Hypothesis test Yes Yes lor2 1
Chi-square No Yes 2+ 2
One-way analysis of Yes No 3+ 1

variance

confidence in the value. For example, in making an assessment of the average
number of sweets per packet we may, based on the number of samples recorded,
have a reasonable confidence that this number is between 198 and 202. This range of
values is referred to as the confidence interval. If a smaller number of samples were
collected, we may need to increase the range so that we have confidence that the
value lies between, for example, 190 and 210.

The confidence interval is not only dependent on the number of samples
collected but is also dependent on the required degree of confidence in the range. If
we wish to make a more confident statement, we would have to make the range
larger. This required degree of confidence is based on the confidence level at which
the estimate is to be calculated. The following sections will describe the methods for
calculating confidence intervals for continuous and categorical data based on the
confidence levels.

Confidence Ranges for Continuous Variables

For continuous variables, the mean is the most common population estimate. For
example, using the sweet packet example, the mean would be the sum of all counts
divided by the number of packets in the sample. To calculate the confidence interval,
we must calculate the mean first. The confidence interval (the range above and below
the mean) is dependent on (1) the standard error of the mean and (2) the confidence
with which we wish to state the range. The formula for calculating a confidence
interval for a large sample (greater than or equal to 30 observations) takes these two

factors into consideration:
S

x+z¢ NG
where X is the mean for the sample and = is the standard error of the mean (where s
is the standard deviation of the sample and n is the number of observations). The
critical z-score (z¢) is the number of standard deviations for a given confidence level.
To obtain this value, a confidence level needs to be defined. Commonly used,
confidence levels include 90%, 95%, and 99%. The critical z-score value is
calculated by looking at the area under the normal distribution curve at the specified
confidence level. As an example, we will use a 95% confidence level, as shown in
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95%
2.5% 2.5%

«— 2 n +z —

—oco oo

Figure 5.11. Display of the critical z-score at a 95% confidence level

Figure 5.11. We need to find the critical z-score value where the area in the two
shaded extremes totals 5% (2.5% at each shaded region). To look up this z-score, we
will use the normal distribution table from Appendix A.1. A sample of this table is
shown in Figure 5.12. Looking up an area of 2.5% or 0.0250, we see that the
corresponding z-score is 1.96.

This z-score will be used to calculate a confidence interval for a set of 54
observations with a mean value of 33.25 and a standard deviation of 12.26:

B K
x:l:Zcf

Vn

12.2
33.25£1.96 6

V33
33.25+3.27

Hence, at a 95% confidence level, the confidence interval is from 29.98 to 36.52.

The normal distribution can be used for large sample sizes where the number of
observations is greater than or equal to 30. However, for a sample size of less than
30, an alternative distribution is needed: Student’s t-distribution. This is because the
number of observations falls below 30 where we can no longer rely on the normal
distribution and instead we must rely on a distribution that has fatter tails. This
distribution will result in larger confidence intervals for smaller sample sizes. For
sample sizes greater than 30, the t-distribution is similar to the normal distribution
and is often used in all situations where the population standard deviation is
unknown. The formula for calculating the confidence interval is:

N
X*+tc—

Vn
where X is the mean of the sample, 7¢ is the critical #-value, s is the standard
deviation of the sample, and » is the number of sample observations. This formula
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can only be applied in situations where the target population approximates a normal
distribution.

The value of t¢ is calculated using the student’s t-distribution table from
Appendix A.2. To look-up a #-value requires the number of degrees of freedom (df)
to be specified. The number of degrees of freedom equals the number of observations
minus 1. For example, if there were 11 observations, then the number of degrees
of freedom will be 10. To look up a critical #-value at a confidence level of 95%,
the area under the curve right of the critical #-value will be 2.5% (0.025). Using the
number of degrees of freedom and the area under the curve, it can be seen that the
critical t-value is 2.228, as shown in Figure 5.13.

In the following example, a set of 11 (n) observations was recorded and the
mean value was calculated at 23.22 (x), with a standard deviation of 11.98 (s).
At a 95% confidence level, the value of 7 is 2.228 and hence the confidence
interval is:

B s
X+t tc—

N
11.98

2322 +2.228———
V11

23.22 £8.05

Upper tail area

df 0.1 0.05 0.025 0.01 0.005
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.764 3.169
11 1.363 1.796 2.718 3.106
12 1.356 1.782 2.681 3.055
13 1.350 1.771 2.650 3.012
14 1.345 1.761 2.624 2.977
15 1.341 1.753 2.602 2.947

An area of 0.025 with 10 degrees of
freedom (df) has a t-value of 2.228

Adapted from Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural
and Medical Research, Sixth Edition, Pearson Education Limited, © 1963 R. A. Fisher and F. Yates

Figure 5.13. Determining the critical value of 7 using the t-distribution
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Hence at a 95% confidence level, the confidence interval is from 15.17 to 31.27.

Confidence Ranges for Categorical Variables

When handling categorical variables, the proportion with a given outcome is
often used to summarize the variable. This equals the outcome’s size divided by the
sample size. For example, a factory may be interested in the proportion of units
produced with errors. To make this assessment, a sample of 300 units are tested
for errors, and it is determined that 45 contain a problem. The proportion of units in
the sample with errors is 45/300 or 0.15. To make a statement about the population
as a whole, it is important to indicate the confidence interval. Again, this is based
on (1) the standard error of the proportion and (2) the confidence level with which
we wish to state the range. In this example, we will use a confidence level of
95%. Based on this information, the following equation can be used to determine
the range:

1_
btz p( np)

where p is the proporti ith a given outcome, n is the sample size and z¢ is
the critical z-score. ‘@ is the standard error of proportion. For this example,
p is 45 divided by 300 or 0.15 (15%) and » is 300. The critical z-score is computed
based on the confidence level and is determined using the area under a normally
distributed curve as described earlier. Given a 95% confidence level, the area
under the upper and lower tails marked in gray should be 5% or 0.05 (see Figure
5.11). Hence the area under the lower tail should be 0.025 and the area under the
upper tail should be 0.025. The z-score can be calculated from the tables in
Appendix A.l. The critical z-score for a 95% confidence level is 1.96. Substituting
these values into the equation:

0.15 x (1 —0.15)
A5+ 1.
or 0.15 96\/ 300

1,
b+ 1%

0.15+0.04

It can be inferred that between 11% and 19% of units will have faults with 95%
confidence.

5.3.3 Hypothesis Tests

Overview

In this example, a clothing manufacturer wishes to make a claim concerning the
number of garments it creates with no defects. It believes that less than 5% contain
a defect. To examine every garment produced would be too costly and so they
decided to collect 500 garments, selected randomly. Each garment is examined and
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it is recorded whether the garment has a defect or not. After the data was collected,
it was calculated that 4.7% of garments had defects. Since the data was collected from
a sample, this number alone is not sufficient to make any claim because of the
potential for sampling errors. Knowing that they would not be able to make a
claim with 100% confidence, they would be satisfied with a 95% confidence rate, that
is, 95 times out of 100 they would be correct. The sampling distribution, described
earlier, can be used to understand the minimum number of defective garments to
make the claim with a 95% confidence. This point should be plotted on the sampling
distribution. If the 4.7% value is now plotted on the sampling distribution (by
converting it to a z-score), it should now be possible to understand whether it is
sufficiently low to make the statement at a 95% confidence. If it is not, then the
manufacturer would not be able to make any claims about the number of defective
garments. The following describes a formal procedure for making claims or
hypothesis using data.

A hypothesis is a statement or claim made about an entire population. For
example:

e The average time to process a passport is 12 days

e More than eight out of ten dog owners prefer a certain brand (brand X) of
dog food.

A hypothesis test determines whether you have enough data to reject the claim (and
accept the alternative) or whether you do not have enough data to reject the claim. To
define a hypothesis, two statements are made:

o Null hypothesis (Ho): This is a claim that a particular population parameter
(e.g. mean) equals a specific value. For example, the average time to process
a passport equals 12 days or the proportion of dog owners that prefer brand X
is 0.8 (or 80%). A hypothesis test will either reject or not reject the null
hypothesis using the collected data.

e Alternative hypothesis (H,): This is the conclusion that we would be
interested in reaching if the null hypothesis is rejected. Another name that
is used to describe the alternative hypothesis is the research hypothesis as it
is often the conclusion that the researcher is interested in reaching. There are
three options: not equal to, greater than or less than. For example, dog
owners’ preference for brand X dog food is more than 0.8 (or 80%) or the
passport processing time is either greater than or less than 12 days so that the
alternative hypothesis is defined as not equal to 12 days.

To illustrate the null and alternative hypothesis, we will use the two cases described
above:

e Claim: The average time to process a passport is 12 days
Ho: p=12
Hy:pn #12

where u is the claimed average number of days to process a passport.
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e Claim: More than eight out of ten dog owners prefer a certain brand (brand
X) of dog food

Hp: 7 =0.8
H,: 7> 0.8

where 7 is the claimed proportion of dog owners preferring brand X dog food. The
alternative hypothesis is that the proportion of dog owner who prefer brand X is
greater than 0.8 and we would be interested in reaching this conclusion if the null
hypothesis was rejected.

Hypothesis Assessment

Before a hypothesis test is performed it is necessary to set a value at which Hy should
be rejected. Since we are dealing with a sample of the population, the hypothesis test
may be wrong. We can, however, minimize the chance of an error by specifying a
confidence level that reflects the chance of an error. For example, setting a
confidence level at 90% means that we would expect 1 in 10 results to be incorrect,
whereas setting a confidence level at 99% we would expect 1 in 100 incorrect results.
A typical value is 95% confidence; however, values between 90%—-99% are often
used. This is the point at which Hy will be rejected. This confidence level is usually
described by the term o, which is 100 minus the confidence percentage level, divided
by 100. For example, a 95% confidence level has o = 0.05 and a 99% confidence
level has oo = 0.01.

Once the null hypothesis and the alternative hypothesis have been described, it is
now possible to assess the hypotheses using the data collected. First, the statistic of
interest from the sample is calculated. Next, a hypothesis test will look at the
difference between the value claimed in the hypothesis statement and the calculated
sample statistic. For large sample sets (greater than or equal to 30 observations),
identifying where the hypothesis test result is located on the normal distribution
curve of the sampling distribution, will determine whether the null hypothesis is
rejected.

For example, the following graph (Figure 5.14) shows a two-tail test used in
situations where the alternative hypothesis is expressed as not equal. In this example,
we use a confidence level where oo = 0.05. The graph shows the standard normal
distribution with the null hypothesis parameter shown in the center of the graph
(ug,)- If the hypothesis test score is within the “do not reject Hy” region, then there
is not enough evidence to reject the null hypothesis. If the hypothesis test score is in
the “reject Hy” region, then the null hypothesis is rejected. The value of z, is
determined from the normal distribution table in Appendix A.l. Since this is a
two-tail test, the sum of the area in the two tails should equal 5%, as shown in
Figure 5.14.

If the alternative hypothesis is smaller than, then you reject the null hypothesis
only if it falls in the left “reject Hy” region. If the alternative hypothesis is greater
than, then you reject the null hypothesis if it falls in the right “reject Hy”” region. For
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95%

2.5% 2.5%
Do not reject Ho
Reject Ho Reject Ho
I
—Zc My, +z.

—oco oo

Figure 5.14. Tllustration of the two-tail reject/do not reject region when o = 0.05

example, if the alternative hypothesis is Hy: 1 < piy, and o = 0.05, then we would
reject the null hypothesis if the hypothesis test results has a z-score to the left of the
critical value of z (z.). The value of z. is determined from the normal distribu-
tion table in Appendix A.1. Since this is a one-tail test (when smaller than or greater
than is in the alternative hypothesis) the single area should equal 5%, as shown in
Figure 5.15.

Calculating p-Values

A hypothesis test is usually converted into a p-value. A p-value is the probability of
getting the recorded value or a more extreme value. It is a measure of the likelihood

95%
5%

Do not reject Ho
Reject Ho

‘-

—oco oo

Figure 5.15. Tllustration of the one-tail reject/do not reject region when o = 0.05
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of the result given the null hypothesis is true or the statistical significance of the
claim. To calculate a p-value, use the score calculated using the hypothesis test
(described in the next sections) and look up the score on the standardized normal
distribution. For example, a hypothesis score of 2.21 corresponds to a value of
0.0136 (see Figure 5.16). Where the alternative hypothesis is not equal, then this
value is doubled.

p-values range from 0 to 1. Where the p-value is less than o, the null hypothesis
is rejected. When the p-value is greater than o, the null hypothesis is not rejected. For
example, if o was set to 0.05, then a p-value of 0.0136 would mean we would reject
the null hypothesis.

Where a sample size is small (less than 30), a student’s #-distribution should be
used instead of the standard normal distribution in calculating a p-value (see
appendix A.2).

Hypothesis Test: Single Group, Continuous Data

To test the claim that the average time to process a passport is 12 days, the following
null and alternative hypothesis were defined:

Ho: p=12
Hy:p# 12

where u is the claimed average number of days to process a passport.

To test the hypothesis that the number of days to process a passport is 12 (u), 45
passport applications were randomly selected and timed (n = 45). The average time
to process the passport application was 12.1 (¥) and the standard deviation was 0.23
(s) and o was set to 0.05. To calculate the hypothesis test, the following formula will
be used:

This formula uses the difference between the actual mean and the null hypothesis
mean, divided by the standard error of the mean. In this example:

121120

0.23
Va5

z=29

for a value of o = 0.05, the critical value of z (z.) would be 1.96. This is where the
area under each extreme would equal 2.5%. Since the z-score of 2.9 is greater than
1.96, we reject the null hypothesis and make a statement that the average number of
days to process a passport is not 12 days. To calculate a p-value, we look-up the
calculated hypothesis score of 2.9 in the normal distribution table and this value is
0.0019. Since this hypothesis is two-sided, we double this value to obtain a p-value
of 0.0038.
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Hypothesis Test: Single Group, Categorical Data

To test the claim that more than eight out of ten dog owners prefer a certain brand
(brand X) of dog food, the following null and alternative hypothesis were defined:

Hp: 7 =0.8
Hy,: 7> 0.8

where 7 is the claimed proportion of dog owners preferring brand X dog food.

To test this hypothesis, 40 random dog owners (n = 40) were questioned and the
proportion that responded that they preferred brand X was 33 out of 40 or 0.825 (p).
The proportion in the null hypothesis was 0.8 (1) and « was set to 0.05. To calculate
the hypothesis test (z), the following formula is used:

pP—To

o (1—mp)

=

This is the difference between the value stated in the null hypothesis and the
recorded sample divided by the standard error of proportions. In this example,

0.825-08

= 0.8(1-0.8)
20

z=0.395

The critical z-score when o = 0.05 is 1.65, which is greater than the hypothesis test
score. Looking up 0.395 on the standardized normal distribution, we get a p-value
of 0.3446. Since the p-value is greater than o, we do not reject the null hypothesis.
In this case, we cannot make the claim that more than 80% of dog owners prefer
brand X.

Hypothesis Test: Two Groups, Continuous Data

In this example, the following claim is to be tested:

Claim: The average fuel efficiency for 4-cylinder vehicles is greater than the
average fuel efficiency for 6-cylinder vehicles.

To test this claim the null and alternative hypothesis are defined:

Ho: uy = 1y
Ha:/,ll >,U2

where y, is the average fuel efficiency for a population of 4-cylinder vehicles and p,
is the average fuel efficiency for a population of 6-cylinder vehicles.

Two groups of cars were randomly selected, one group with four cylinders and
one group with six cylinders. The fuel efficiency of each car is collected. The first
group is a set of 24 4-cylinder cars (n;) with an average fuel efficiency (in miles per
gallon) of 25.85 (x;), and a variance of 50.43 (s%). The second group is a collection
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of 27 6-cylinder cars (n,) with an average fuel efficiency (in miles per gallon) of
23.15 (), and a variance of 48.71 (s%). o is set to 0.05 in this example.

The null hypothesis states that there is no difference between the mean of
4-cylinder cars (u;) compared to the mean of 6-cylinder cars (u,). The alternative
hypothesis states that 4-cylinder vehicles have greater fuel efficiency than 6-cylinder
vehicles.

Since the group sizes are less than 30, the following formula will be used:

= (¥ — %) = (1 — 1)

where sp is the pooled standard deviation and can be calculated from s3 (the pooled
variance):
(m — 1)s3 + (np — 1)s3

(=1 +(m—1)

2 _
sp=

In the further readings section of this chapter, a number of references describe how
these formulas were obtained.

In this example:

(24 — 1)50.43 + (27 — 1)48.71

5= 4—1)+(27-1)

sp = 49.52
Since the null hypothesis states that p; = p,, i — pt, =0
(25.85 — 23.15) — (0)

V49.52, /4 + 4
r=1.37

In this example, the number of degrees of freedom is 49 (n; + n, — 2), and the
critical value for 7 is approximately 1.68 (from Appendix A.2). Since the p-value is
just less than 0.1, we do not reject the null hypothesis. The formulas used in this
example can be applied when there are less than 30 observations in either group and
when the population is normally distributed. In situations where the number of
observations in both groups is greater than 30, the following equation can be
used:

(X1 — %) — (1 — )
52 SZ
Vit

where s? is the variance of the first group and s3 is the variance of the second
group.

7=
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Hypothesis Test: Two Groups, Categorical Data

In the following example, a claim is made concerning the efficacy of a new drug used
to treat strokes:

Claim: A new drug reduces the number of strokes.

To test this claim the following null and alternative hypothesis are defined:

H():TEI =T
H,:m <m

where 7, is the proportion of the population with strokes taking the new medicine
and 7, is the proportion of the population with strokes taking the placebo.

Two groups of patients were randomly selected and studied. One of the groups
takes a placebo (a sugar pill) and the other group takes the new medicine. The
number of strokes for each patient group is recorded. In this situation, the hypothesis
test is based on the difference in the proportion of strokes between the two
populations. There were 10,004 patients in the first group who took the medicine (n;)
and of these 213 had strokes (X;). There were 10,013 patients in group 2 that did not
take the medicine and took a placebo instead (n,) and in this group 342 patients had a
stroke (X5). The results of the study are shown in Table 5.4.

Overall, the two groups are examined together to understand the total proportion
of patients that had strokes:

X1+ X

ny +np
2134342
P = 10004 + 10013

p

p =0.0277

The proportion of the first group (that takes the medicine) that has strokes is:

X
p1=—
n
213
P = 10004
P = 0.0213

Table 5.4. Contingency table indicating the results of a medical test

Takes medicine Takes placebo Total
Has strokes 213 342 555
No strokes 9,791 9,671 19,462

Totals 10,004 10,013 20,017
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The proportion of the second group (that takes the placebo) that has strokes is:

X
p2=—
n
34
P2=90013
Py = 0.0342

The null hypothesis states that there is no difference in the proportion of strokes
between the group taking the medicine (7;) compared to the group not taking
the medicine (m;). To calculate a hypothesis test, the following equation will
be used:

(Pl —Pz) - (751 - ﬂz)
p(1=p)G+3)
For more information on how this formula was obtained, see the further reading
section of this chapter.

In this hypothesis test, (m; — mp) is equal to O since there should be no
difference according to the null hypothesis.

- (0.0213 — 0.0342) — 0
\/0.0278(1 — 0.0278) (153 + 10013)

=

~—0.0129
7 70.00232
z=—-5.54

To calculate a p-value based on this hypothesis test, we look up this score in the
normal distribution table (Appendix A.1) and it is virtually 0, hence we reject the
null hypothesis and conclude the number of strokes for the group taking the
medicine is lower than the group that does not take the medicine.

Paired Test

In this widely quoted example, the following claim is made:

Claim: There is no difference in the wear of shoes made from material X
compared to shoes made from material Y.

To test this claim, the null and alternative hypothesis are set up:

H()Z,uD:O
Ha:ﬂl)#o

where pp, is the difference between the wear of shoes made with material X and the
wear of shoes made with material Y.
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To test the hypothesis, 10 boys wore a shoe made with material X on one
foot and a shoe made with material Y on the other and the feet were randomized.
The amount of wear for each material was recorded. A 90% confidence level
is required.

The average difference is 0.41 (D), and the number of standard deviations is
0.386 (sp) for this difference. Since the number of observations is small, we will use
the 7-distribution to assess the hypothesis. The following formula is used:

t=3.36

To calculate a p-value based on this hypothesis test, we look up this score in the
t-distribution table (Appendix A.2), where the number of degrees of freedom is
9 (n — 1). It is just less than 0.01, hence we reject the null hypothesis and conclude
that there is a difference.

Errors

Since a hypothesis test is based on a sample and samples vary, there exists the
possibility for errors. There are two potential errors and these are described as:

e Type I Error: In this situation the null hypothesis is rejected when it really
should not be. These errors are minimized by setting the value of o low.

e Type II Error: In this situation the null hypothesis is not rejected when it
should have been. These errors are minimized by increasing the number of
observations in the sample.

5.3.4 Chi-Square

The chi-square test is a hypothesis test to use with variables measured on a nominal
or ordinal scale. It allows an analysis of whether there is a relationship between two
categorical variables. As with other hypothesis tests, it is necessary to state a null and
alternative hypothesis. Generally, these hypothesis statements look like:

Hy: There is no relationship
H,: There is a relationship

Using Table 5.5, we will look at whether a relationship exists between where a
consumer lives (represented by a zip code) and the brand of washing powder they
buy (brand X, brand Y, and brand Z).
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Table 5.5. Contingency table of observed purchases

Washing powder brand

Brand X Brand Y Brand Z
43221 5,521 4,597 4,642 14,760
Zip code 43029 4,522 4,716 5,047 14,285
43212 4,424 5,124 4,784 14,332
14,467 14,437 14,473 43,377

The chi-square test compares the observed frequencies with the expected
frequencies. The expected frequencies are calculated using the following formula:

r xXc

’ n
where E, . is the expected frequency for a particular cell in the table, r is the row
count, c is the column count and n is the total observations in the sample.

For example, to calculate the expected frequency for the cell where the washing
powder is brand X and the zip code is 43221 would be:

14,760 x 14,467

EBrana_x 43221 = 43,377

EandJ(,4322l =4,923

Table 5.6 shows the entire table with the expected frequency count (replacing the
observed count).
The chi-square test (%) is computed with the following equation:

k 2
» (0 —E)
=2 E,

i=1

where k is the number of all categories, O; is the observed cell frequency and E; is the
expected cell frequency. Table 5.7 shows the computed %> for this example.

There is a critical value at which the null hypothesis is rejected (}53). This value
is found using the chi-square table in Appendix A.3. The value is dependent on the

Table 5.6. Contingency table of expected purchases

Washing powder brand

Brand X Brand Y Brand Z
43221 4,923 4913 4,925 14,760
Zip code 43026 4,764 4,754 4,766 14,285
43212 4,780 4,770 4,782 14,332

14,467 14,437 14,473 43,377
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Table 5.7. Calculation of chi-square

k Category Observed (0) Expected (E) (0O— E)2 /E
1 r = Brand X, ¢ = 43221 5,521 4,923 72.6

2 r = Brand Y, ¢ = 43221 4,597 4913 20.3

3 r = Brand Z, ¢ = 43221 4,642 4,925 16.3

4 r = Brand X, ¢ = 43026 4,522 4,764 12.3

5 r = Brand Y, ¢ = 43026 4,716 4,754 0.3

6 r = Brand Z, ¢ = 43026 5,047 4,766 16.6

7 r = Brand X, ¢ = 43212 4,424 4,780 26.5

8 r=Brand Y, ¢ = 43212 5,124 4,770 26.3

9 r = Brand Z, ¢ = 43212 4,784 4,782 0.0008

Sum = 191.2

degrees of freedom (df), which is calculated:

df=(r—-1)x(c—1)

For example, the number of degrees of freedom for this exampleis (3 — 1) x (3 — 1)
which is 4. Looking up the critical value, for df = 4 and o = 0.05, the critical value is
9.488 as shown in Figure 5.17. Since 9.488 is less than the calculated chi-square value
of 191.2, we reject the null hypothesis and state that there is a relationship between
zip codes and brands of washing powder. The chi-square test will tell you if a
relationship exists; however, it does not tell you what sort of relationship it is.

5.3.5 One-Way Analysis of Variance

Overview

The following section reviews a technique called one-way analysis of variance that
compares the means from three or more different groups. The test determines
whether there is a difference between the groups. This method can be applied to
cases where the groups are independent and random, the distributions are normal,
and the populations have similar variances. For example, an on-line computer retail
company has call centers in four different locations. These call centers are
approximately the same size and handle a certain number of calls each day. An
analysis of the different call centers based on the average number of calls processed
each day is required. Table 5.8 illustrates the daily calls serviced.

As with other hypothesis tests, it is necessary to state a null and alternative
hypothesis. Generally, the hypothesis statement will look like:

Hy: The sample means are equal

H,: The sample means are not equal

To determine whether there is a difference or not between the means or whether the
difference is due to random variation, we must perform a hypothesis test. This test
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Table 5.8. Calls processed by different call centers

Call center A Call center B Call center C Call center D
136 124 142 149

145 131 145 157

139 128 139 154

132 130 145 155

141 129 143 151

143 135 141 156

138 132 138

139 146

will look at both the variation within the groups and the variation between the
groups. The test has the following steps:

1. Calculate group means and standard deviations

2. Determine the within group variation

3. Determine the between group variation

4. Determine the F-statistic, using the within and between group variation

5. Test the significance of the F-statistic

The following sections describe these steps in detail:

Calculate Group Means and Variances

In Table 5.9, for each call center a count along with the mean and variance has been
calculated. In addition, the total number of groups is listed (k = 4) and the total
number of observations (N = 29). In addition, an average of the means (x = 140.8)
is calculated by taking each mean value for each call center and dividing it by the
number of groups:

139.1 +129.9 + 142.4 + 153.7

= — 1413
x 4

Determine the Within Group Variation

The variation within groups is defined as the within group variance or mean
square within (MSW). To calculate this value we use a weighted sum of the variance
for the individual groups. The weights are based on the number of observations in
each group. This sum is divided by the number of degrees of freedom calculated by
taking the total number of observations (N) and subtracting the number of groups (k).

M=

(ni = 1)s7

MSW=2=L
N —k
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Table 5.9. Calculating means and variances

Call center  Call center  Call center Call center 4 Groups
A B C D (k)
136 124 142 149
145 131 145 157
139 128 139 154
132 130 145 155
141 129 143 151
143 135 141 156
138 132 138
139 146
Count (n) 8 7 8 6 Total count
N=29
Mean (x;) 139.1 129.9 142.4 153.7 Average of
means x
=141.3
Variance (s?)  16.4 11.8 8.6 9.5

In this example:

(8—1)x 164+ (7—1)x 1184+ (8—1)x 8.6+ (6—1)x9.5

MSW =
v (29— 4)

MSW =11.73

Determine the Between Group Variation

Next, the between group variation or mean square between (MSB) is calculated. The
mean square between is the variance between the group means. It is calculated using
a weighted sum of the squared difference between the group mean (x;) and the
average of the means (¥). This sum is divided by the number of degrees of freedom.
This is calculated by subtracting one from the number of groups (k). The following
formula is used to calculate the mean square between (MSB):

Smi(% — %)

MSB="1
S k—1

Where n; is the size of each group and X; is the average for each group.

In this example,

MSB

(8 x (139.1 — 141.3)%) + (7 x (129.9 — 141.3)?) + (8 x (142.4 — 141.3)%) + (6 x (153.7 — 141.3))
-1

MSB = 626.89
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Determine the F-Statistic

The F-statistic is the ratio of the mean square between (MSB) and the mean square
within (MSW):

MSB
F=——
MSW
In this example:
Fe 626.89
- 1173
F =53.44

Test the Significance of the F-Statistic

Before we can test the significance of this value, we must determine the degrees of
freedom (df) for the two mean squares (within and between).

The degrees of freedom for the mean square within (df,,imin) is calculated using
the following formula:

dfwithin = N — k

where N is the total number of observations in all groups and k is the number of
groups.

The degrees of freedom for the mean square between (dfpeneen) s calculated
using the following formula:

dfbetween =k—1

where k is the number of groups.
In this example:
dfhetween =4-1=3
dfwinin =29 —4 =125

We already calculated the F-statistic to be 53.44. This number indicates that the
mean variation between groups is much greater than the mean variation within
groups due to errors. To test this, we look up the critical F-statistic from Appendix
A.4. To find this critical value we need o (confidence level), v (dfvetween), and v,
(dfwithin)- The critical value for the F-statistic is 3.01, as shown in Figure 5.18. Since
the calculated F-statistic is greater than the critical value, we reject the null
hypothesis. The means for the different call centers are not equal.

5.4 COMPARATIVE STATISTICS
5.4.1 Overview

Correlation analysis looks at associations between variables. For example, is there a
relationship between interest rates and inflation or education level and income? The
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Figure 5.19. Relationships between two variables

T T
Positive Negative Both positive and negative
at various points

existence of an association between variables does not imply that one variable causes
another. Yet, understanding these relationships is useful for a number of reasons. For
example, when building a predictive model, comparative statistics can help identify
important variables to use.

The relationship between variables can be complex; however, a number of
characteristics of the relationship can be measured:

e Direction: In comparing two variables, a positive relationship results when
higher values in the first variable coincide with higher values in the second
variable. In addition, lower values in the first variable coincide with lower
values in the second variable. Negative relationships result when higher
values in the first variable coincide with lower values in the second variable
as well as lower values in the first variable coincide with higher values in the
second variable. There are also situations where the relationship between the
variables is more complex, having a combination of positive and negative
relationships at various points. Figure 5.19 illustrates various scenarios for
the relationship between variables.

e Shape: A relationship is linear when it is drawn as a straight line. As values
for one variable change, the second variable changes proportionally. A non
linear relationship is drawn as a curve indicating that as the first variable
changes, the change in the second variable is not proportional. Figure 5.20
illustrates linear and non-linear relationships.

5.4.2 Visualizing Relationships

Where the data is categorical, the relationship between different values can be seen
using a contingency table. For example, Table 5.10 illustrates the relationship

Figure 5.20. Linear and nonlinear relationships

Linear Nonlinear



Table 5.10. Contingency table indicating results

Comparative Statistics

of a medical trial

91

Takes medicine Takes placebo Total
Has strokes 213 342 555
No strokes 9,791 9,671 19,462
Totals 10,004 10,013 20,017

between whether a patient took a specific medicine and whether the patient had a
stroke. Evaluating how these counts differ from the expected can be used to
determine whether a relationship exists. The chi-square test, as previously described,
can be used for this purpose.

A contingency table can also be used to crudely define the relationship between
continuous variables. A table could be formed by converting the continuous
variables into dichotomous variables through the setting of a cut off at the mean
value. Values above the mean are assigned to one category and values below the
mean are assigned to the other category.

It is usually more informative to explore the relationship between different
continuous variables using a scatterplot. Figure 5.21 illustrates three scatterplots. In
a, the relationship between the two variables is positive and from inspection appears
to be linear. In b, there is a negative relationship between the variables and it also
appears to be non linear. In ¢, it is difficult to see any relationship between the two
variables.

5500 50
5000 o8 oo 45
8 o 8 o° 40
4500 § o8
35
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5 ° & Je <A
5 3500 o© g
= 8 o o o 25 o
3000 2 -
8 o o % o o
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45
40
35
S
= 25
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15
10
5
7 8 910 111213 14 1516 17 181920 21 2223 24 25
Acceleration
c
Figure 5.21. Tllustrating different relationships using scatterplots
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5.4.3 Correlation Coefficient (r)

For pairs of variables measured on an interval or ratio scale, a correlation coefficient
(r) can be calculated. This value quantifies the linear relationship between the
variables. It generates values ranging from —1.0 to +1.0. If an optimal straight line
is drawn through the points on a scatterplot, then the value of r reflects how close to
this line the points lie. Positive numbers indicate a positive correlation and negative
numbers indicate a negative correlation. If 7 is around O then there appears to be little
or no relationship between the variables.

For example, three scatterplots illustrate different values for r as shown in
Figure 5.22. The first graph illustrates a good positive correlation, the second graph
shows a negative correlation and the third graph illustrates a poor correlation.

The formula used to calculate r is shown here:

n

> (i =x) (i = y)

i=1

"= (n—1)sysy

Two variables are considered in this formula: x and y. The individual values for x are
x; and the individual values for y are y;. X is the mean of the x variable and y is the

r=0.93 r=-0.78
5500 50
5000 og ° o 45
4500 g %8 o
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Figure 5.22. Correlation coefficients for three relationships
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Table 5.11. Table of data with values for x and y variable

X y
92 6.3
145 7.8
30 3
70 55
75 6.5
105 5.5
110 6.5
108 8
45 4
50 5
160 7.5
155 9
180 8.6
190 10
63 4.2
85 4.9
130 6
132 7

mean of the y variable. The number of observations is n. sy is the standard deviations
for x and s, is the standard deviations for y.

To illustrate the calculation, two variables (x and y) are used and shown in
Table 5.11. Plotting the two variables on a scatterplot indicates there is a positive
correlation between these two variables, as shown in Figure 5.23. The specific value

12

0
0 20 40 60 80 100 120 140 160 180 200 220

X

Figure 5.23. Scatterplot showing relationship between x and y variables
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Table 5.12. Table showing the calculation of the correlation coefficient

X Vi (x; — X) i —Y) (i —=X)(yi — )
92 6.3 —14.94 —0.11 1.58
145 7.8 38.06 1.39 53.07
30 3 —76.94 —341 262.04
70 5.5 —36.94 —0.91 33.46
75 6.5 —31.94 0.09 -3.02
105 5.5 —1.94 —0.91 1.76
110 6.5 3.06 0.094 0.29
108 8 1.06 1.59 1.68
45 4 —61.94 —2.41 149.01
50 5 —56.94 —1.41 80.04
160 75 53.06 1.09 58.07
155 9 48.06 2.59 124.68
180 8.6 73.06 2.19 160.32
190 10 83.06 3.59 298.54
63 4.2 —43.94 —-2.21 96.92
85 4.9 —21.94 —1.51 33.04
130 6 23.06 —0.41 —9.35
132 7 25.06 0.59 14.89
x =106.94 y =641 Sum = 1357.01
5, =47.28 s, = 1.86

of r is calculated using Table 5.12:

3 (i — ) (v — )

i=1
(n—1)sysy

r =

1357.01
(18 — 1)(47.28)(1.86)

r =

r=1091

5.4.4 Correlation Analysis for More Than Two
Variables

When exploring data, it is useful to visualize the relationships between all variables
in a data set. A matrix representation can be a useful presentation of this information.
In this example, five variables relating to a data set of cars are presented:
Displacement, Horsepower, Weight, Acceleration, MPG. The relationship ()
between each pair of variables is shown in Table 5.13. The correlation analysis for
these variables can also be plotted using a matrix of scatterplots, as shown in
Figure 5.24.
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Table 5.13. Table displaying values for the correlation coefficient for five variables

Displacement Horsepower = Weight Acceleration MPG
Displacement 1 0.9 0.93 —0.54 —0.81
Horsepower 0.9 1 0.86 —0.69 —0.78
Weight 0.93 0.86 1 —0.42 —0.83
Acceleration —-0.54 —0.69 —-0.42 1 0.42
MPG —0.81 —0.78 —0.83 0.42 1

The correlation coefficient is often squared (1) to represent the percentage of
the variation that is explained by the regression line. For example, Table 5.14

illustrates the calculation for 7> for the five variables illustrated in the scatterplot
matrix (Figure 5.24).

Displacement

Horsepower

Weight

Acceleration

MPG

Figure 5.24. Scatterplot matrix showing the relationship between five variables
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Table 5.14. Table displaying the value for 1 for five variables

Displacement Horsepower ~ Weight Acceleration MPG
Displacement 1 0.81 0.87 0.29 0.66
Horsepower 0.81 1 0.74 0.48 0.61
Weight 0.87 0.74 1 0.18 0.69
Acceleration 0.29 0.48 0.18 1 0.18
MPG 0.66 0.61 0.69 0.18 1

5.5 SUMMARY
Central Tendency

Mode: Most common value
Median: Middle value

Variation
Range: high—low

Quartiles: Q1 (25%), Q2 (50%), Q3 (75%)

Variance: s* =

Standard deviation: s =

Xi —X
Z=score: 7 =

N

Confidence Levels

Mean (> 30 observations) : X & z¢

Mean (< 30 observations) : X = f¢

1—
Proportion: p £ z¢ u
n

=)
5l

S



Exercises
Hypothesis Test

Specify null (e.g. Ho: 1 = py) and alternative hypothesis (e.g. Hy: u > 1)
Select significance level (e.g. o = 0.05)

Compute test statistics (#— or z—)

Determine critical value for t or z using o/2 for two sided tests

Reject the null hypothesis if test statistic fall in the “reject Hy”’ region

Comparing Groups

When comparing more than two groups, use:

Chi-square test for categorical data

One-way analysis of variance test for continuous.

Comparing Variables

-

(% = %) 0i =)

(n—1)sysy

1

Correlation coefficient (r): r=

5.6 EXERCISES

Table 5.15 presents the ages for a number of individuals.

1. Calculate the following statistics for the variable Age:
a. Mode
b. Median
c. Mean

Table 5.15. Table with variables Name and Age

Name Age
P.Lee 35
R.Jones 52
J.Smith 45
A .Patel 70
M.Owen 24
S.Green 43
N.Cook 68
W.Hands 77
P.Rice 45

F.Marsh 28

97
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Range
Variance
Standard deviation

. Z-Score

5 0 oo &

. Skewness
i. Kurtosis

2. An insurance company wanted to understand the time to process an insurance
claim. They timed a random sample of 47 claims and determined that it took on
average 25 minutes per claim and the standard deviation was calculated to be 3.
With a confidence level of 95%, what is the confidence interval?

3. An electronics company wishes to understand, for all customers that purchased a
computer, how many will buy a printer at the same time. To test this, the
company interviews a random sample of 300 customers and it was determined
that 138 bought a printer. With a confidence level of 99%, what is the confidence
interval for the proportion of customers buying a printer at the same time as a
computer?

4. A phone company wishes to make a claim that the average connection time in the
US is less than two seconds (i.e. the time after you dial a number before the call
starts to ring). To test this, the company measures 50 randomly selected calls and
the average time was 1.9 seconds with a standard deviation of 0.26. Using this
information and a 95% confidence level:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the phone company can make the claim

5. A bank wishes to make a claim that more than 90% of their customers are pleased
with the level of service they receive. To test this claim, a random sample of 100
customers were questioned and 91 answered that they were pleased with the
service. The bank wishes to make the claim at a 95% confidence level. Using this
information:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the bank can make the claim

6. A company that produces tomato plant fertilizer wishes to make a claim that their
fertilizer (X) results in taller tomato plants than a competitor product (Y). Under
highly controlled conditions, 50 plants were grown using X and 50 plants grown
using Y and the height of the plants were measured. The average height of the
plants grown with fertilizer X is 0.36 meters with a standard deviation of 0.035. The
average height of the plants grown with fertilizer Y was 0.34 with a standard
deviation of 0.036. Using a 95% confidence limit:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the company can make the claim
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Table 5.16. Contingency table showing defective products produced using material from
two manufacturers

Defective Not defective
Manufacturer A 7 98 105
Manufacturer B 5 97 102
Totals 12 195 207

7. A producer of kettles wishes to assess whether a new supplier of steel (B) results in
kettles with fewer defects than the existing supplier (A). To test this, the company
collects a number of kettles generated from both suppliers to examine the kettles
for defects. Table 5.16 summarizes the counts. Using a 95% confidence limit:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the company can make the claim

8. A construction company wants to understand whether there is a difference in wear
for different types of gloves (P and Q). 40 employees wear P gloves on one hand
and Q gloves on the other. The hands are randomized. The wear of the gloves were
recorded and the average difference calculated. The average difference was 0.34
with a standard deviation of 0.14. Using a 95% confidence limit:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the company can make the claim

9. A producer of magnets wishes to understand whether there is a difference between
four suppliers (A, B, C, and D) of alloys used in the production of the magnets.
Magnets from the four suppliers are randomly selected and the magnets are
recorded as either satisfactory or not satisfactory as shown in Table 5.17. With a
95% confidence limit and using this information:

a. Specify the null and alternative hypothesis

b. Calculate chi-square

c. Determine whether the company can make the claim

Table 5.17. Contingency table showing product satisfaction using materials from four
suppliers

Satisfactory Not satisfactory Total
Supplier A 28 2 30
Supplier B 27 3 30
Supplier C 29 1 30
Supplier D 26 4 30

Total 110 10 120




100 Chapter 5 Statistics

Table 5.18. Table of snacks per packet produced by four machines

Machine 1 Machine 2 Machine 3 Machine 4
50 51 49 52
51 52 51 50
50 50 50 53
52 51 51 51
50 53 49 50
49 50 51 50
52 51 49 49
49 50 49 51

Table 5.19. Table showing observations for
variables Amount of Sun and Tree Height

Amount of Sun Tree Height
24 3

2.6 3.1
2.9 3.1
34 35
3.8 37
4.2 3.8
4.5 4.1
5.1 4.3
5.8 5.1

10. A food producer creates packets of snacks using four machines (1, 2, 3, 4). The
number of snacks per packet is recorded for a random collection of samples from
the four machines, as shown in Table 5.18. The company wishes to know if there
is a difference between the four machines. Using a 95% confidence limit:

a. Specify the null and alternative hypothesis
b. Calculate the F-statistic
c. Determine whether the company can make the claim

11. In a highly controlled experiment, a biologist was investigating whether there exists
a relationship between the height of a tree and their exposure to the sun. The
biologist recorded the results in Table 5.19. Calculate the correlation coefficient
between these two columns.

5.7 FURTHER READING

This chapter has focused on techniques for summarizing, making statements about population
from samples, and quantifying relationships in the data. There are a number of introductory
statistical books that provide an overview of the theory behind these techniques including the
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central limits theorem: Donnelly (2004), Freedman (1997), Rumsey (2003), Kachigan (1991),
and Levine (2005).
The following web sites contain information on statistics and other data analysis
methods:
http://www.statsoft.com/textbook/stathome.html
http://www.itl.nist.gov/div898/handbook/index.htm
The following web site contains information on the R-Project on statistical computing:
http://www.r-project.org/



Chapter 6

6.1

Grouping

INTRODUCTION

6.1.1 Overview

Dividing a data set into smaller subsets of related observations or groups is important
for exploratory data analysis and data mining for a number of reasons:

¢ Finding hidden relationships: Grouping methods organize observations in

different ways. Looking at the data from these different angles will allow us
to find relationships that are not obvious from a summary alone. For
example, a data set of retail transactions is grouped and these groups are
used to find nontrivial associations, such as customers who purchase
doormats often purchase umbrellas at the same time.

Becoming familiar with the data: Before using a data set to create a
predictive model, it is beneficial to become highly familiar with the contents
of the set. Grouping methods allows us to discover which types of
observations are present in the data. In the following example, a database
of medical records will be used to create a general model for predicting a
number of medical conditions. Before creating the model, the data set is
characterized by grouping the observations. This reveals that a significant
portion of the data consists of young female patients having flu. It would
appear that the data set is not evenly stratified across the model target
population, that is, both male and female patients with a variety of
conditions. Therefore, it may be necessary to create from these observations
a diverse subset that matches more closely the target population.

Segmentation: Techniques for grouping data may lead to divisions that
simplify the data for analysis. For example, when building a model that
predicts car fuel efficiency, it may be possible to group the data to reflect the
underlying technology platforms the cars were built on. Generating a model
for each of these ‘platform-based’ subsets will result in simpler models.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.
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6.1.2 Grouping by Values or Ranges

One way of creating a group is to search or query the data set. Each query would
bring back a subset of observations. This set could then be examined to determine
whether some interesting relationship exists. For example, in looking for hidden
relationships that influence car fuel efficiency, we may query the data set in a variety
of ways. The query could be by a single value, such as where the number of cylinders
is four. Alternatively, a range of values could be used, such as all cars with Weight
less than 4000. Boolean combinations of query terms could also be used to create
more complex queries, for example cars where Cylinders is equal to six and Weight
is greater than 5000. The following illustrates two queries:

Query 1: All cars where Horsepower is greater than or equal to 160 AND
Weight is greater than or equal to 4000.

This query will bring back all observations where Horsepower is greater than
or equal to 160 and Weight is greater than or equal to 4000. A sample extracted from
the 31 observations returned is shown in Table 6.1. The relationship of the 31
observations to car fuel efficiency can be seen in Figure 6.1, with the 31 observations
highlighted. Cars containing the values in the query (i.e. heavy vehicles with high
horsepower) seem to be associated with low fuel-efficient vehicles.

Query 2: All cars where Horsepower is less than 80 AND Weight is less than
2500.

Table 6.1. Cars where Horsepower > 160 and Weight > 4000

Displace- Horse- Accele- Model/
Names Cylinders  ment power Weight ration  Year Origin MPG
Ford Galaxie 8 429 198 4,341 10 1970 1 15
500
Chevrolet 8 454 220 4,354 9 1970 1 14
Impala
Plymouth 8 440 215 4,312 8.5 1970 1 14
Fury III
Pontiac 8 455 225 4,425 10 1970 1 14
Catalina
Ford F250 8 360 215 4,615 14 1970 1 10
Chevy C20 8 307 200 4,376 15 1970 1 10
Dodge D200 8 318 210 4,382 135 1970 1 11
Hi 1200d 8 304 193 4,732 18.5 1970 1 9
Pontiac 8 400 175 4,464 11.5 1971 1 14
Catalina
Brougham
Dodge 8 383 180 4,955 11.5 1971 1 12
Monaco

(SW)
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Figure 6.1. Highlighted observations where Horsepower > 160 and Weight > 4000

A sample extracted from the 97 observations returned is shown in Table 6.2.
The relationship of the 97 observations to car fuel efficiency can be seen in
Figure 6.2, with the 97 observations highlighted. Cars containing the combinations
of values in the query (i.e. light vehicles with low horsepower) seem to be associated
with good fuel efficiency.

By grouping the data in different ways and looking to see how the groups influence
car fuel efficiency (MPG) we can start to uncover hidden relationships. In addition,
we could assess these claims using hypothesis tests described in Section 5.2.3.
Unfortunately, an exhaustive exercise of this nature would not be feasible. Fortunately,
many computational methods will group observations efficiently by values or ranges
without resorting to an exhaustive search for all combinations of values.

6.1.3 Similarity Measures

Any method of grouping needs to have an understanding for how similar observa-
tions are to each other. One method, as described in the previous section, is to define
groups sharing the same values or ranges of values. An alternative method is to

100 1
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h
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"

5 10 15 20 25 30 35 40 45 50
MPG

Figure 6.2. Highlighted observations where Horsepower < 80 and Weight < 2500
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Table 6.2. Table of cars where Horsepower < 80 and Weight < 2500

Displace Horse- Accele- Model/
Names Cylinders ment power Weight ration Year Origin MPG
Volkswagen
1131
Deluxe Sedan 4 97 46 1,835 20.5 1970 2 26
Chevrolet 4 140 72 2,408 19 1971 1 22
Vega (SW)
Peugeot 304 4 79 70 2,074 19.5 1971 2 30
Fiat 124B 4 88 76 2,065 14.5 1971 2 30
Toyota 4 71 65 1,773 19 1971 3 31
Corolla 1200
Datsun 1200 4 72 69 1,613 18 1971 3 35
Volkswagen 4 97 60 1,834 19 1971 2 27
model 111
Plymouth 4 91 70 1,955 20.5 1971 1 26
Cricket
Volkswagen 4 97 54 2,254 23.5 1972 2 23
type 3
Renault 12 4 96 69 2,189 18 1972 2 26
(SW)

determine whether observations are more generally similar. To determine how
similar two observations are to each other we need to compute the distance between
them. To illustrate the concept of distance we will use a simple example with two
observations and two variables (Table 6.3). The physical distance between the two
observations can be seen by plotting them on a scatterplot (Figure 6.3). In this
example, the distance between the two observations is calculated using simple
trigonometry:

x=7-2=5

y=8-3=5

d=\/x>+y2=+25+25=1.07

We can extend this concept of distance between observations with more than two
variables. This calculation is called the Euclidean distance (d) and the formula is shown:

d:\/i(lvi—%’)z

Table 6.3. Table showing two observations (A and B)

Variable 1 Variable 2

A 2 3
B 7 8
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Figure 6.3. Distance between two observations (A and B)

It calculates the distance between two observations p and g, where each observation
has n variables. To illustrate the Euclidean distance calculation for observations with
more than two variables, we will use Table 6.4.

The Euclidean distance between A and B is

dy_p = \/(0.7 —0.6)> + (0.8 — 0.8)* + (0.4 — 0.5)* 4+ (0.5 — 0.4)* + (0.2 — 0.2)*
dy_p =0.17

The Euclidean distance between A and C is

dy_c = \/(0.7 —0.8)% + (0.8 — 0.9)% + (0.4 — 0.7)* + (0.5 — 0.8)* + (0.2 — 0.9)*
dy_c =0.83

The Euclidean distance between B and C is

dp_c = \/(0.6 —0.8)> + (0.8 —0.9)* + (0.5 — 0.7)> + (0.4 — 0.8)* + (0.2 — 0.9)*
dg_c = 0.86
The distance between A and B is 0.17, indicating that there is more similarity

between these observations than A and C (0.83). C is not so closely related to either
A or B. This can be seen in Figure 6.4 where the values for each variable are plotted.

Table 6.4. Three observations with values for five variables

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
A 0.7 0.8 0.4 0.5 0.2
B 0.6 0.8 0.5 0.4 0.2

C 0.8 0.9 0.7 0.8 0.9
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Figure 6.4. Distances between observations with five variables

The shape of histograms A and B are similar, whereas the shape of histogram C is
not similar to A or B.

The Euclidean distance handles continuous variables. Another method that
handles only binary variables is the Jaccard distance. The contingency table shown
in Table 6.5 is used to calculate the Jaccard distance between two observations that
have been measured over a series of binary variables.

The table shows the following counts:

e County;: Count of all variables that are 1 in “Observation 1 and 1 in
“Observation 2.

e County: Count of all variables that are 1 in ‘“Observation 1 and O in
“Observation 2.

Table 6.5. Table showing the relationship between two
observations measured using a series of binary variables

Observation 2
1 0

Observation 1 1 County, Count;
0 County; Countygy
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Table 6.6. Table of observations with values for five binary variables

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
A 1 1 0 0 1
B 1 1 0 0 0
C 0 0 1 1 1

e County: Count of all variables that are 0 in “Observation 1 and 1 in
“Observation 2.

e Countyy: Count of all variables that are 0 in “Observation 1’ and O in
“Observation 2.

The following formula is used to calculate the Jaccard distance:

B Countyg + County,
~ Countyy + Countyo + Count,,

The Jaccard distance is illustrated using Table 6.6.
The Jaccard distance between A and B is:

dap=(140)/(2+1+0)=0.33
The Jaccard distance between A and C is:

da-c=(124+2)/(1+2+2)=0.8
The Jaccard distance between B and C is:

dg_c = (2+43)/(0+2+3) =10

The Euclidean and Jaccard distance measures are two examples for determining the
distance between observations. Other techniques include Mahalanobis, City Block,
Minkowski, Cosine, Spearman, Hamming and Chebuchev (see the further reading
section for references on these methods).

6.1.4 Grouping Approaches

There exist numerous automatic methods for grouping observations. These
techniques are commonly used in a variety of exploratory data analysis and data
mining situations. When selecting a grouping method, there are a number of issues
(in addition to defining how similar two or more observations are to each other) to
consider:

e Supervised versus unsupervised: One distinction between the different
methods is whether they use the response variable to guide how the groups
are generated. Methods that do not use any data to guide how the groups are
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generated are called unsupervised methods, whereas methods that make use
of the response variable to guide group generation are called supervised
methods. For example, a data set of cars could be grouped using an
unsupervised method. The groups generated would be based on general
classes of cars. Alternatively, we could group the cars using car fuel
efficiency to direct the grouping. This would generate groups directed
towards finding hidden relationships between groups of cars and car fuel
efficiency. Now, if we were to repeat the exercise using a different goal, for
example, car acceleration, the data would be grouped differently. In this
situation the groups are directed towards finding hidden relationships
associated with car acceleration.

e Type of variables: Certain grouping methods will only accept categorical
data, whereas others only accept continuous data. Other techniques handle
all types of data. Understanding these limitations will allow you to select the
appropriate method. Alternatively, you could decide to restrict the variables
used in the method or perform a transformation on the data.

e Data set size limit: There are methods that only work with data sets less than
a certain size. Others work best with data sets over a certain size. Under-
standing the limitations placed on the number of observations and/or number
of variables helps in the selection of particular methods. In situations where
the data set is too large to process, one solution would be to segment the data
prior to grouping.

e Interpretable and actionable: Certain grouping methods generate results
that are easy to interpret, whereas other methods require additional analysis
to interpret the results. How the grouping results will be used influences
which grouping methods should be selected.

e Overlapping groups: In certain grouping methods, observations can only
fall in one group. There are other grouping methods where the same
observation may be a member of multiple groups.

A related topic to grouping is the identification of outliers, that is, observations
that do not look like anything else. Single or small numbers of observations that fall
into groups on their own are considered outliers. A data set where most of the
observations fall into separate groups would be described as diverse. To create a
diverse subset, representative observations from each group may be selected. Other
methods for assessing outliers are discussed at the end of the chapter.

This chapter describes three popular methods for grouping data sets: clustering,
associative rules, and decision trees. They cover different criteria for generating
groups as well as supervised and unsupervised approaches. All approaches have
advantages and disadvantages, and all provide different insights into the data. It is
often informative to combine these grouping methods with other data analysis/data
mining techniques, such as hypothesis tests to evaluate any claims made concerning
the groups. The different methods have parameters that can be modified to optimize
the results and these are described.
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6.2 CLUSTERING
6.2.1 Overview

Clustering will group the data into sets of related observations or clusters.
Observations within each group are more similar to other observations within the
group than to observations within any other group. Clustering is an unsupervised
method for grouping. To illustrate the process of clustering, a set of observations are
shown on the scatterplot in Figure 6.5. These observations are plotted using two
hypothetical dimensions and the similarity between the observations is proportional
to the physical distance between the observations. There are two clear regions that
could be considered as clusters: Cluster A and Cluster B. Clustering is a flexible
approach to grouping. For example, based on the criteria for clustering the
observations, observation X was not judged to be a member of Cluster A. However,
if a different criterion was used, X may have been included in Cluster A. Clustering
not only assists in identifying groups of related observations, it also locates
observations that are not similar to others, that is outliers, since they fall into groups
of their own.
Clustering has the following advantages:

e Flexible: There are many ways of adjusting how clustering is implemented,
including options for determining the similarity between two observations
and options for selecting the size of the clusters.

e Hierarchical and nonhierarchical approaches: Certain clustering techni-
ques organize the data sets hierarchically, which may provide additional
insight into the problem under investigation. For example, when clustering a
genomic data set, hierarchical clustering may provide insight into evolu-
tionary processes that have taken place since genes mutate over time. Other
methods only generate lists of clusters based on a pre-defined number.
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Figure 6.5. Tlustration of clusters and outliers
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Clustering has the following limitations:

e Subjective: Different problems will require different clustering options and
specifying these options requires repeatedly examining the results and
adjusting the clustering options accordingly.

o Interpretation: Observations are grouped together based on some measure
of similarity. Making sense of a particular cluster may require additional
analysis in order to take some action based on the results of a grouping.

e Speed: There are many techniques for clustering data and it can be time-
consuming to generate the clusters, especially for large data sets.

e Size limitations: Certain techniques for clustering have limitations on the
number of observations that they can process.

Two clustering techniques will be described: hierarchical agglomerative
clustering and k-means clustering. Additional clustering methods will be described
in the further readings section of this chapter.

6.2.2 Hierarchical Agglomerative Clustering

Overview

Hierarchical agglomerative clustering is an example of a hierarchical method for
grouping observations. It uses a “‘bottom-up” approach to clustering as it starts
with each observation as a member of a separate cluster and progressively
merges clusters together until all observations are a member of a final single
cluster. The major limitation of hierarchical agglomerative clustering is that it is
normally limited to small data sets (often less than 10,000 observations) and the
speed to generate the hierarchical tree can be slow for higher numbers of
observations.

To illustrate the process of hierarchical agglomerative clustering, we will use
the data set shown in Table 6.7 containing 14 observations, each measured over five
variables. In this case the variables are all measured on the same scale; however,
where variables are measured on different scales they should be normalized to a
comparable range (e.g. O to 1). This is to avoid any one or more variables having a
disproportionate weight and creating a bias in the analysis.

First, the distance between all combinations of observations is calculated. The
method for assessing the distance along with which variables to include in the
calculation should be set prior to clustering. The two closest observations are
identified and are merged into a single cluster. These two observations from now on
will be considered a single group. Next, all observations (minus the two that have
been merged into a cluster) along with the newly created cluster are compared to
see which observation or cluster should be joined into the next cluster. We are
now analyzing both individual observations and clusters. The distance between a
single observation and a cluster is determined based on a pre-defined linkage rule.
The different types of linkage rules will be described in the next section. All
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Table 6.7. Table of observations to cluster
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distances between all combinations of groups and observations are considered and
the smallest distance is selected. The process continues until there are no more
clusters to join.

Figure 6.6 illustrates the process. In step 1, it is determined that observations M
and N are the closest and they are linked into a cluster, as shown. The horizontal
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Figure 6.6. Joining process used to generate clusters
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Figure 6.7. Complete hierarchical clustering of 14 observations

length of the lines joining M and N reflects the distance at which the cluster was
formed. From now on M and N will not be considered individually, but only as a
cluster. In step 2, distances between all observations (except M and N), as well as the
cluster containing M and N, are calculated. To determine the distance between
the individual observations and the cluster containing M and N, the average linkage
rule was used (described in the next section). It is now determined that A and B
should be joined as shown. Once again, all distances between the remaining
ungrouped observations and the newly created clusters are calculated, and the
smallest distance selected. In step 4, the shortest distance is between observation I
and the cluster containing M and N. This process continues until only one cluster
remains which contains all the observations. Figure 6.7 shows the complete
hierarchical clustering for all 14 observations.

Linkage Rules

A linkage rule is used to determine a distance between an observation (or a group)
and an already identified group. In Figure 6.8, two clusters have already been
identified: Cluster A and Cluster B. We now wish to determine whether observation
X is a member of cluster A.

There are many ways for determining the distance between an observation and
an already established cluster and include average linkage, single linkage, and
complete linkage. These alternatives are illustrated in Figure 6.9.
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Figure 6.8. Determining whether an observation X belongs to Cluster A

o Average linkage: the distance between all members of the cluster (e.g. a, b,
and c) and the observation under consideration (e.g. X) are determined and
the average is calculated.

e Single linkage: the distance between all members of the cluster (e.g. a, b,
and c) and the observation under consideration (e.g. X) are determined and
the smallest is selected.

e Complete linkage: the distance between all members of the cluster (e.g. a, b,
and c) and the observation under consideration (e.g. X) are determined and
the highest is selected.

These different linkage rules change how the final hierarchical clustering is
presented. Figure 6.10 shows the hierarchical clustering of the same set of
observations using the average linkage, single linkage, and complete linkage rules.

Creating Clusters

Up to this point, a tree has been generated showing the similarity between
observations and clusters. To divide a data set into a series of clusters from this tree,
we must determine a distance at which the clusters are to be created. Where this
distance intersects with a line on the tree, a cluster is formed. Figure 6.11 illustrates
this point. A distance is selected, as shown by the vertical line. Where this vertical

Average Single Complete

Figure 6.9. Different linkage rules
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Figure 6.10. Clustering using different linkage rules

line intersects with the tree (shown by the circles), four clusters are selected.
Cluster 1 contains a single observation (L) and at this distance, it would be
considered an outlier. Cluster 2 (G, C, D) and Cluster 3 (H, A, B) each contain three
observations and the largest group is Cluster 4 (K, I, M, N, J, E, F) with seven
observations. Observations will only be present in a single cluster.

L1 Cluster 1: {L}

C 3 Cluster 2: {G,C,D}

Cluster 3: {H,A,B}

+
ninlr

N 7 Cluster 4: {K,LM,N,J,E,F}

Distance

Figure 6.11. Generating four clusters by specifying a distance
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Figure 6.12. Adjusting the distance to generate different numbers of clusters

Adjusting the cut-off distance will change the number of clusters created. Figure
6.12 shows the selection of a single cluster when the distance cutoff is at the left.
When the distance cutoff is placed to the far right, each observation will be in its own
cluster. A cutoff placed between these two extremes will result in groups of various
sizes. Cutoffs towards the left will result in fewer clusters with more diverse
observations within each cluster. Cutoffs towards the right will result in more
clusters with more similar observations within each cluster.

Example

The following example uses a data set of 392 cars that will be explored using
hierarchical agglomerative clustering. A portion of the data table is shown in Table 6.8.

Table 6.8. Table of car observations

Displace- Horse Accele- Model/

Names Cylinders ment power Weight ration Year Origin MPG

Chevrolet 8 307 130 3,504 12 1970 1 18
Chevelle
Malibu

Buick Skylark 8 350 165 3,693 11.5 1970 1 15
320

Plymouth 8 318 150 3,436 11 1970 1 18
Satellite

Amc Rebel 8 304 150 3,433 12 1970 1 16
SST

Ford Torino 8 302 140 3,449 105 1970 1 17

Ford Galaxie 8 429 198 4,341 10 1970 1 15
500

Chevrolet 8 454 220 4,354 9 1970 1 14
Impala

Plymouth 8 440 215 4,312 85 1970 1 14

Fury 1II
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Figure 6.13. Complete hierarchical clustering of 392 cars

The data set was clustered using the Euclidean distance and the average linkage
joining rule. The following variables were used in the clustering: Cylinders,
Displacement, Horsepower, Weight, Acceleration, Model Year and Origin.
MPG (miles per gallon) was not used in the clustering but will be considered later.
Figure 6.13 shows the hierarchical tree generated.

The process of generating the tree is typically the most time consuming part of
the process. Once the tree has been generated, it is usually possible to interactively
explore the clusters. For example, in Figure 6.14 a distance cutoff has been set; such
that, the data is divided into three clusters.

e Cluster 1: A cluster containing 103 observations is selected and shown in
Figure 6.15. In addition to showing the tree, a table of charts illustrates the
composition of the cluster. The highlighted histogram region corresponds to
the distribution of Cluster 1 observations. The darker MPG box plot
corresponds to the 103 selected observations with the lower and lighter
box plot corresponding to all the observations. The cluster comprises of
vehicles with eight cylinders, high displacement, horsepower, and weight,
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103 Cluster 1: 103 observations

142 Cluster 2: 142 observations

147 Cluster 3: 147 observations

Figure 6.14. Generating three clusters by setting the distance

but with low acceleration. The majority was made in the 1970s and all were
made in the US (origin 1 is the US). MPG was not used in the clustering
process; however, it can be seen from the histogram and box plot that these
vehicles have some of the lowest fuel efficiency.

o Cluster 2: A cluster of 142 observations is shown in Figure 6.16. The group
comprises of vehicles with four or six cylinders, moderate-to-low displace-
ment and horsepower with low weight and acceleration. They were all
made in the US (origin 1 is the US) throughout the 1970s and 1980s. It can
be seen that the fuel efficiency is similar to the average fuel efficiency for all
cars.

e Cluster 3: A cluster of 147 observations is shown in Figure 6.17. The group
is primarily made of vehicles with four cylinders, with low displacement,
horsepower, weight, and average acceleration. They were all made outside
the US (origin 2 is Europe and origin 3 is Japan) throughout the 1970s and
1980s. It can be seen that the fuel efficiency is higher for these vehicles than
the average fuel efficiency for all cars reported.

To explore the data set further, we can adjust the distance cutoff to generate
different numbers of clusters. In this case, the distance was set to create 16 clusters,
as shown in Figure 6.18.
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Cluster 1: 103 observations
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Figure 6.15. Summary of content of Cluster 1

o Cluster 4: This set of 56 observations is a subset of Cluster 1 and shown in
Figure 6.19. This is a set of cars with high displacement, horsepower, and
weight as well as some of the lowest acceleration values. They were all
made prior to 1976 in the US (origin 1). The fuel efficiency (MPG) of these
cars is among the lowest in the data set. The range of fuel efficiency for these
vehicles is 9-20 with an average of 15.34.

e Cluster 5: This set of 40 observations is a subset of Cluster 3 and shown in
Figure 6.20. This is a set of cars with three and four cylinders with low
displacement, horsepower, and weight and with acceleration values
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Cluster 2: 142 observations
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Figure 6.16. Summary of content of Cluster 2

similar to the average of the set. They were made in the late 1970s and early
1980s in Japan (origin 3). The range of fuel efficiency for these vehicles is
25.8-40.8 with an average of 32.46. These cars have good fuel efficiency,
compared to the others in the data set.

6.2.3 K-means Clustering

Overview

K-means clustering is an example of a nonhierarchical method for grouping a data
set. It groups data using a “top-down’ approach since it starts with a predefined
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Cluster 3: 147 observations
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number of clusters and assigns observations to them. There are no overlaps in
the groups, that is, all observations are assigned to a single group. This approach
is computationally faster and can handle greater numbers of observations
than agglomerative hierarchical clustering. However, there are a number of
disadvantages:

o Predefined number of clusters: You must define the number of groups
before creating the clusters.

e Distorted by outliers: When a data set contains many outliers, k-means
clustering may not create an optimal grouping. This is because the outliers
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Figure 6.18. Adjusting the distance to generate 16 clusters

will be assigned to many of the allocated groups. The remaining data will
then be divided across a smaller number of groups, compromising the quality
of the clustering for these remaining observations.

e No hierarchical organization: No hierarchical organization is generated
using k-means clustering.

Grouping Process

The process of generating clusters starts by defining the number of groups to create
(k). The method then allocates an observation to each of these groups, usually
randomly. Next, all other observations are compared to each of these allocated
observations and placed in the group they are most similar to. The center point for
each of these groups is then calculated. The grouping process continues by
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Cluster 4: 56 observations
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Figure 6.19. Summary of content of Cluster 4

determining the distance from all observations to these new group centers. If an
observation is closer to the center of another group, it is moved to the group it is
closest to. The centers of its old and new groups are now recalculated. The process of
comparing and moving observations where appropriate is repeated until there is no
further need to move any observations.

To illustrate the process of clustering using k-means, a set of 11 hypothetical
observations are used: a, b, c, d, e, f, g, h, i, j. These observations are shown as
colored circles in Figure 6.21. It had been determined from the start that three groups
should be generated. Initially, an observation is randomly assigned to each of the
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Cluster 5: 40 observations
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Figure 6.20. Summary of content of Cluster 5

three clusters as shown in step 1: c¢ to Cluster 1, f to Cluster 2 and k to Cluster 3.
Next, all remaining observations are assigned to the cluster, which they are closest
to. For example, observation a is assigned to Cluster 1 since it is closer to c than f or
k. Once all observations have been assigned to an initial cluster, the center of each
cluster (calculation described below) is determined. Next, distances from each
observation to the center of each cluster are calculated. It is determined in step 3 that
observation f is closer to the center of cluster 1 than the other two clusters. Now f is
moved to Cluster 1 and the centers for Cluster 1 and Cluster 2 are recalculated. This
process continues until no more observations are moved between clusters, as shown
in step n on the diagram.
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Figure 6.21. K-means clustering process

Calculating the Center of the Group

The following example will illustrate the process of calculating the center of a
cluster. Table 6.9 will be grouped into three clusters using the Euclidean distance to
determine similarity between observations. A single observation is randomly

Table 6.9. Table of observations to illustrate k-means clustering

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
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Cluster 1 Cluster 2 Cluster 3

Step 1 D K M

Figure 6.22. Initial random assignment of three clusters

assigned to the three clusters as shown in Figure 6.22. All other observations are
compared to the three clusters by calculating the Euclidean distance between the
observations and D, K, and M. Table 6.10 shows the Euclidean distance to D, K, and
M from every other observation, along with the cluster it is initially assigned to. The
observations are now assigned to one of the three clusters (Figure 6.23).

Next, the center of each cluster is now calculated by taking the average value for
each variable in the group as shown in Table 6.11. For example, the center of Cluster
1 is now:

{Variable 1 = 6.2; Variable 2 = 7.6; Variable 3 = 6.8; Variable 4 = 6.8;
Variable 5 = 7.4}

Each observation is now compared to the centers of each cluster. For example, A
is compared to the center of Cluster 1, Cluster 2, and Cluster 3 using the Euclidean
distance. We have the following Euclidean distance:

From A to the center of cluster 1: 6.4

From A to the center of cluster 2: 7.9

From A to the center of cluster 3: 3.9

Since A is still closest to Cluster 3 it remains in Cluster 3. If an observation is
moved, then the centers for the two clusters affected are recalculated. The process of

Table 6.10. Observation distance to each cluster and cluster assignment

Cluster 1 Cluster 2 Cluster 3 Cluster
Name distance distance distance assigned
A 7.1 9 52 3
B 7.1 8.5 49 3
C 32 9.4 9.5 1
E 9.3 42 49 2
F 6.9 3.6 39 2
G 2.8 7.6 7.1 1
H 4.7 8.8 7.1 1
I 6.8 2.8 32 2
J 10.2 5.8 42 3
L 4.8 4.8 6.7 1
N 6.6 5.2 1 3
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examining the observations and moving them as appropriate is repeated until no

further moves are needed.

Example

A data set of 392 cars is grouped using k-means clustering. This is the same data set
used in the agglomerative hierarchical clustering example. The Euclidean distance

Table 6.11. Calculation of cluster center
Cluster 1
Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
C 8 9 7 8 9
D 6 7 7 7 8
G 7 8 8 6 6
H 8 9 6 5 5
L 2 5 6 8 9
Center 6.2 7.6 6.8 6.8 7.4
(average)
Cluster 2
Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
E 1 2 5 3 4
F 3 4 5 3 5
1 2 3 5 6 5
K 3 2 6 5 7
Center 2.25 2.75 5.25 4.25 5.25
(average)
Cluster 3
Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
A 7 8 4 5 2
B 6 8 5 4 2
J 1 2 4 4 2
M 3 5 4 6 3
N 3 5 5 6 3
Center 4 5.6 4.4 5 2.4

(average)
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was used and the number of clusters was set to 16. The same set of descriptors
was used as the agglomerative hierarchical clustering example. The results are
not identical; however, they produce similar clusters of observations. For
example, the cluster shown in Figure 6.24 containing 35 observations is a set of
similar observations to cluster 4 in the agglomerative hierarchical clustering
example.

The cluster of 46 observations shown in Figure 6.25 represents a cluster with
similar characteristics to Cluster 5 in the agglomerative hierarchical clustering
example.

Cluster 1 (11 observations)
Cluster 2 (28 observations)
Cluster 3 (14 observations)
Cluster 4 (43 observations)
Cluster 5 (30 observations)
Cluster 6 (6 observations)
Cluster 7 (27 observations)
Cluster 8 (35 observations)
Cluster 9 (27 observations)
Cluster 10 (26 observations)
Cluster 11 (6 observations)
Cluster 12 (35 observations)
Cluster 13 (46 observations)
Cluster 14 (18 observations)
Cluster 15 (31 observations)
Cluster 16 (9 observations)
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Figure 6.24. Summary of contents of Cluster 12
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6.3 ASSOCIATIVE RULES

6.3.1 Overview
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The associative rules method is an example of an unsupervised grouping method,
that is, the goal is not used to direct how the grouping is generated. This method
groups observations and attempts to understand links or associations between
different attributes of the group. Associative rules have been applied in many
situations, such as data mining retail transactions. This method generates rules from

the groups, as the following example:
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IF the customer’s age is 18 AND
the customer buys paper AND

the customer buys a hole punch
THEN the customer buys a binder

The rule states that 18-year-old customers who purchase paper and a hole punch
will often buy a binder at the same time. This rule would have been generated
directly from a data set. Using this information the retailer may decide, for example,
to create a package of products for college students.

Associative rules have a number of advantages:

e Easy to interpret: The results are presented in the form of a rule that is
easily understood.

e Actionable: It is possible to perform some sort of action based on the rule.
For example, the rule in the previous example allowed the retailer to market
this combination of items differently.

e Large data sets: It is possible to use this technique with large numbers of
observations.

There are three primary limitations to this method:

e Only categorical variables: The method forces you to either restrict your
analysis to variables that are categorical or to convert continuous variable to
categorical variables.

e Time-consuming: Generating the rules can be time-consuming for the
computer; especially where a data set has many variables and/or many
possible values per variable. There are ways to make the analysis run faster
but they often compromise the final results.

e Rule prioritization: The method can generate many rules that must be
prioritized and interpreted.

In this method, creating useful rules from the data is done by grouping the data,
extracting rules from the groups, and then prioritizing the rules. The following
sections describe the process of generating associative rules.

6.3.2 Grouping by Value Combinations

Let us first consider a simple situation concerning a shop that only sells cameras
and televisions. A data set of 31,612 sales transactions is used, which contains
three variables: Customer ID, Gender and Purchase. The variable Gender
identifies whether the buyer is male or female. The variable Purchase refers to
the item purchased and can only have two values, camera and television.
Table 6.12 shows three rows from this table. By grouping this set of 31,612
observations, based on specific values for the variables Gender and Purchase, the
groups in Table 6.13 are generated. There are eight ways of grouping this trivial
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Table 6.12. Table of three example observations with
three variables

Customer ID Gender Purchase
932085 Male Television
596720 Female Camera
267375 Female Television

example based on the values for the different categories. For example, there are
7,889 observations where Gender is male and Purchase is camera.

If an additional variable is added to this data set, the number of possible groups
will increase. For example, if another variable Income which has two values, above
$50K and below $50K, is added to the table (Table 6.14), the number of groups
would increase to 26 as shown in Table 6.15.

Increasing the number of variables and/or the number of possible values for
each variable increases the number of groups. The number of groups may become so
large that it would be impossible to generate all combinations. However, most data
sets contain many possible combinations of values with zero or only a handful of
observations. Techniques for generating the groups can take advantage of this fact.
By increasing the minimum size of a group, fewer groups are generated and the
analysis is completed faster. However, care should be taken in setting this cutoff value
since no rules will be generated from any groups where the number of observations is
below this cutoff. For example, if this number is set to ten, then no rules will be
generated from groups containing less than ten examples. Subject matter knowledge
and information generated from the data characterization phase will help in setting this
value. Itis a trade-off between how fast you wish the rule generation to take versus how
subtle the rules need to be (i.e. rules based on a few observations).

6.3.3 Extracting Rules from Groups

Overview

So far a data set has been grouped according to specific values for each of the
variables. In Figure 6.26, 26 observations (A to Z) are characterized by three

Table 6.13. Grouping by different value combinations

Group Number Count Gender Purchase
Group 1 16,099 Male -

Group 2 15,513 Female -

Group 3 16,106 - Camera
Group 4 15,506 - Television
Group 5 7,889 Male Camera
Group 6 8,210 Male Television
Group 7 8,217 Female Camera

Group 8 7,296 Female Television
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Table 6.14. Table of three observations with four variables

Customer ID Gender Purchase Income

932085 Male Television Below $50K
596720 Female Camera Above $50K
267375 Female Television Below $50K

variables, Shape, Color, and Border. Observation A has Shape = square,
Color = white, and Border =thick and observation W has Shape = circle,
Color = gray, and Border = thin.

As described in the previous section, the observations are grouped. An example
grouping is shown below where:

Shape = circle,

Color = gray

Border = thick

Table 6.15. Table showing groups by different value combinations

Group Number Count Gender Purchase Income
Group 1 16,099 Male - -

Group 2 15,513 Female - -

Group 3 16,106 - Camera -

Group 4 15,506 - Television -

Group 5 15,854 - - Below $50K
Group 6 15,758 - - Above $50K
Group 7 7,889 Male Camera -

Group 8 8,210 Male Television -

Group 9 8,549 Male - Below $50K
Group 10 7,550 Male - Above $50K
Group 11 8,217 Female Camera -

Group 12 7,296 Female Television -

Group 13 7,305 Female - Below $50K
Group 14 8,208 Female - Above $50K
Group 15 8,534 - Camera Below $50K
Group 16 7,572 - Camera Above $50K
Group 17 7,320 - Television Below $50K
Group 18 8,186 - Television Above $50K
Group 19 4,371 Male Camera Below $50K
Group 20 3,518 Male Camera Above $50K
Group 21 4,178 Male Television Below $50K
Group 22 4,032 Male Television Above $50K
Group 23 4,163 Female Camera Below $50K
Group 24 4,054 Female Camera Above $50K
Group 25 3,142 Female Television Below $50K

Group 26 4,154 Female Television Above $50K
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Observation W:
Gray circle with thin border.

Observation A:
White square with thick border.

Figure 6.26. Twenty-six observations characterized by shape, color, and border

This group is shown in Figure 6.27.

The next step is to extract a rule from the group. There are three possible rules
that could be pulled out from this group:

Rule 1:

IF Color = gray AND

Shape = circle

THEN Border = thick

Rule 2:

IF Border = thick AND
Color = gray

THEN Shape = circle

Group of six observations:
Gray circles with thick
borders.

Figure 6.27. Group of six observations (gray circles with thick borders)
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Rule 3:

IF Border = thick AND
Shape = circle

THEN Color = gray

We now compare each rule to the whole data set in order to prioritize the rules
and three values are calculated: support, confidence and lift.

Support

The support value is another way of describing the number of observations that the
rule (created from the group) maps onto, that is, the size of the group. The support is
often defined as a proportion or percentage. In this example, the data set has 26
observations and the group of gray circles with a thick border is six, then the group
has a support value of six out of 26 or 0.23 (23%).

Confidence

Each rule is divided into two parts. The IF-part or antecedent refers to the list of
statements linked with AND in the first part of the rule. For example,

IF Color = gray AND
Shape = circle
THEN Border = thick

The IF-part is the list of statements Color = gray AND Shape = circle. The
THEN-part of the rule or consequence refers to any statements after the THEN
(Border = thick in this example).

The confidence score is a measure for how predictable a rule is. The confidence
(or predictability) value is calculated using the support for the entire group divided
by the support for all observations satisfied by the IF-part of the rule:

Confidence = group support/IF-part support
For example, the confidence value for Rule 1

Rule 1:

IF Color = gray AND
Shape = circle

THEN Border = thick

is calculated using the support value for the group and the support value for the
IF-part of the rule (see Figure 6.28).

The support value for the group (gray circles with a thick border) is 0.23 and the
support value for the IF-part of the rule (gray circles) is seven out of 26 or 0.27. To
calculate the confidence, divide the support for the group by the support for the IF-part:
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Observations in the
IF-part of the rule:
Gray circles

Figure 6.28. Seven observations for gray circles

Confidence = 0.23/0.27 = 0.85

Confidence values range from no confidence (0) to high confidence (1). Since a value
of 0.85 is close to 1, we have a high degree of confidence in this rule. Most likely,
gray circles will have thick border.

Lift

The confidence value does not indicate the strength of the association between gray
circles (IF-part) and thick borders (THEN-part). The lift score takes this into
account. The lift is often described as the importance of the rule. It describes the
association between the IF-part of the rule and the THEN-part of the rule. It is

calculated by dividing the confidence value by the support value across all
observation of the THEN-part:

Lift = confidence/ THEN-part support
For example, the lift for Rule 1

Rule 1:

IF Color = gray AND

Shape = circle

THEN Border = thick

is calculated using the confidence and the support for the THEN-part of the

rule (see Figure 6.29). The confidence for rule 1 is calculated as 0.85 and the support
for the THEN-part of the rule (thick borders) is 13 out of 26 or 0.5. To calculate the
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Observations in the
THEN-part of the rule:
Shapes with thick borders

Figure 6.29. Thirteen observations for thick border objects

lift value, the confidence is divided by the support value for the THEN-part of the
rule:

Lift =0.85/0.5 = 1.7

Lift values greater than 1 indicate a positive association and lift values less than 1
indicate a negative association.

Figure 6.30 is used to determine the confidence and support for all three
potential rules.

The following shows the calculations for support, confidence and lift for the
three rules:

Rule 1:

Support = 6/26 = 0.23
Confidence = 0.23/(7/26) = 0.85
Lift =0.85/(13/26) = 1.7

Rule 2:

Support = 6/26 = 0.23
Confidence = 0.23/(6/26) = 1
Lift=1/(9/26)=2.9

Rule 3:

Support = 6/26 = 0.23
Confidence = 0.23/(7/26) = 0.85
Lift=0.85/(10/26)=2.2
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Rule 1: Rule 2: Rule 3:

IF Color = gray AND IF Border = thick AND IF Border = thick AND
Shape = circle Color = gray Shape = circle

THEN Border = thick THEN Shape = circle THEN Color = gray

Figure 6.30. Separating objects for each rule calculation

The values are summarized in Table 6.16.

Rule 2 would be considered the most interesting because of the confidence score
of 1 and the high positive lift score indicating that shapes that are gray with a thick
border are likely to be circles.

6.3.4 Example

In this example, we will compare two rules generated from the Adult data available
from Newman (1998). This is a set of income data with the following variables along
with all possible values shown in parenthesis:

e Class of work (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-
gov, State-gov, Without-pay, Never-worked)

Table 6.16. Summary of support, confidence, and lift for
the three rules

Rule 1 Rule 2 Rule 3
Support 0.23 0.23 0.23
Confidence 0.85 1.0 0.85

Lift 1.7 29 2.2
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e Education (Bachelors, Some-college, llth, HS-grad, Prof-school, Assoc-
acdm, Assoc-voc, 9", 778t 12% Masters, 14", 10", Doctorate, 5"—6",
Preschool)

e Income (> 50K, < 50K)

There are 32,561 observations and using the associative rule method, many rules
were identified. For example,

Rule 1

IF Class of work is Private and
Education is Doctorate
THEN Income is < 50K

Rule 2

IF Class of work is Private and
Education is Doctorate
THEN Income is > 50K

Here is a summary of the counts:

Class of work is private: 22,696 observations.

Education is Doctorate: 413 observations.

Class of work is private and Education is Doctorate: 181 observations.
Income is less than or equal to 50K: 24,720 observations.

Income is greater than 50K: 7,841 observations.

Table 6.17 shows the information calculated for the rules. Of the 181
observations where Class of work is private and Education is Doctorate, 132 (73%)
of those observations also had Income greater than 50K. This is reflected in the
much higher confidence score for rule 2 (0.73) compared to rule 1 (0.27). Over the
entire data set of 32,561 observations there are about three times the number of
observations where income is less than or equal to 50K as compared to observations
where the income is greater than 50K. The lift term takes into consideration the
relative frequency of the THEN-part of the rule. Hence, the lift value for rule 2 is
considerably higher (3.03) than the lift value for rule 1. Rule 2 has both a good
confidence and lift value, making it an interesting rule. Rule 1 has both a poor
confidence and lift value. The following examples illustrate some other rules
generated:

Table 6.17. Summary of scores for two rules

Rule 1 Rule 2
Count 49 132
Support 0.0015 0.0041
Confidence 0.27 0.73

Lift 0.36 3.03
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Rule 3

IF Class of work is State-gov and

Education is 9th

THEN Income is < 50K

(Count: 6; Support: 0.00018; Confidence: 1; Lift: 1.32)

Rule 4

IF Class of work is Self-emp-inc and

Education is Prof-school

THEN Income is >50 K

(Count: 78; Support: 0.0024 Confidence: 0.96; Lift: 4)

Rule 5

IF Class of work is Local-gov and

Education is 12"

THEN Income is <50 K

(Count: 17; Support: 0.00052; Confidence: 0.89; Lift: 1.18)

6.4 DECISION TREES
6.4.1 Overview

It is often necessary to ask a series of questions before coming to a decision. The
answers to one question may lead to another question or may lead to a decision being
reached. For example, you may visit a doctor and your doctor may ask you to
describe your symptoms. You respond by saying you have a stuffy nose. In trying to
diagnose your condition the doctor may ask you further questions such as whether
you are suffering from extreme exhaustion. Answering yes would suggest you have
the flu, whereas answering no would suggest you have a cold. This line of
questioning is common to many decision making processes and can be shown
visually as a decision tree, as shown in Figure 6.31.

Decision trees are often generated by hand to precisely and consistently define a
decision making process. However, they can also be generated automatically from the
data. They consist of a series of decision points based on certain variables. Figure 6.32

Stuffy nose?
>N
Extreme exhaustion?
>N
Diagnosis -Flu Diagnosis - Cold

Figure 6.31. Decision tree for the diagnosis of colds and flu
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Size =392
Av.=2345

Cylinders <5 Cylinders > 5

Size =203
Av.=29.11

Size = 189
Av.=17.36

Cylinders <7 Cylinders > 7

Size = 86 Size =103
Av.=20.23 Av.=14.96

Figure 6.32. Decision tree generated from a data set of cars

illustrates a simple decision tree. This decision tree was generated based on a data set
of cars which included a variable number of cylinders (Cylinders) along with the
car fuel efficiency (MPG). The decision tree attempts to group cars based on the
number of cylinders (Cylinders) in order to classify the observations according to
their fuel efficiency. At the top of the tree is a node representing the entire data set of
392 observations (Size = 392). The data set is initially divided into two subsets, on
the left of the Figure is a set of 203 cars (i.e. Size =203) where the number of
cylinders is less than five. How this division was determined will be described later
in this section. Cars with less than five cylinders are grouped together as they
generally have good fuel efficiency with an average MPG value of 29.11. The
remaining 189 cars are further grouped into a set of 86 cars where the number of
cylinders is less than seven. This set does not include any cars with less than five
cylinders since they were separated earlier. These cars are grouped as they generally
have reasonable fuel efficiency with an average MPG value of 20.23. The remaining
group is a set of cars where the number of cylinders is greater than seven and these
have poor fuel efficiency with an average MPG value of 14.96.

In contrast with clustering or association rules, decision trees are an example of
a supervised method. In this example, the data set was classified into groups using
the variable MPG to guide how the tree was constructed. Figure 6.33 illustrates how
the tree was put together, guided by the data. A histogram of the MPG response data
is shown alongside the nodes used to classify the vehicles. The overall shape of the
histogram displays the frequency distribution for the MPG variable. The highlighted
frequency distribution is the subset within the node. The frequency distribution for
the node containing 203 observations shows a set biased toward good fuel efficiency,
whereas the 103 observations highlighted illustrate a set biased towards poor fuel
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Size =392
Av.=2345

Cylinders <5 Cylinders > 5

Size =203
Av.=29.11

Size = 189
Av.=17.36

Frequency
o

5 10 15 20 25 30 35 40 45 50

MPG Cylinders <7 Cylinders > 7

Size = 86 Size = 103
Av.=20.23 Av.=14.96

0 =l
5 10 15 20 25 30 35 40 45 50

=
5
Frequency

]
S 10 15 20 25 30 35 40 a5 &
MPG

Figure 6.33. Decision tree illustrating the use of a response variable (MPG) to guide tree generation

efficiency. The MPG variable has not been used in any of the decision points, only
the number of cylinders. This is a trivial example, but it shows how a data set can be
divided into regions using decision trees.

There are many reasons to use decision trees:

e Easy to understand: Decision trees are widely used to explain how
decisions are reached based on multiple criteria.

e Categorical and continuous variables: Decision trees can be generated
using either categorical data or continuous data.

e Complex relationships: A decision tree can partition a data set into distinct
regions based on ranges or specific values.

The disadvantages of decision trees are:

o Computationally expensive: Building decision trees can be computation-
ally expensive, particularly when analyzing a large data set with many
continuous variables.

o Difficult to optimize: Generating a useful decision tree automatically can be
challenging, since large and complex trees can be easily generated. Trees
that are too small may not capture enough information. Generating the ‘best’
tree through optimization is difficult. At the end of this chapter, a series of
references to methods of decision tree optimization can be found.
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Parent node

Size =392
Av.=23.45

Cylinders <5

Size =203

Child node Av. =29.11

Av.

Figure 6.34. Relationship between parent and child node

6.4.2 Tree Generation

Cylinders > 5

Size = 189

Child node
=17.36

A tree is made up of a series of decision points, where the entire set of observations
or a subset of the observations is split based on some criteria. Each point in the tree
represents a set of observations and is called a node. The relationship between two
nodes that are joined is defined as a parent-child relationship. The larger set which
will be divided into two or more smaller sets is called the parent node. The nodes
resulting from the division of the parent are called child nodes as shown in

Figure 6.34. A child node with no more children (no
node and shown in Figure 6.35.

Size =392
Av.=2345

Cylinders < 5

Size =203

further division) is called a leaf

Cylinders > 5

Size = 189

No further division: leaf Av.=29.11 Av. = 1736 Further divided
Cylinders < 7 Cylinders > 7
Size = 86 Size = 103
Av.=20.23 Av.=14.96

Figure 6.35. Leaf and nonleaf nodes
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<+— Splitting criteria C1

Figure 6.36. Splitting a set of observations into two groups

A table of data is used to generate a decision tree where certain variables are
assigned as descriptors and one variable is assigned to be the response. The
descriptors will be used to build the tree, that is, these variables will divide the data
set. The response will be used to guide which descriptors are selected and at what
value the split is made. A decision tree splits the data set into smaller and smaller
sets. The head (or top) of the tree is a node containing all observations. Based on
some criteria, the observations are split resulting in usually two new nodes, each
node representing a smaller set of observations, as shown in Figure 6.36. Node N1
represents all observations. By analyzing all descriptor variables and examining
many splitting points for each variable, an initial split is made based on some criteria
(C1). The data set represented at node N1 is now divided into a set N2 that meets
criteria C1 and a set N3 that does not satisfy the criteria.

The process of examining the variables to determine a criterion for splitting is
repeated for all subsequent nodes. However, a condition should be specified for
ending this repetitive process. For example, the process can stop when the size of the
subset is less than a predetermined value. In Figure 6.37, each of the two newly
created subset (N2 and N3) are examined in turn to determine if they should be
further split or if the splitting should stop.

In Figure 6.38, the subset at node N2 is examined to determine if the splitting
should stop. Here, the condition for stopping splitting is not met and hence the subset
is to be split further. Again, all the variables assigned as descriptors are considered
along with many alternatives values to split on. The best criterion is selected and the
data set is again divided into two sets, represented by N4 and N5. Set N4 represents a
set of observations that satisfy the splitting criteria (C2) and node N5 is the
remaining set of observations. Next, node N3 is examined and in this case, the
condition to stop splitting is met and the subset represented by node N3 is not
divided further.

Splitagain? ______ <«—— Split again?
Stop splitting? Stop splitting?

Figure 6.37. Evaluating whether to continue to grow the tree
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Splitting criteria C2 ———

Figure 6.38. Tree further divided

6.4.3 Splitting Criteria

Dividing Observations

It is common for the split at each level to be a two-way split. There are methods that
split more than two ways. However, care should be taken using these methods since
splitting the set in many ways early in the construction of the tree may result in
missing interesting relationships that become exposed as the tree growing process
continues. Figure 6.39 illustrates the two alternatives.

Any variable type can be split using a two-way split:

e Dichotomous: Variables with two values are the most straightforward to
split since each branch represents a specific value. For example, a variable
Temperature may have only two values, hot and cold. Observations will be
split based on those with hot and those with cold temperature values.

e Nominal: Since nominal values are discrete values with no order, a two-way
split is accomplished with one subset being comprised of a set of observa-
tions that equal a certain value and the other subset being those observations
that do not equal that value. For example, a variable Color that can take the
values red, green, blue, and black may be split two-ways. Observations, for

<D
<D COACPERCPERED

Two-way split Multi-way split

Figure 6.39. Alternative splitting of nodes
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example, which have Color equaling red generate one subset and those not
equaling red creating the other subset, that is, green, blue and black.

e Ordinal: In the case where a variable’s discrete values are ordered, the resulting
subsets may be made up of more than one value, as long as the ordering is
retained. For example, a variable Quality with possible values low, medium,
high, and excellent may be split in four possible ways. For example, observa-
tions equaling low or medium in one subset and observations equaling high and
excellent in another subset. Another example is where low values are in one set
and medium, high, and excellent values are in the other set.

e Continuous: For variables with continuous values to be split two-ways, a
specific cutoff value needs to be determined, where on one side of the split
are values less than the cutoff and on the other side of the split are values
greater than or equal to the cutoff. For example, a variable Weight which can
take any value between 0 and 1,000 with a selected cutoff of 200. The first
subset would be those observations where the Weight is below 200 and the
other subset would be those observations where the Weight is greater than or
equal to 200.

Figure 6.40 illustrates how the different variable types can be used as splitting
criteria in a two-way split.

A splitting criterion has two components: (1) the variable to split on and (2)
values of the variable to split on. To determine the best split, all possible splits of all
variables must be considered. Since it is necessary to rank the splits, a score should
be calculated for each split. There are many ways to rank the split. The following
describes two approaches for prioritizing splits, based on whether the response is
categorical or continuous.

Temperature is hot Temperature is cold Color is red Color is not red

Dichotomous Nominal

Quality is low
or medium

Quality is high

or excellent Weight <200 Weight > 200

Ordinal Continuous

Figure 6.40. Splitting examples based on variable type
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Temperature: Temperature: Temperature:
Hot (10 observations) Hot (10 observations) Hot (10 observations)
Cold (10 observations) Cold (10 observations) Cold (10 observations)
Temperature: Temperature: Temperature: Temperature: Temperature: Temperature:
Hot (10 observations) Hot (0 observation) Hot (5 observations)  Hot (5 observations) Hot (1 observation) Hot (9 observations)

Cold (0 observation)  Cold (10 observations)  Cold (5 observations) Cold (5 observations)  Cold (8 observations) Cold (2 observations)

Split a Split b Split ¢

Figure 6.41. Evaluating splits based on categorical response data

Scoring Splits for Categorical Response Variables

To illustrate how to score splits when the response is a categorical variable, three
splits (split a, split b, split c) for a set of observations are shown in Figure 6.41. The
objective for an optimal split is to create subsets which results in observations with a
single response value. In this example, there are 20 observations prior to splitting.
The response variable (Temperature) has two possible values, hot and cold. Prior to
the split, the response has an even distribution with the number of observations
where the Temperature equals hot is ten and with the number of observations where
the Temperature equals cold is also ten.

Different criteria are considered for splitting these observations which results in
different distributions of the response variables for each subset (N2 and N3):

o Split a: Each subset contains ten observations. All ten observations in N2 have
hot temperature values, whereas the ten observations in node N3 are all cold.

e Split b: Again each subset (N2 and N3) contains ten observations. However, in
this example there is an even distribution of hot and cold values in each subset.

e Split c: In this case the splitting criterion results in two subsets where node
N2 has nine observations (one hot and eight cold) and node N3 has 11
observations (nine hot and two cold).

Split a is the best split since each node contains observations where the
response is one or the other category. Split b results in the same even split of hot and
cold values (50% hot, 50% cold) in each of the resulting nodes (N2 and N3) and
would not be considered a good split. Split ¢ is a good split; however, this split is not
so clean as split a since there are values of both hot and cold in both subsets. The
proportion of hot and cold values is biased, in node N2 towards cold values and in
N3 towards hot values. When determining the best splitting criteria, it is therefore
important to determine how clean each split is, based on the proportion of the
different categories of the response variable (or impurity). As the tree is being
generated, it is desirable to decrease the level of impurity until, in an ideal situation,
there is only one response value at a terminal node.
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Table 6.18. Entropy scores according to different splitting

criteria

Response

values

Scenario hot cold Entropy
Scenario 1 0 10 0
Scenario 2 1 9 0.469
Scenario 3 2 8 0.722
Scenario 4 3 7 0.881
Scenario 5 4 6 0.971
Scenario 6 5 5 1
Scenario 7 6 4 0.971
Scenario 8 7 3 0.881
Scenario 9 8 2 0.722
Scenario 10 9 1 0.469
Scenario 11 10 0 0

There are three primary methods for calculating impurity: misclassification,
Gini, and entropy. In the following examples the entropy calculation will be used;
however, the other methods give similar results. To illustrate the use of the entropy
calculation, a set of ten observations with two possible response values (hot and
cold) are used (Table 6.18). All possible scenarios for splitting this set of ten
observations are shown: Scenario 1 through 11. In scenario 1, all ten observations
have value cold whereas in scenario 2, one observation has value hot and nine
observations have value cold. For each scenario, an entropy score is calculated.
Cleaner splits result in lower scores. In scenario 1 and scenario 11, the split cleanly
breaks the set into observations with only one value. The score for these scenarios
is 0. In scenario 6, the observations are split evenly across the two values and this is
reflected in a score of 1. In other cases, the score reflects how well the two values are
split.

The formula for entropy is:

Entropy(S) = — Y _ pilog, p;
i=1

The entropy calculation is performed on a set of observations S. p; refers to the
fraction of the observations that belong to a particular values. For example, for a set
of 100 observations where the response variable is Temperature and 60
observations had hot values while 40 observations had cold values, then the py
would be 0.6 and the p.og would be 0.4. The value c is the number of different values
that the response variable can take. When p; = 0, then the value for 0log,(0) = 0.

The example shown in Figure 6.41 will be used to illustrate our point. Values for
entropy are calculated for the three splits:
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split a

Entropy (N1) = —(10/20) log, (10/20) — (10/20) log, (10/20) =1

Entropy (N2) = —(10/10) log, (10/10) — (0/10) log, (0/10) =0

Entropy( N3) = —(0/10) log, (0/10) — (10/10) log, (10/10) =0

split b

Entropy (N1) = —(10/20) log, (10/20) — (10/20) log, (10/20) =1

Entropy (N2) = —(5/10) log, (5/10) — (5/10) log, (5/10) =1

Entropy (N3) = —(5/10) log, (5/10) — (5/10) log, (5/10) =1

split ¢

Entropy (N1) = —(10/20) log, (10/20) — (10/20) log, (10/20) =1

Entropy (N2) = —(1/9) log, (1/9) — (8/9) log, (8/9) = 0.503

Entropy (N3) = —(9/11) log, (9/11) — (2/11) log, (2/11) = 0.684

In order to determine the best split, we now need to calculate a ranking based on
how cleanly each split separates the response data. This is calculated on the basis of

the impurity before and after the split. The formula for this calculation, Gain, is
shown below:

k
N(v
Gain = Entropy(parent) — Z Entropy (v)
j=1

N is the number of observations in the parent node, k is the number of possible
resulting nodes and N(v;) is the number of observations for each of the j child nodes.
v; is the set of observations for the j” node. It should be noted that the Gain formula
can be used with other impurity methods by replacing the entropy calculation.

In the example described throughout this section, the gain values are calculated
and shown in Figure 6.42.

Temperature: Temperature: Temperature:
Hot (10 observations) Hot (10 observations) Hot (10 observations)
Cold (10 observations) Cold (10 observations) Cold (10 observations)
Temperature: Temperature: Temperature: Temperature: Temperature: Temperature:
Hot (10 observations)  Hot (0 observation) Hot (5 observations)  Hot (5 observations) Hot (1 observation) Hot (9 observations)
Cold (0 observation)  Cold (10 observations) ~ Cold (5 observations) Cold (5 observations) ~ Cold (8 observations) Cold (2 observations)
Gain=1 Gain=0 Gain = 0.398
Split a Split b Split ¢

Figure 6.42. Calculation of gain for each split
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Gain(split a) = 1 — {[(10/20)0] + [(10/20)0]} = 1
Gain(split b) = 1 — {[(10/20)1] + [(10/20)1]} = 0
Gain(split ¢) = 1 — {[(9/20)0.503] + [(11,/200.684]} = 0.397

The criterion used in split a is selected as the best splitting criteria.
During the tree generation process all possible splitting values for all descriptor
variables are calculated and the best splitting criterion is selected.

Scoring Splits for Continuous Response Variables

When the response variable is continuous, one popular method for ranking the splits
is to use the sum of the squares of error (SSE). The resulting split should ideally
result in sets where the response values are close to the mean of the group. The lower
the SSE value for the group, the closer the group values are to the mean of the set. For
each potential split, a SSE value is calculated for each resulting node. A score for the
split is calculated by summing the SSE values of each resulting node. Once all splits
for all variables are computed, then the split with the lowest score is selected.
The formula for SSE is:

SSE =Y (vi— )
i=1

For a subset of n observations, the SSE value is computed where y; is the individual
value for the response, and y is the average value for the subset. To illustrate, Table 6.19
is processed to identify the best split. The variable Weight is assigned as a descriptor
and MPG will be used as the response variable. A series of splitting point values for
the variable Weight will be used: 1693, 1805, 1835, 3225, 4674, 4737, and 4955.
These points are the midpoints between each pair of values and were selected
because they divided the data set into all possible two-ways splits, as shown in
Figure 6.43. In this example, we will only calculate a score for splits which result in
three or more observations, that is Split 3, Split 4, and Split 5. The MPG response
variable is used to calculate the score.

Table 6.19. Table of eight observations with
values for two variables

Weight MPG

A 1,835 26
B 1,773 31
C 1,613 35
D 1,834 27
E 4,615 10
F 4,732 9

G 4,955 12
H 4,741 13
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Splitting Value: 1693 #

C B D A E F H G

Split 1 (613) | |(1773)  (1834)  (1835) (4615) (4732) (4741)  (4955)
Splitting Value: 1805 |,

Split 2 C B D A E F H G

p (1613)  (1773)| | (1834)  (1835) (4615) (4732) (4741)  (4955)
Splitting Value: 1835 *

Split 3 C B D A E F H G

(1613)  (1773)  (1834)|| (1835) (4615) (4732) (4741)  (4955)
Splitting Value: 3225 *

Split 4 C B D A E F H G

p (1613)  (1773)  (1834) (1835)| | (4615) (4732) (4741)  (4955)
Splitting Value: 4674 *

Split 5 C B D A E F H G

p (1613)  (1773)  (1834) (1835) (4615)| | (4732) (4741)  (4955)
Splitting Value: 4737 *

Split 6 C B D A E F H G

(1613)  (1773) (1834) (1835) (4615) (4732)|| (4741)  (4955)
Splitting Value: 4955 *

Split 7 C B D A E F H G

p (1613)  (1773) (1834) (1835) (4615) (4732) (4741)|| (4955)
Figure 6.43. Tllustration of splitting points
Split 3:

For subset where Weight is less than 1835 (C, B, D):
Average = (35 + 31 +27)/3 = 31
SSE = (35— 31)* + (31 — 31)> 4+ (27 — 31)* = 32
For subset where Weight is greater than or equal to 1835 (A, E, F, H, G):

Average = (26 + 10+ 9+ 13 +12)/5 = 14
SSE = (26—14)* + (10—14)> 4+ (9—14)* + (13—14)* + (12—14)* = 190
Split score = 32 + 190 = 222
Split 4:
For subset where Weight is less than 3225 (C, B, D, A):
Average = (35431 +27426)/4 =29.75
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SSE = (35—29.75)* + (31—29.75)* 4 (27—29.75)* + (26—29.75)* = 50.75
For subset where Weight is greater than or equal to 3225 (E, F, H, G):

Average = (10+9+ 134+ 12)/4 =11

SSE= (10— 11>+ (9 — 11> + (13— 11)* + (12— 11)* =10
Split score = 50.75 + 10 = 60.75
Split 5:
For subset where Weight is less than 4674 (C, B, D, A, E):

Average = (35 +31+27+26+10)/5=25.8
SSE = (35 — 25.8)> + (31 — 25.8)> + (27 — 25.8)* + (26 — 25.8)*
+ (10 — 25.8)> = 362.8
For subset where Weight is greater than or equal to 4674 (F, H, G):

Average = (9 + 13 +12)/3 = 11.33
SSE = (9 — 11.33)* + (13 — 11.33)% + (12 — 11.33)* = 8.67
Split score = 362.8 + 8.67 = 371.47

In this example, Split 4 has the lowest score and would be selected as the best
split.

6.4.4 Example

In the following example, a set of 392 cars is analyzed using a decision tree. Two
variables were used as descriptors: Horsepower and Weight; MPG (miles per
gallon) was used as the response. A decision tree (Figure 6.44) was automatically
generated using a 40 nodes minimum as a terminating criterion.

The leaf nodes of the tree can be interpreted using a series of rules. The decision
points that are crossed in getting to the node are the rule conditions. The average
MPG value for the leaf nodes will be interpreted here as low (less than 22), medium
(22-26), and high (greater than 26). The following two example rules can be
extracted from the tree:

Node A:

IF Horsepower < 106 AND Weight < 2067.5
THEN MPG is high

Node B:
IF Horsepower < 106 AND Weight 2067.5-2221.5
THEN MPG is high
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In addition to grouping data sets, decision trees can also be used in making
predictions and this will be seen again in Section 7.4.

6.5 SUMMARY

Table 6.20 summarizes the different grouping methods described in this chapter.

6.6 EXERCISES

Patient data was collected concerning the diagnosis of cold or flu (Table 6.21).

1. Calculate the Euclidean distance (replacing None with 0, Mild with 1 and Severe with
2) using the variables: Fever, Headaches, General aches, Weakness, Exhaustion,
Stuffy nose, Sneezing, Sore throat, Chest discomfort, for the following pairs of
patient observations from Table 6.21:

a. 1326 and 398
b. 1326 and 1234
c. 6377 and 2662

2. The patient observations described in Table 6.21 are being clustered using agglom-
erative hierarchical clustering. The Euclidean distance is used to calculate the distance
between observations using the following variables: Fever, Headaches, General
aches, Weakness, Exhaustion, Stuffy nose, Sneezing, Sore throat, Chest discomfort
(replacing None with 0, Mild with 1 and Severe with 2). The average linkage joining
rule is being used to create the hierarchical clusters. During the clustering process
observations 6377 and 2662 are already grouped together. Calculate the distance from
observation 398 to this group.

3. A candidate rule has been extracted using the associative rule method from Table 6.1:

If Exhaustion = None AND
Stuffy node = Severe

THEN Diagnosis = cold
Calculate the support, confidence, and lift for this rule.

4. Table 6.21 is to be used to build a decision tree to classify whether a patient has a cold
or flu. As part of this process the Fever column is being considered as a splitting point.
Two potential splitting values are being considered:

a. Where the data is divided into two sets where (1) Fever is none and (2) Fever is mild
and severe.

b. Where the data is divided into two sets where (1) Fever is severe and (2) Fever is
none and mild.

Calculate, using the entropy impurity calculation, the gain for each of these splits.
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Table 6.21. Table of patient records

Chest
Patient Fever Head- General Weak- Exha-  Stufty Sore disco-  Diagn-
id aches aches ness wustion nose  Sneezing throat mfort osis

1326 None Mild None None None Mild Severe Severe Mild Cold
398 Severe Severe Severe Severe Severe None None Severe Severe Flu
6377 Severe Severe Mild Severe Severe Severe None Severe Severe Flu
1234 None None None Mild None Severe None Mild Mild Cold
2662 Severe Severe Mild Severe Severe Severe None Severe Severe Flu
9477 None None None Mild None Severe Severe Severe None Cold
7286 Severe Severe Severe Severe Severe None  None None Severe Flu
1732 None None None None None Severe Severe None Mild Cold
1082 None Mild Mild None None Severe Severe Severe Severe Cold
1429 Severe Severe Severe Mild  Mild None  Severe None Severe  Flu
14455 None None None Mild None Severe Mild Severe None Cold
524 Severe Mild Severe Mild Severe None Severe None Mild Flu
1542 None None Mild Mild None Severe Severe Severe None Cold
8775 Severe Severe Severe Severe Mild None Severe Severe Severe Flu
1615 Mild None None Mild None Severe None Severe Mild Cold
1132 None None None None None Severe Severe Severe Severe Cold
4522  Severe Mild Severe Mild Mild None  None None Severe Flu

6.7 FURTHER READING

For additional information on general data mining grouping approaches and outlier detection,
see Witten (2000), Han (2005), and Hand (2001). Everitt (2001) provides further details
concerning similarity methods and clustering approaches, and Quilan (1993) gives a
comprehensive analysis of decision trees. In addition, Hastie (2003) covers in detail additional
grouping approaches.



Chapter 7

Prediction

7.1 INTRODUCTION
7.1.1 Overview

Predictive models are used in many situations where an estimate or forecast is
required, for example, to project sales or forecast the weather. A predictive model will
calculate an estimate for one or more variables (responses), based on other variables
(descriptors). For example, a data set of cars is used to build a predictive model to
estimate car fuel efficiency (MPG). A portion of the observations are shown in Table
7.1. A model to predict car fuel efficiency was built using the MPG variable as the
response and the variables Cylinders, Displacement, Horsepower, Weight, and
Acceleration as descriptors. Once the model has been built, it can be used to make
predictions for car fuel efficiency. For example, the observations in Table 7.2 could be
presented to the model and the model would predict the MPG column.

A predictive model is some sort of mathematical equation or process that takes
the descriptor variables and calculates an estimate for the response or responses. The
model attempts to understand the relationship between the input descriptor variables
and the output response variables; however, it is just a representation of the
relationship. Rather than thinking any model generated as correct or not correct, it
may be more useful to think of these models as useful or not useful to what you are
trying to accomplish.

Predictive models have a number of uses including:

e Prioritization: Predictive models can be used to swiftly profile a data set
that needs to be prioritized. For example, a credit card company may build a
predictive model to estimate which individuals would be the best candidates
for a direct mailing campaign. This model could be run over a database of
millions of potential customers to identify a subset of the most promising
customers. Alternatively, a team of scientists may be about to conduct a
costly experiment and they wish to prioritize which alternative experiments
have the greatest chance of success. To this end, a prediction model is built to

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.
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Table 7.1. Table of cars with known MPG values

Names Cylinders Displacement Horsepower Weight Acceleration MPG
Chevrolet Chevelle 8 307 130 3,504 12 18
Malibu
Buick Skylark 320 8 350 165 3,693 11.5 15
Plymouth Satellite 8 318 150 3,436 11 18
AMC Rebel SST 8 304 150 3,433 12 16
Ford Torino 8 302 140 3,449 10.5 17
Ford Galaxie 500 8 429 198 4,341 10 15
Chevrolet Impala 8 454 220 4,354 9 14
Plymouth Fury III 8 440 215 4,312 8.5 14
Pontiac Catalina 8 455 225 4,425 10 14
AMC Ambassador 8 390 190 3,850 8.5 15

DPL

test the various experimental scenarios. The experiments predicted to have
the highest chance of success will be tested first.

e Decision support: Prediction models can also be used to estimate future
events so that appropriate actions can be taken. For example, prediction
models are used to forecast adverse weather conditions and that information
is used to trigger events such as alerting emergency services to prepare any
affected neighborhoods.

e Understanding: Since predictive models attempt to understand the relation-
ship between the input descriptor variables and the output response variables,

Table 7.2. Table of cars where MPG is to be predicted

Names Cylinders Displacement Horsepower Weight Acceleration MPG

Dodge Challenger 8 383 170 3,563 10
SE

Plymouth Cuda 340 8 340 160 3,609 8

Chevrolet 8 400 150 3,761 9.5
Monte Carlo

Buick Estate 8 455 225 3,086 10
Wagon (SW)

Toyota Corona 4 113 95 2,372 15
Mark II

Plymouth 6 198 95 2,833 15.5
Duster

AMC Hornet 6 199 97 2,774 15.5

Ford Maverick 6 200 85 2,587 16

Datsun P1510 4 97 88 2,130 14.5

Volkswagen 1131 4 97 46 1,835 20.5

Deluxe Sedan
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Table 7.3. Different classification and regression methods

Classification Regression
Classification trees Regression trees
k-Nearest Neighbors k-Nearest Neighbors
Logistic regression Linear regressions
Naive Bayes classifiers Neural networks

Neural networks Nonlinear regression
Rule-based classifiers Partial least squares
Support vector machines Support vector machines

they can be helpful beyond just calculating estimates. For example, if a
prediction model was built based on a set of scientific experiments, the
model will be able to suggest what variables are most important and how
they contribute to the problem under investigation.

There are many methods for building prediction models and they are often
characterized based on the response variable. When the response is a categorical
variable, the model is called a classification model. When the response is a
continuous variable, then the model is a regression model. Table 7.3 summarizes
some of the methods available.

There are two distinct phases, each with a unique set of processes and issues to
consider:

e Building: The prediction model is built using existing data called the
training set. This training set contains examples with values for the
descriptor and response variables. The training set is used to determine
and quantify the relationships between the input descriptors and the output
response variables. This set will be divided into observations used to build
the model and assess the quality of any model built.

e Applying: Once a model has been built, a data set with no output response
variables can be fed into this model and the model will produce an estimate
for this response. A measure that reflects the confidence in this prediction
is often calculated along with an explanation of how the value was generated.

7.1.2 Classification

A classification model is built to assign observations into two or more distinct
categories. For example, a classification model may be built to estimate whether a
customer will buy or will not buy a particular product. In another example, a
classification model may be built to predict whether drilling in a particular area will
result in finding oil or not.

In Figure 7.1, a set of observations are plotted using two variables. The points in
light gray represent observations in one class (Class A) and the darker gray points
represent observations in another class (Class B). The objective is to build a model
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o Class A
e Class B

Figure 7.1. Classification of a categorical variable

that is able to classify observations into these two categories. In scatterplot a, a
straight line can be drawn where observations above the line are placed in Class B
and below the line observations are placed in Class A. In diagram b, observations in
Class B (shown in dark gray) are grouped in the center of the scatterplot and
observations in Class A are shown outside this central group. A model represented as
an oval can be used to distinguish between these two groups. In many practical
situations, the separation of observations between the different classes is not so
simple. For example, Figure 7.2 illustrates how it is difficult to separate two classes.

The quality of a classification model can be assessed by counting the number of
correctly and incorrectly assigned observations. For example, in the following
contingency table the actual response is compared against the predicted response for
a binary variable. The number of observations for each possible outcome are
reported in Table 7.4.

This contingency table represents all possible outcomes for two binary
variables:

e Count:;; The number of observations that were true and predicted to be true
(true positives).

e Count:;( The number of observations that were false yet predicted to be true
(false negatives).
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Figure 7.2. Categorical variables that would be difficult to classify based on the dimensions shown
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Table 7.4. Contingency table showing a count of predicted vs actual
values

Predicted Response

True (1) False (0)
Actual Response True (1) County; County,
False (0) Countg Countgy

e Count:,; The number of observations that were true and predicted to be false
(false positives).

e Count:,, The number of observations that were false and predicted to be
false (true negatives).

In an ideal model there would be zero observation for Count;, and County;. This is
practically never the case, however, and the goal of any modeling exercise is to
minimize the numbers for b and c according to criteria established in the definition
step of the project. There are four calculations that are commonly used to assess the
quality of a classification model:

e Concordance: This is an overall measure of the accuracy of the model and is
calculated with the formula:

(County; 4+ Countqyg)
(Countyy + Countyg + County; + Countp)

Concordance =

e Error rate: This is an overall measure of the number of prediction errors
and the formula is:

(Countyg + Countyy)

Error rate =
(Countyy + Countyg + County, + County)

e Sensitivity: This is an assessment of how well the model is able to predict
‘true’ values and the formula is:

Countyy
(County; + Counto;)

Sensitivity =
e Specificity: This is an assessment of how well the model is able to predict
‘false’ values and the formula is:

County
Countyy + County)

Specificity = (

For example, Table 7.5 shows the actual response values alongside the predicted
response values for 18 observations. The contingency table is calculated from the
actual and the predicted response values (Table 7.6). Based on this table, the
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Table 7.5. Table showing an example of actual
and predicted values

Actual response

Predicted response

True (1)
False (0)
False (0)
True (1)
True (1)
False (0)
True (1)
False (0)
True (1)
False (0)
False (0)
True (1)
True (1)
True (1)
False (0)
False (0)
True (1)
True (1)

True (1)
False (0)
False (0)
True (1)
False (0)
True (1)
True (1)
False (0)
True (1)
False (0)
False (0)
True (1)
False (0)
True (1)
False (0)
False (0)
True (1)
True (1)

following assessments can be made of the accuracy of the model:

(Countyy + Countyp)

C d. =
oncordance (Countyy + Countyy + County, + Count)
8+7
— (;) =0.83
8+1+2+4+7)
(Countyg + Countyy)
Error rate =
(Countyy + Countyg + Countyy + Count,y,)
142
— (;) =0.17
8+1+2+7)
County 8
Sensitivity = = =0.8
ensiivity (Countyy + County) (84 2)
o County 7
S = = =0.88
pecificity (Countyy + Countyy) (1 +17)
Table 7.6. Contingency table summarizing correct and incorrect
predictions
Predicted Response
True (1) False (0)
Actual Response True (1) 8 (County) 2 (Countg,)

False (0) 1 (Count;) 7 (Countgyp)

161
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Response
variable A

Response
variable C

Descriptor Descriptor
variable B variable D

Figure 7.3. Linear and nonlinear relationships between continuous variables

In this example, the overall concordance is good with a 83% accuracy rate. The
model is slightly better at predicting negatives than predicting positives and this is
reflected in the higher specificity score.

The concordance gives an overall assessment of the accuracy of the model;
however, based on the objectives of the modeling exercise it may be necessary to
optimize on sensitivity or specificity if these are more important.

7.1.3 Regression

A regression model is a mathematical model that predicts a continuous response
variable. For example, a regression model could be developed to predict actual sales
volume or the temperature resulting from an experiment. Figure 7.3 shows two
scatterplots. These illustrate the relationship between two variables. The variable
on the y-axis is the response variable that is to be predicted. The variable on the x-
axis is the descriptor variable that will be used in the predictive model. It is possible
to see the relationship between the variables. In scatterplot a, as variable B increases,
variable A increases proportionally. This relationship closely follows a straight line,
as shown, and is called a linear relationship. In scatterplot b, as variable D increases,
variable C also increases. In this case, the increase in C is not proportional to the
increase in D and hence this type of relationship is called nonlinear. In Figure 7.4, it
is not possible to see any relationship between the variables F and E.

Response
variable E

Descriptor
variable F

Figure 7.4. Scatterplot showing a difficult to discern relationship
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Predicted |

Actual

Figure 7.5. Scatterplot showing the results of a good prediction model

When the response value is continuous, one of the most informative ways of
looking at the relationship between the actual values and the predicted values is a
scatterplot, as shown in Figure 7.5. In the example in Figure 7.5, a line is drawn to
indicate where the points would lie if the predicted values exactly matched the actual
values, that is, the model was perfect. Good models have points lying close to this
line. In Figure 7.6, the relationship between the actual response variable and the
predicted value is shown. A line is drawn showing where the points should be placed
if the prediction was perfect. In this situation, the model generated is poor since the
actual predictions are scattered far from the line.

It is typical to use 7> (described in Section 5.4.3) to describe the quality of the
relationship between the actual response variable and the predicted response
variable. Values for 2 range between 0 and 1, with values closer to 1 indicating a
better fit. Figure 7.7 shows two scatterplots displaying the relationship between
predicted and actual response variables. The first scatterplot has an 7% of 0.97, as the
predicted values are close to the actual values, whereas the second scatterplot has an
r? value of 0.07 since the model is poor.

The residual value is the difference between the actual value (y) and the
predicted value (¥). Although the r? value provides a useful indication of the
accuracy of the model, it is also important to look closely at the residual values.

residual =y — y

Predicted

8883 °2°¢° g8oo o oo

Actual

Figure 7.6. Scatterplot showing the results of a poor prediction model
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r2=0.97

Predicted
Predicted

8835 °9°F g8oo o op

Actual Actual

Figure 7.7. Calculated r* values for two prediction results

In Table 7.7, a residual value has been calculated using the actual (y) and the
predicted (y) values. It is important to analyze residuals based on a number of
factors, including the following:

e Response variable: There should be no trends in residual values over

the range of the response variable, that is, the distribution should be
random.

¢ Frequency distribution: The frequency distribution of the residual values
should follow a normal distribution.

e Observation order: There should be no discernable trends based on when
the observations were measured.

Figure 7.8 illustrates an analysis of residuals for a simple model. The model is
excellent as indicated by an 7 value of 0.98. The scatterplot showing the residuals
plotted against the response variable shows a reasonably even distribution of the
residuals. The frequency distribution of the residual values follows a normal
distribution. No trend can be seen in the residual values based on the order of the
observations.

Table 7.7. Table showing example actual, predicted, and residual values

Actual response (y) Predicted response () Residual
15.8 134 2.4
12.4 11.2 1.2
13.9 15.1 —-1.2
8.4 8.3 0.1
6.6 52 1.4

16.4 16.9 -0.5
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166 Chapter 7 Prediction
7.1.4 Building a Prediction Model

Preparing the Data Set

It is important to prepare a data set prior to modeling as described in Chapter 3. This
preparation should include the operations outlined such as characterizing, cleaning,
and transforming the data. Particular care should be taken to determine whether
subsetting the data is needed to simplify the resulting models.

Designing a Modeling Experiment

Building a prediction model is an experiment. It will be necessary to build many
models for which you do not necessarily know which model will be the ‘best’. This
experiment should be appropriately designed to ensure an optimal result. There are
three major dimensions that should be explored:

o Different models: There are many different approaches to building predic-
tion models. A series of alternative models should be explored since all
models work well in different situations. The initial list of modeling
techniques to be explored can be based on the criteria previously defined
as important to the project.

¢ Different descriptor combinations: Models that are based on a single
descriptor are called simple models, whereas those built using a number of
descriptors are called multiple (or multivariate) models. Correlation analysis
as well as other statistical approaches can be used to identify which
descriptor variables appear to be influential. A subject matter expert or
business analyst may also provide insight into which descriptors would work
best within a model. Care should be taken, however, not to remove variables
too prematurely since interaction between variables can be significant within
a model. Systematically trying different descriptor combinations to see
which gives the best results can also be useful. In general, it is better to
have fewer descriptors than observations.

e Model parameters: Most predictive models can be optimized by fine tuning
different model parameters. Building a series of models with different
parameter settings and comparing the quality of each model will allow
you to optimize the model. For example, when building a neural network
model there are a number of settings, which will influence the quality of the
models built such as the number of cycles or the number of hidden layers.
These parameters will be described in detail in Section 7.5.7.

Evaluating the ‘best’” model depends on the objective of the modeling process
defined at the start of the project. Other issues, for example, the ability to explain
how a prediction was made, may also be important and should be taken into
account when assessing the models generated. Wherever possible, when two or
more models give comparable results, the simpler model should be selected.
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This concept of selecting the simplest model is often referred to as Occam’s
Razor.

Separating Test and Training Sets

The goal of building a predictive model is to generalize the relationship between
the input descriptors and the output responses. The quality of the model depends
on how well the model is able to predict correctly for a given set of input
descriptors. If the model generalizes the input/output relationships too much, the
accuracy of the model will be low. If the model does not generalize the
relationships enough, then the model will have difficulties making predictions for
observations not included in the data set used to build the model. Hence, when
assessing the quality of the model, it is important to use a data set to build the
model, which is different from the data set used to test the accuracy of the model.
There are a number of ways for achieving this separation of test and training set,
including the following:

e Holdout: At the start, the data set is divided up into a test and a training set.
For example, a random 25% of the data set is assigned to the test set and the
remaining 75% is assigned to the training set. The training set will be used to
build the model and the test set will be used to assess the accuracy of the
model.

e Cross validation: With cross validation methods, all observations in the
data set will be used for testing and training, but not at the same time. Every
observation will be assigned a predicted value and the difference between
the predicted and the actual responses for all observations will be used to
assess the model quality. To achieve this, it is necessary to assign a cross
validation percentage. This number is the percentage of the data set that
should be set aside for the test set at any one time. This percentage
determines the number of models that are built. For example, a 5% cross
validation will mean that, for each model, 5% of the data set will be set
aside for testing and the remaining 95% will be used to build the model. To
ensure that every example in the data set has a predicted value, 20 models
will need to be built. There will also be 20 test sets (the complement of each
training set), with no overlapping example between the different test sets. A
cross validation where every observation is a separate test set, with the
remaining observations used to build the models, is called a leave-one-out
cross-validation.

7.1.5 Applying a Prediction Model

Once a model has been built and verified, it can be used to make predictions. Along
with the presentation of the prediction, there should be some indications of the
confidence in this value. It may be important to also provide an explanation of how
the result was derived. Where the model is based on a simple and understandable
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formula, then this information may suffice. However, in many modeling techniques,
a rather complex and nonintuitive mathematical formula may have been used and
hence it is important to think about how to explain results in this situation. One
option is to present portions of the training data with similar observations. Another
alternative approach is to identify patterns or trends of observations that relate to the
applied data.

During the data preparation step of the process, the descriptors and/or the
response variables may have been translated to facilitate analysis. Once a
prediction has been made, the variables should be translated back into their
original format prior to presenting the information to the end user. For example,
the log of the variable Weight was taken in order to create a new variable
log(Weight) since the original variable was not normally distributed. This variable
was used as a response variable in a model. Before any results are presented to
the end user, the log(Weight) response should be translated back to Weight by
taking the inverse of the log and presenting the value using the original weight
scale.

A data set may have been divided or segmented into a series of simpler data sets
in the data preparation step. Different models were developed from each. When
applying these models to new data, some criteria will need to be established as to
which model the observation will be presented to. For example, a series of models
predicting house prices in different locations such as coastal, downtown, and
suburbs were built. When applying these models to a new data set, the observa-
tions should be applied only to the appropriate model. Where a new observation
can be applied to more than one model, some method for consolidating these
potentially conflicting results will need to be established. A popular choice is often
a voting scheme where the majority wins or the mean response for continuous
variables.

In addition to building different models based on different criteria, multiple
models may be built using different methods. Each model will provide a prediction
and from these individual model predictions a final prediction may be calculated that
is some function of these individual values. Techniques referred to as Bagging and
Boosting can be used to accomplish this and further information on these methods is
described in the further reading section of this chapter.

Once a model has been built, a useful exercise is to look at the observations that
were not correctly predicted. Attempting to understand any relationship within these
observations can be important in understanding whether there is a problem with
these observations. For example, if all incorrectly assigned observations were
measured using a particular device, then perhaps there was a problem with the
calibration of this measuring device. The observations may also share additional
common characteristics. Understanding the grouping of these observations using
techniques such as clustering may help to suggest why the model is unable to
correctly predict these examples. It may suggest that additional descriptors are
required in order to adequately predict this type of observation. It may also
suggest that these types of observations should not be presented to the model in the
future.
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7.2 SIMPLE REGRESSION MODELS
7.2.1 Overview

A simple regression model is a formula describing the relationship between one
descriptor variable and one response variable. These formulas are easy to explain;
however, the analysis is sensitive to any outliers in the data. The following section
presents methods for generating simple linear regression models as well as simple
nonlinear regression models.

7.2.2 Simple Linear Regression

Overview

Where there appears to be a linear relationship between two variables, a simple
linear regression model can be generated. For example, Figure 7.9 shows the
relationship between a descriptor variable B and a response variable A. The diagram
shows a high degree of correlation between the two variables. As descriptor variable
B increases, response variable A increases at the same rate. A straight line
representing a model can be drawn through the center of the points. A model that
would predict values along this line would provide a good model.
A straight line can be described using the formula:

y=a+bx

where a is the point of intersection with the y-axis and b is the slope of the line. This
is shown graphically in Figure 7.10.

In Table 7.8, a data set of observations from a grocery store contains
variables Income and Monthly sales. The variable Income refers to the yearly
income for a customer and the Monthly sales represent the amount that
particular customer purchases per month. This data can be plotted on a scatterplot

Response
variable A

Descriptor
variable B

Figure 7.9. Scatterplot illustrating a simple linear model
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Table 7.8. Table of the customer’s Income and
Monthly Sales

Income (x) Monthly Sales (y)
$15,000.00 $54.00
$16,000.00 $61.00
$17,000.00 $70.00
$18,000.00 $65.00
$19,000.00 $68.00
$20,000.00 $84.00
$23,000.00 $85.00
$26,000.00 $90.00
$29,000.00 $87.00
$33,000.00 $112.00
$35,000.00 $115.00
$36,000.00 $118.00
$38,000.00 $120.00
$39,000.00 $118.00
$41,000.00 $131.00
$43,000.00 $150.00
$44,000.00 $148.00
$46,000.00 $151.00
$49,000.00 $157.00
$52,000.00 $168.00
$54,000.00 $156.00
$52,000.00 $158.00
$55,000.00 $161.00
$59,000.00 $183.00
$62,000.00 $167.00
$65,000.00 $186.00
$66,000.00 $191.00
y-axis

A

y

v

<+—X—>

Slope (b = y/x)

y-intercept (a)

X-axis

Figure 7.10. Calculation of the slope of a straight line
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Figure 7.11. Scatterplot of the customer’s Income vs Monthly Sales

and a linear relationship between Income and Monthly sales can be seen in
Figure 7.11.

To manually generate a linear regression formula, a straight line is drawn
through the points as shown in Figure 7.12. The point at which the line intercepts
with the y-axis is noted (approximately 20) and the slope of the line is calculated
(approximately 50/20,000 or 0.0025). For this data set an approximate formula for
the relationship between Income and Monthly sales is:

Monthly sales = 20 + 0.0025 x Income

Once a formula for the straight line has been established, predicting values for the y
response variable based on the x descriptor variable can be easily calculated. The
formula should only be used, however, for values of the x variable within the range
from which the formula was derived. In this example, Monthly sales should only

200 7
180 1 2
160 o
140 1
120 1 4
100 1 50
80 1 v

60
40 20,000

Monthly Sales

20 1

0 ; ; ; ; )
0 10000 20000 30000 40000 50000 60000 70000

Income

Figure 7.12. Calculating the slope of the line
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be predicted based on Income between $15,000 and $66,000. A prediction for a
customer’s Monthly sales based on their Income can be calculated. For a customer
with an Income of $31,000, the Monthly sales would be predicted as:

Monthly sales (predicted) = 20 + 0.0025 x $31,000
Monthly sales (predicted) = $97.50

Least Squares Method

Parameters a and b can be derived manually by drawing a best guess line
through the points in the scatterplot and then visually inspecting where the line
crosses the y-axis (a) and measuring the slope (b) as previously described.
The least squares method is able to calculate these parameters automatically.
The formula for calculating a slope is:

n

> (i =X)(i =)

p— =

i (x; — %)’

i=1

where x; and y; are the individual values for the descriptor variable (x;) and the
response (y;). X is the mean of the descriptor variable x and y is the mean of the
response variable y.

The formula for calculating the intercept with the y-axis is:

a=y—bx

Using the data from Table 7.8, the slope and intercept are calculated using Table 7.9.
The average Income is $38,963 and the average Monthly sales is $124.22.

Slope (b) = 17,435,222/6, 724,962,963
Slope (b) = 0.00259

Intercept (a) = 124.22 — (0.00259 x 38,963)
Intercept (a) = 23.31

Hence the formula is:
Monthly sales = 23.31 + 0.00259 x Income

These values are close to the values calculated using the manual approach.
Most statistical packages will calculate a simple linear regression formula
automatically.

7.2.3 Simple Nonlinear Regression

In situations where the relationship between two variables is nonlinear, a simple way
of generating a regression equation is to transform the nonlinear relationship to a
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Table 7.9. Calculation of linear regression with least squares method

Monthly (xi — %)

Income (x) Sales (y) (xi — %) (yi—9) yi—9) (x; — %)°
$15,000.00 $54.00 —23,963 —70.22 1,682,733 574,223,594
$16,000.00 $61.00 —22,963 —63.22 1,451,770 527,297,668
$17,000.00 $70.00 —21,963 —54.22 11,908,801 482,371,742
$18,000.00 $65.00 —20,963 —59.22 1,241,473 439,445,816
$19,000.00 $68.00 —19,963 —56.22 1,122,362 398,519,890
$20,000.00 $84.00 —18,963 —40.22 762,733 359,593,964
$23,000.00 $85.00 —15,963 —39.22 626,103 254,816,187
$26,000.00 $90.00 —12,963 —34.22 443,621 168,038,409
$29,000.00 $87.00 —9,963 —37.22 370,844 99,260,631
$33,000.00 $112.00 —5,963 —-12.22 72,881 35,556,927
$35,000.00 $115.00 —3,963 —9.22 36,547 15,705,075
$36,000.00 $118.00 —2,963 —6.22 18,436 8,779,150
$38,000.00 $120.00 -963 —4.22 4,066 927,298
$39,000.00 $118.00 37 —6.22 —230 1,372
$41,000.00 $131.00 2,037 6.78 13,807 4,149,520
$43,000.00 $150.00 4,037 25.78 104,066 16,297,668
$44,000.00 $148.00 5,037 23.78 119,770 25,371,742
$46,000.00 $151.00 7,037 26.78 188,436 49,519,890
$49,000.00 $157.00 10,037 32.78 328,992 100,742,112
$52,000.00 $168.00 13,037 43.78 570,733 169,964,335
$54,000.00 $156.00 15,037 31.78 477,844 226,112,483
$52,000.00 $158.00 13,037 33.78 440,362 169,964,335
$55,000.00 $161.00 16,037 36.78 589,807 257,186,557
$59,000.00 $183.00 20,037 58.78 1,177,733 401,482,853
$62,000.00 $167.00 23,037 42.78 985,473 530,705,075
$65,000.00 $186.00 26,037 61.78 1,608,510 677,927,298
$66,000.00 $191.00 27,037 66.78 1,805,473 731,001,372
Totals 17,435,222 6,724,962,963
linear relationship wusing a mathematical transformation. A linear model

(as described above) can then be generated. Once a prediction has been made, the
predicted value is transformed back to the original scale. For example, in Table 7.10
two columns show a nonlinear relationship. Plotting these values results in the

scatterplot in Figure 7.13.

There is no linear relationship between these two variables and hence we cannot
calculate a linear model directly from the two variables. To generate a model, we
transform x or y or both to create a linear relationship. In this example, we transform
the y variable using the following formula:
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Table 7.10. Table of observations
for variables x and y

X y
3 4
6 5
9 7
8 6
10 8
11 10
12 12
13 14
13.5 16
14 18
14.5 22
15 28
15.2 35
15.3 42

We now generate a new column, y’ (Table 7.11). If we now plot x against y’, we can
see that we now have an approximate linear relationship (see Figure 7.14).
Using the least squares method described previously, an equation for the linear
relationship between x and y’ can be calculated. The equation is:

y' =—0.307+0.018 x x

Using x we can now calculate a predicted value for the transformed value of y (y').
To map this new prediction of y’ we must now perform an inverse transformation,
that is, —1/y’. In Table 7.12, we have calculated the predicted value for y’ and

42 1 °
o
32.5 1
o]
=~ 234 o
o
o]
13.5 1 . °
(o]
(0]
® (0]
4 S ‘ ‘ ‘
3 6.1 9.2 12.2 15.3

Figure 7.13. Scatterplot showing the nonlinear relationship between x and y
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Table 7.11. Transformation of y to create
a linear relationship

X y y=—1/y
3 4 —0.25

6 5 -0.2

9 7 —0.14286
8 6 —0.16667
10 8 ~0.125
11 10 —0.1

12 12 —0.08333
13 14 ~0.07143
135 16 —0.0625
14 18 —0.05556
14.5 22 —0.04545
15 28 —0.03571
152 35 —0.02857
15.3 42 —0.02381

transformed the number to Predicted y. The Predicted y values are close to the
actual y values.

Some common nonlinear relationships are shown in Figure 7.15. The following
transformation may create a linear relationship for the charts shown:

e Situation a: Transformations on the x, y or both x and y variables such as log
or square root.

e Situation b: Transformation on the x variable such as square root, log or

—1/x.
-0 1 o
[e]
o
° o
[e]
-0.1 o
)
o
Y =01 o
o
-02 R
02 : : : )
3 6.1 9.2 12.2 15.3

X

Figure 7.14. Scatterplot illustrating the new linear relationship
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Table 7.12. Prediction of y using a nonlinear model

x y Yy =-1/y Predicted y’ Predicted y
3 4 —0.25 —0.252 3.96
6 5 —0.2 —0.198 5.06
9 7 —0.143 —0.143 6.99
8 6 —0.167 —0.161 6.20
10 8 —0.125 —0.125 8.02
11 10 —0.1 —0.107 9.39
12 12 —0.083 —0.088 11.33
13 14 —0.071 —0.070 14.28
13.5 16 —0.062 —0.061 16.42
14 18 —0.056 —0.052 19.31
14.5 22 —0.045 —0.043 23.44
15 28 —0.036 —0.033 29.81
15.2 35 —-0.029 —0.023 33.45
15.3 42 —0.024 —0.028 35.63

e Situation c: Transformation on the y variable such as square root, log or
—1/y.

This approach to creating simple nonlinear models can only be used when there is a
clear transformation of the data to a linear relationship. Other methods described
later in this chapter can be used where this is not the case.

7.3 K-NEAREST NEIGHBORS
7.3.1 Overview

The k-Nearest Neighbors (kNN) method provides a simple approach to calculating
predictions for unknown observations. It calculates a prediction by looking at similar
observations and uses some function of their response values to make the prediction,
such as an average. Like all prediction methods, it starts with a training set but
instead of producing a mathematical model it determines the optimal number of
similar observations to use in making the prediction.

X X X

Figure 7.15. Nonlinear scenarios
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The scatterplot in Figure 7.16 is based on a data set of cars and will be used to
illustrate how kNN operates. Two variables that will be used as descriptors are
plotted on the x- and y-axis (Weight and Acceleration). The response variable is a
dichotomous variable (Fuel Efficiency) that has two values: good and poor fuel
efficiency. The darker shaded observations have good fuel efficiency and the lighter

shaded observations have poor fuel efficiency.

During the learning phase, the best number of similar observations is chosen (k).
The selection of k is described in the next section. Once a value for k has been
determined, it is now possible to make a prediction for a car with unknown fuel
efficiency. To illustrate, two cars with unknown fuel efficiency are presented to the
kNN model in Figure 7.17: A and B. The Acceleration and Weight of these
observations are known and the two observations are plotted alongside the training
set. Based on the optimal value for k, the k most similar observations to A and B are
identified in Figure 7.18. For example, if k was calculated to be 10, then the 10 most
similar observations from the training set would be selected. A prediction is made

261
24 1
22 1
20 1
18 1
16 1
14 1
12 1
10 1
8

Acceleration

1500 2000 2500 3000 3500 4000 4500 5000 5500
Weight

Figure 7.17. Two new observations (A and B) plotted alongside existing data

®  Good fuel efficiency

© Poor fuel efficiency
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Figure 7.18. Looking at similar observations to predict values for A and B

for A and B based on the response of the nearest neighbors. In this case, observation
A would be predicted to have good fuel efficiency since its neighbors all have good
fuel efficiency. Observation B would be predicted to have poor fuel efficiency since
its neighbors all have poor fuel efficiency.

kNN has a number of advantages:

e Noise: kNN is relatively insensitive to errors or outliers in the data.
e Large sets: kNN can be used with large training sets.

kNN has the following disadvantage:

e Speed: kNN can be computationally slow when it is applied to a new data set
since a similar score must be generated between the observations presented
to the model and every member of the training set.

7.3.2 Learning

A kNN model uses the & most similar neighbors to the observation to calculate a
prediction. Where a response variable is continuous, the prediction is the mean of the
nearest neighbors. Where a response variable is categorical, the prediction could be
presented as a mean or a voting scheme could be used, that is, select the most
common classification term.

In the learning phase, three items should be determined:

o Best similarity method: As described in Chapter 6, there are many methods
for determining whether two observations are similar. For example, the
Euclidean or the Jaccard distance. Prior to calculating the similarity, it is
important to normalize the variables to a common range so that no variables
are considered to be more important.

e k: This is the number of similar observations that produces the best
predictions. If this value is too high, then the KNN model will overgeneralize.
If the value is too small, it will lead to a large variation in the prediction.
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e Combination of descriptors: It is important to understand which combina-
tion of descriptors results in the best predictions.

The selection of k is performed by adjusting the values of k£ within a range and
selecting the value that gives the best prediction. To ensure that models generated
using different values of k are not overfitting, a separate training and test set should
be used.

To assess the different values for k, the sum of squares of error (SSE) evaluation
criteria will be used:

k
SSE=Y (51 —y)°
i=1

Smaller SSE values indicate that the predictions are closer to the actual values. To
illustrate, a data set of cars will be used and a model built to test the car fuel
efficiency (MPG). The following variables will be used as descriptors within the
model: Cylinders, Displacement, Horsepower, Weight, Acceleration, Model
Year and Origin. The Euclidean distance calculation was selected to represent the
distance between observations. To calculate an optimal value for k, different values
of k were selected between 2 and 20. To test the models built with the different
values of k, a 10% cross-validation split was made to ensure that the models were
built and tested with different observations. The SSE evaluation criterion was used to
assess the quality of each model. In this example, the value of k with the lowest SSE
value is 6 and this value is selected for use with the kNN model (see Table 7.13).

Table 7.13. Table for detecting the best values for k

SSE
2 3,533
3 3,414
4 3,465
5 3,297
6 3,218
7 3,355
8 3,383
9 3,445
10 3,577
11 3,653
12 3,772
13 3,827
14 3,906
15 3,940
16 3,976
17 4,058
18 4,175
19 4,239

20 4,280
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Table 7.14. Observation to be predicted

Displace- Horse- Accele- Model
Names Cyclinders ment power  Weight ration Year Origin
Dodge Aspen 6 225 90 3,381 18.7 1980 1

7.3.3 Predicting

Once a value for k has been set in the training phase, the model can now be used
to make predictions. For example, an observation x has values for the descriptor
variables but not for the response. Using the same technique for determining
similarity as used in the model building phase, observation x is compared
against all observations in the training set. A distance is computed between X
and each training set observation. The closest k observations are selected and a
prediction is made, for example, using the average value.

The observation (Dodge Aspen) in Table 7.14 was presented to the kNN model
built to predict car fuel efficiency (MPG). The Dodge Aspen observation was
compared to all observations in the training set and an Euclidean distance was
computed. The six observations with the smallest distance scores are selected, as
shown in Table 7.15. The prediction is the average of these top six observations, that is,
19.5. In Table 7.16, the cross validated prediction is shown alongside the actual
value.

Table 7.15. Table of similar observations

Displace- Horse- Accele- Model
Names Cyclinders ment power Weight ration Year Origin MPG
Chrysler
Lebaron 6 225 85 3,465 16.6 1981 1 17.6
Salon
Mercury
Zephyr 6 6 200 85 2,990 18.2 1979 1 19.8
Ford Granada
GL 6 200 88 3,060 17.1 1981 1 20.2
Pontiac
Phoenix LJ 6 231 105 3,535 19.2 1978 1 19.2
AMC 6 232 90 3,210 17.2 1978 1 19.4
Concord
Plymouth
Volare 6 225 100 3,430 17.2 1978 1 20.5

Average 19.5
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Table 7.16. Actual vs predicted values

Displace- Horse- Accele- Model Actual Predicted
Names Cyclinders ment power Weight ration Year Origin MPG MPG
Dodge 6 225 90 3,381 18.7 1980 1 19.1 19.5
Aspen

The training set of observations can be used to explain how the prediction was
reached in addition to assessing the confidence in the prediction. For example, if the
response values for these observations were all close this would increase the
confidence in the prediction.

7.4 CLASSIFICATION AND REGRESSION TREES
7.4.1 Overview

In Chapter 6, decision trees were described as a way of grouping observations
based on specific values or ranges of descriptor variables. For example, the tree in
Figure 7.19 organizes a set of observations based on the number of cylinders
(Cylinders) of the car. The tree was constructed using the variable MPG
(miles per gallon) as the response variable. This variable was used to guide how the

Cylinders < 5 Cylinders >5

Size =203 Size = 189
Good Av.=17.36
A

Cylinders <7 Cylinders > 7

Size = 86 Size =103
Moderate Poor

B C

Figure 7.19. Decision tree classifying cars
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tree was constructed, resulting in groupings that characterize car fuel effi-
ciency. The terminal nodes of the tree (A, B, and C) show a partitioning of cars
into sets with good (node A), moderate (node B), and poor (node C) fuel
efficiencies.

Each terminal node is a mutually exclusive set of observations, that is, there is
no overlap between nodes A, B, or C. The criteria for inclusion in each of these
nodes are defined by the set of branch points used to partition the data. For example,
terminal node B is defined as observations where Cylinders are greater or equal to
five and Cylinders are less than seven.

Decision trees can be used as both classification and regression prediction
models. Decision trees that are built to predict a continuous response variable are
called regression trees and decision trees built to predict a categorical response are
called classification trees. During the learning phase, a decision tree is constructed
as before using the training set. Predictions in decision trees are made using the
criteria associated with the terminal nodes. A new observation is assigned to a
terminal node in the tree using these splitting criteria. The prediction for the new
observation is either the node classification (in the case of a classification tree) or the
average value (in the case of a regression tree). In the same way as other prediction
modeling approaches, the quality of the prediction can be assessed using a separate
training set.

7.4.2 Predicting Using Decision Trees

In Figure 7.20, a set of cars is shown on a scatterplot. The cars are defined as having
good fuel efficiency or poor fuel efficiency. Those with good fuel efficiency are
shaded darker than those with poor fuel efficiency. Values for the Acceleration and
Weight variables are shown on the two axes.

A decision tree is generated using the car fuel efficiency as a response variable.
This results in a decision tree where the terminal nodes partition the set of

26 -
24 ° °
o® o Good fuel efficiency
21 g oo o
L4 .
= 201 .'*‘ .8 % ®© o° 5 . o o Poor fuel efficiency
S 18{e , FmPoqdegane’ b o °
g o Sotthee, BS, BE0 0 o @
= 161 'o ‘)Iﬁg&z?ocg) 0&39§ e & [}
51 1 o 0 BEET P %0 °° © ¥ o o
< 14 0% 850 °8&0Q oo o é) O%E é)%ooo °
< © % %% . o 8, By &8
12’ ° ° o oo 5 o 0@08 oo ° o
e ® o q ¥o % o 8
10 1 o ® o o(;o
8, ° [ [e)

1500 2000 2500 3000 3500 4000 4500 5000 5500
Weight

Figure 7.20. Distribution of cars classified by fuel efficiency
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Figure 7.21. Dividing cars into regions based on classifications

observations according to ranges in the descriptor variables. One potential partition
of the data is shown in Figure 7.21. The prediction is then made based on
the observations used to train the model that are within the specific region, such as
the most popular class or the average value (see Figure 7.22).

When an observation with unknown fuel efficiency is presented to the
decision tree model, it is placed within one of the regions. The placement is
based on the observation’s descriptor values. Two observations (A and B) with
values for Acceleration and Weight, but no value for whether the cars have
good or poor fuel efficiency, are presented to the model. These observations are
shown on the scatterplot in Figure 7.23. Observation A will be predicted to have
good fuel efficiency whereas observation B will be predicted to have poor fuel
efficiency.

26 1
24 1 o Good fuel efficiency
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o 20 o Poor fuel efficiency
2 . . .
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Figure 7.22. Assigning prediction categories to regions
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Figure 7.23. Prediction of two unknown observations

Decision trees are useful for prediction since the results are easy to explain.
Unfortunately, these types of models can be quite sensitive to any noise in the
training set.

The same parameters used to build the tree (described in Section 6.4) can be set
to build a decision tree model, that is, different input descriptor combinations and
different stopping criteria for the tree.

7.4.3 Example

The decision tree in Figure 7.24 was built from a data set of 352 cars, using the
continuous variable MPG to split the observations. The average value shown in the
diagram is the MPG value for the set of observations. The nodes were not split
further if there were less than 30 observations in the terminal node.

In Table 7.17, a set of 36 observations not used in building the tree are shown
with both an actual and a predicted value. The final column indicates the node in the
tree that was used to calculate the prediction. For example, the AMC Gremlin with a
Horsepower of 90 and Weight of 2648 will fit into a region defined by node D in the
tree. Node D has an average MPG value of 23.96 and hence this is the predicted
MPG value. The table also indicates the actual MPG values for the cars tested.

The examples used in this section were simple in order to describe how
predictions can be made using decision trees. It is usual to use larger numbers of
descriptor variables. Also, building a series of models based on changing the
terminating criteria can also be useful in optimizing the decision tree models. The
further reading section of chapter 6 provides references to additional methods for
optimizing decision trees.

The terminal nodes in the decision trees can be described as rules, (as shown in
Section 6.3) which can be useful in explaining how a prediction was obtained. In
addition, looking at the data that each rule is based on allows us to understand the
degree of confidence with which each prediction was made. For example, the
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Table 7.17. Predictions based on terminal node averages

MPG MPG

Names Horsepower ~ Weight (Actual) (Predicted)  Rule ID
AMC Gremlin 90 2,648 21 23.96 D
AMC Matador 120 3,962 15.5 18.94 H
AMC Rebel SST 150 3,433 16 14.88 F
AMC Spirit DL 80 2,670 27.4 23.96 D
BMW 2002 113 2,234 26 19.96 G
Buick Century Limited 110 2,945 25 19.96 G
Buick Skylark 84 2,635 26.6 23.96 D
Chevrolet Chevette 63 2,051 30.5 34.34 A
Chevrolet Impala 165 4,274 13 13.45 I
Chevrolet Monza 2 + 2 110 3,221 20 19.96 G
Chevrolet Nova 100 3,336 15 22.14 E
Chrysler Lebaron 92 2,585 26 22.14 E

Medallion
Datsun 310 GX 67 1,995 38 30.59 C
Datsun b210 67 1,950 31 30.59 C
Dodge Aries 92 2,620 25.8 22.14 E

Wagon (SW)
Dodge Aspen 110 3,620 18.6 19.96 G
Dodge Colt Hatchback
Custom 80 1,915 35.7 28.38 B
Fiat 124 TC 75 2,246 26 30.59 C
Ford Fairmont (man) 88 2,720 25.1 23.96 D
Ford Fiesta 66 1,800 36.1 30.59 C
Ford Gran Torino 152 4215 14.5 13.45 1
Ford Mustang 11 2 42 89 2,755 25.5 23.96 D
Ford Pinto 80 2,451 26 28.38 B
Ford Pinto Runabout 86 2,226 21 28.38 B
Honda Accord LX 68 2,135 29.5 30.59 C
Maxda GLC Deluxe 65 1,975 34.1 34.34 A
Mercury Marquis
Brougham 198 4,952 12 13.45 I
Nissan Stanza XE 88 2,160 36 28.38 B
Plymouth Reliant 84 2,490 27.2 28.38 B
Plymouth Valiant 100 3,233 22 22.14 E
Plymouth Volare 100 3,430 20.5 22.14 E
Pontiac Catalina 175 4,385 14 13.45 I
Pontiac Safari (SW) 175 5,140 13 13.45 I
Toyota Corona 95 2,372 24 22.14 E

Mark 1T
Toyota Tercel 62 2,050 37.7 34.34 A
Volvo 245 102 3,150 20 19.96 G
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number of observations and the distribution of the response variable can help to
understand how much confidence we should have in the prediction.

7.5 NEURAL NETWORKS
7.5.1 Overview

A neural network is a mathematical model that makes predictions based on a series
of input descriptor variables. Like all prediction models, it uses a training set of
examples to generate the model. This training set is used to generalize the
relationships between the input descriptor variables and the output response
variables. Once a neural network has been created, it can then be used to
make predictions. The following sections describe what neural networks look like,
how they learn and how they make predictions. An example is presented illustrating
how neural networks can be optimized.

7.5.2 Neural Network Layers

A neural network comprises of a series of independent processors or nodes. These
nodes are connected to other nodes and are organized into a series of layers as shown
in Figure 7.25. In this example, each node is assigned a letter from A to L and
organized into three layers. The input layer contains a set of nodes (A, B, C, D, E, F).
Each node in the input layer corresponds to a numeric input descriptor variable. In
this case, there are six input descriptor variables. The layer shown in black is the
output layer containing nodes K and L. Each output node corresponds to an output
response variable (two in this example). Between the input layer and the output layer
is a hidden layer of nodes (G, H, I, J). In this example, there is just a single hidden
layer comprised of four nodes. The number of hidden layers normally range from 0

I:l Input node
I:I Hidden node
- Output node

Input layer Hidden layer Output layer

Figure 7.25. Topology of a neural network
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0.8

Figure 7.26. Weights associated with each connection

to 5. Each node in the network is often connected to all nodes in the layers adjacent
to the node. For example, node G is connected to A, B, C, D, E, F in the input layer
and nodes K and L in the output layer.

Every connection, such as between A and G, has a number or weight associated
with it. Prior to learning, the weights are assigned random values usually in the range
—1 to +1. These weights will be adjusted during the learning process. In
Figure 7.26, a portion of the neural network is displayed, showing node G along with
the nodes connected to it. Random numbers between —1 and +1 are assigned to each
connection. For example, the connection between A and G is randomly assigned a
weight of 0.8.

7.5.3 Node Calculations

Each node in the neural network calculates a single output value based on a set of
input values (/; to I,,), as shown in Figure 7.27. For nodes in the first hidden layer, the
input values correspond to the input descriptor values.

Each input connection has a weight and is assigned a value. The total input of
the node is calculated using these weights and values. For example, the following
formula for calculating the combined input is often used:

n
Input =y _ Iw;
=1

where I; are the individual input values and w; are the individual weights.

In this example, the observation in Table 7.18 is presented to the network
with values normalized between O and 1. The observation has six descriptor
variables and two response variables. The six descriptor variables are labeled V,
to V¢ and the two response variables are labeled V; and Vg. The input descriptor
variables are presented to the neural network, as shown in Figure 7.28. V; is
presented to node A, V, to node B, etc. These inputs all feed into node G. The
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Output

Activation

Figure 7.27. Calculation of node output

combined input value for node G is calculated using the input values and the
weights:

Inputg = lewj
=1
Inputg = (1 x 0.8) + (0 x —=0.2) + (1 x 0.7) + (1 x 0.5)
+(0.5x —0.1) + (0.8 x —0.4)
Inputs = 1.63
For a number of reasons, this combined input value is now processed further using

an activation function. This function will generate the output for the node. Common
activation functions include:

Sigmoid :  Output = 1+ e lput

eInput _ eflnput

Tanh :  Output = St 1 g Tput g

Table 7.18. Example observation with six inputs (descriptors) and two outputs (responses)

Descriptor variables Response variables

v, v, v, V. Vs Ve v, Vg
1 0 1 1 0.5 0.8 0.4 1
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Figure 7.28. Presenting input values to the neural network

These types of activation functions allow the neural network to develop nonlinear
models. The sigmoid function will produce an output between 0 and +1 and the tanh
function will produce an output between —1 and +1.

Using the above example with the sigmoid activation function, the following
output from the neural network node G would be generated:

Outputg = T o imie g

OMIPMIG = m

Outputs = 0.84

7.5.4 Neural Network Predictions

A neural network makes a prediction based on the input descriptor variables
presented to the network and the weights associated with connections in the
network. For example, Figure 7.29 shows an observation presented to the network.

The first hidden layer uses these input values along with the weights associated
with the connections between the input nodes and the hidden layer nodes to calculate
an output (as described previously). Each of these outputs is then presented to the
nodes in the next layer. These values are now inputs to the next layer. In this neural
network, there is only one hidden layer and so the outputs from nodes G, H, I, J are
now the inputs to nodes K and L. These input values are combined with the weights
of the connections. Nodes K and L each produce a single output corresponding to the
two response variables. These values are the predictions. The process of taking a set
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NN
A\\‘}'?A
) \\

g/m_/

J

Input layer Hidden layer Output layer

Figure 7.29. Input variables presented to network

of input descriptors and calculating one or more output responses is called feed
forward.

Initially, all the weights in the neural network are randomly assigned and hence
these initial predictions will be meaningless. These weights will be adjusted during
the learning process resulting in predictions with greater predictive accuracy.

7.5.5 Learning Process

All input/output values in the training set should be normalized prior to training the
network. This is to avoid introducing unnecessary bias resulting from variables
being measured on different scales. The learning process proceeds by taking random
examples from the training set, which are then presented to the neural network. The
neural network then makes a prediction. The neural network will learn by adjusting
the weights according to how well the predictions match the actual response values.
The observation from Table 7.18 is presented to the neural network and the network
calculates predictions for the two response variables. Node K generates a prediction
for response variable V; and node L generates a prediction for response variable Vg,
as shown in Figure 7.30.

In this example, the neural network has not started to learn and hence the
predictions are not close to the actual response values. The error or difference
between the actual responses and the predicted responses is calculated. The neural
network then attempts to learn by adjusting the weights of the network using this
error. Once the weights have been adjusted, the network is presented with another
random example from the training set and the weights are again adjusted based on
this new example. As more and more examples are presented to the network, the
error between the predicted responses and the actual responses gets smaller. At a
certain point, the learning process stops and the network is ready to be used for
prediction. Figure 7.31 illustrates the learning process.
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0 E‘ Predictions  Actual
4
1 0.8 0.4 (Vy)
1 0.3 1(Vy)
0.5
0.8
Input layer Hidden layer Output layer

Figure 7.30. Comparing predicted against actual values

7.5.6 Backpropagation

One of the most commonly used techniques for learning in neural networks is called
backpropagation. In order for the weights of the neural network connections to be
adjusted, an error first needs to be calculated between the predicted response and the
actual response. The following formula is commonly used for the output layer:

Error; = Output;(1 — Output;)(Actual; — Output;)

where Error; is the error resulting from node i, Output; is the predicted response
value and Actual; is the actual response value.

2. Feed forward using
input descriptors

/7 \

1. Select a 3. Compare prediction
random with actual response
observation

N\ "4

4. Adjust the
weights based on
the error

Figure 7.31. Learning process in neural networks
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For example, the errors calculated for nodes K and L are:

Node K:

Errorg = Outputg (1 — Outputy)(Actualy — Output)
Errorg = 0.8 x (1 —0.8) x (0.4 —0.8)

Errory = —0.064

Node L:

Errory, = Output; (1 — Outputy)(Actual;, — Outputy)
Error, = 0.3 x (1 —0.3) x (1 —0.3)

Errorp = 0.147

Once the error has been calculated for the output layer, it can now be
backpropagated, that is, the error can be passed back through the neural network.
To calculate an error value for the hidden layers, the following calculation is
commonly used:

n
Error; = Output;(1 — Output;) Z Errorjwj;
j=1
where Error; is the error resulting from the hidden node, Output; is the value of the
output from the hidden node, Error; is the error already calculated for the jth node
connected to the output and w;; is the weight on this connection.

Figure 7.32 illustrates how the errors are calculated for nodes other than the
output layer. After calculating the error for nodes K and L, the error of the hidden
layer can be calculated. Node G is used as an example for a hidden layer error
calculation as shown below.

Node G:

Errorg = Outputg(1 — Outputg)((Errorg x wgk) + (Errory X wgt))
Errorg = 0.84 x (1 — 0.84) x ((—0.064 x 0.3) + (0.147 x —0.7))
Errorg = 0.0112

An error should be calculated for all output and hidden layer nodes. Errors for
hidden layer nodes use errors from the nodes their output is attached to, which have

Output = 0.84
Predictions  Actual

Error = -0.064
0.8 0.4 (V)

0.3 1 (V)

Error = 0.147

Figure 7.32. Comparing errors in the output layer
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already been calculated. Once the error has been propagated throughout the neural
network, the error values can be used to adjust the weights of the connections using
the formula:

wij = wij + I X Error; X Output;

where w;; is the weight of the connection between nodes i and j, Error; is the
calculated error for node j, Output; is the computed output from node i, and [ is the
predefined learning rate. This takes a value between O and 1. The smaller
the learning rate value, the slower the learning process. Often a learning rate is set
high initially and then reduced as the network fine-tunes the weights.

To calculate the new weight for the connection between G and K where the
learning rate (/) has been set to 0.2, the following formula is used:

wek = wgk + I X Errorg X Outputg
wek = 0.3 +0.2 x —0.064 x 0.84
WGK = 0.276

In this example, the weight has been adjusted lower. The remaining weights in the
network are adjusted and the process continues with another example presented to
the neural network causing the weights of all connections in the network to be
adjusted based on the calculated error values.

The following example works through the entire process of how a neural
network learns from a single training example. Figure 7.33 shows the first eight steps
of the learning process. A normalized training set of observations will be used in the
learning process. This training set has three input descriptor variables (I, I, and I3)
and one output response variable (O). Five observations are shown (i, ii, iii, iv, and
v). In step 1, a neural network is set up, which has three input nodes (A, B, and C)
corresponding to each of the three input variables and one output node (F), since
there is only one output response variable. The neural network has a single hidden
layer consisting of two nodes (D and E). All nodes from the input layer are
connected to the two hidden layer nodes. These two nodes are in turn connected to
the output layer, which is the single node F in this example. In addition to setting up
the structure or topology of the network, random numbers between —1 and +1 are
assigned as weights to each of the connections. For example, the weight from node A
to node D (wyp) is 0.4 and the weight from node E to F (wgp) is 0.1.

In step 2, a random observation is selected (v) and is presented to the network as
shown. The value of I; (0) is presented to A, the value of I, (1) is presented to B, and
the value of I (1) is presented to C. In step 3, these inputs in combination with the
connection weights are used to calculate the output from the hidden nodes D and E.
To calculate these outputs, nodes D and E first combine the inputs and then use an
activation function to derive the outputs. The combined inputs to nodes D and E are
the weighted sum of the input values:

Inputp =1 X wap + I X wgp + I3 X wep
Inputp = (0 % 0.4) + (1 x —0.6) + (1 x 0.9) = 0.3
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Step 5

Error : -0.108
044

Step 6

Step 7

Step 4

Figure 7.33. Process of learning by adjusting weights

Inputp =1} X wag + I X wpg + I3 X weg
Inputz = (0 x 0.8) + (1 x 0.2) + (1 x —0.4) = —0.2

The outputs from D and E use these combined input values within an activation
function to generate the output values. In this case, we will use a sigmoid activation
function:

1 _ 1
1+ e~ Inputp - 1+ 6_0'
1 1
Outputg = T = T o02 =045
In step 4, the outputs from D and E are used as inputs to F. The total input is
calculated by combining these values with the weights of the connections:

Outputp =

;=057

Inputp = Outputp X wpp + Outputg X wgp
Inputr = (0.57 x —0.5) + (0.45 x 0.1) = —0.24
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Next, this input is converted to an output value using the activation function:

1 1
Outputy = =

1+ e—Inputp 1+ 024 = 0.44

In step 5, the value calculated as the output from node F is now compared to the
actual output value. An error value is computed:

Errorp = Outputr(1 — Outputrp)(Actualp — Outputr)

Errorp = 0.44(1 — 0.44)(0 — 0.44) = —0.108

In step 6, using the error calculated for node F, an error is calculated for nodes D and E:

Errorp = Outputp(1 — Outputp)(Errorr X wpr)
Errorp = 0.57(1 — 0.57)(—0.108 x —0.5) = 0.013
Errorg = Outputg(1l — Outputg)(Errorp X wgr)
Errorg = 0.45(1 — 0.45)(—0.108 x 0.1) = —0.003
In step 7, these error calculations for nodes D, E, and F can now be used to calculate

the new weights for the network. A constant learning rate (/) of 0.5 will be used in
the following equations:

wij = wy; + I X Error; X Output;
wap = 0.4 +0.5 x0.013 x0=0.4
wag = 0.8 4+ 0.5 x —0.003 x 0 = 0.8
wgp = —0.6 +0.5 x 0.013 x 1 = —0.594
wge = 0.2 4+ 0.5 x —0.003 x 1 = 0.199
wep = 0.9 4 0.5 x0.013 x 1 =0.907
weg = —0.4 + 0.5 x —0.003 x 1 = —0.402
wpr = —0.5 4+ 0.5 x —0.108 x 0.57 = —0.531
wgr = 0.1 +0.5 x —0.108 x 0.45 = 0.076
The weights in the network have been adjusted and a new random example is

presented to the network in step 8 (observation iii) and the process of learning
continues.

7.5.7 Using Neural Networks

When learning from a training set, there are a number of parameters to adjust that
influence the quality of the prediction, including the following:

e Hidden layers: Both the number of hidden layers and the number of nodes
in each hidden layer can influence the quality of the results. For example, too
few layers and/or nodes may not be adequate to sufficiently learn and too
many may result in overtraining the network.
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o Number of cycles: A cycle is where a training example is presented and the
weights are adjusted. The number of examples that get presented to the
neural network during the learning process can be set. The number of cycles
should be set to ensure that the neural network does not overtrain. The
number of cycles is often referred to as the number of epochs.

e Learning rate: Prior to building a neural network, the learning rate should
be set and this influences how fast the neural network learns.

Neural networks have a number of advantages:

e Linear and nonlinear models: Complex linear and nonlinear relationships
can be derived using neural networks.

e Flexible input/output: Neural networks can operate using one or more
descriptors and/or response variables. They can also be used with categorical
and continuous data.

e Noise: Neural networks are less sensitive to noise than statistical regression
models.

The major drawbacks with neural networks are:

e Black box: It is not possible to explain how the results were calculated in
any meaningful way.

e Optimizing parameters: There are many parameters to be set in a neural
network and optimizing the network can be challenging, especially to avoid
overtraining.

7.5.8 Example

When building a neural network, it is important to optimize the network to generate
a good prediction at the same time as ensuring the network is not overtrained. The
following example illustrates the use of neural networks in prediction using the
automobile example. A 10% cross validation method was used to assess the models
built.

Neural networks were built using the following parameters:

Inputs: Horsepower, Weight, Model Year, and Origin
Output: MPG
Hidden layers: 2

Learning rate: 0.2

Figure 7.34 illustrates the learning process. The neural network was run for 5,000,
10,000, and 20,000 cycles. The scatterplot shows the relationship between the actual
values and the predictions along with the 7> values for these relationships. It can be
seen from the three scatterplots that as the number of cycles increases, the accuracy
of the model increases. This can also be seen in Figure 7.35. The chart has plotted a
series of models generated using different numbers of cycles. The x-axis shows the
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5,000 cycles 10,000 cycles
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r2=0.39 2=0.74

20,000 cycles
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Figure 7.34. Prediction results using different numbers of cycles

number of cycles used for each model and the y-axis shows the cross-validated r?
value for each model. It illustrates how the neural network rapidly learns initially. As
the network approaches the optimal accuracy, it learns more slowly. Eventually the
network will start to overlearn and will not be able to generalize as well for examples
outside the training set. This can be tested using a separate test set. If the predictive
accuracy of the neural network starts to decline, the network is overtraining.

To identify an optimal neural network for prediction, an experiment is designed
to test three parameters:

e The inputs: All combinations of descriptors were tested from two to seven.
The descriptors used were Cylinders (C), Displacement (D), Weight (W),
Acceleration (A), Model Year (MY), and Origin (O). For example, where
the inputs were Weight, Model Year, and Origin these were designated as
W, MY, O.

e The number of hidden layers: One and two hidden layers were tested to
observe the impact on the predictive accuracy of the model. A more
extensive experiment may test additional neural network topologies.
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Figure 7.35. Neural network learning as cycles increase

o The number of cycles: For each combination of inputs and number of
hidden layers, a series of models were built using 1,000, 5,000, 10,000, and
25,000 cycles. These values were selected in order to understand the curve as
shown in Figure 7.35. As the number of cycles increases, the predictive
accuracy of the model increases towards an optimal accuracy.

Table 7.19 shows the r? values for different combinations of the three parameters.
The objective when selecting the parameters is to keep the model as simple as
possible with the fewest number of inputs and the smallest number of hidden layers
at the same time as ensuring the model has not overtrained. The following model
parameters were chosen to build the final model. The model built using these
parameters has one of the highest 7? values:

Inputs: Horsepower, Weight, Model Year, and Origin
Cycles: 10,000

Hidden layers: 1

Learning rate: 0.2

The multilayer backpropagation neural network, as presented here, is one type of
network. Other approaches are referenced in the further reading section of this chapter.

7.6 OTHER METHODS

There are many methods for building both classification and regression models.
The following section briefly describes a number of alternative approaches. More
details on these approaches are referenced in the further reading section of this
chapter.

e Multiple linear regressions: The method described for simple linear regres-
sion can be extended to handle multiple descriptor variables. A similar least
squares method is used to generate the equation. The form of the equation is
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204 Chapter 7 Prediction

y=a+bix; + byxy + --- + byx; where y is the response, x; to x, are the
descriptor variables, a is a constant, and b, to b, are also constants. For example,
when attempting to predict a potential customer’s credit score (CS) a multiple
linear regression equation could be generated. The equation could be based on
the number of missed payments to other credit cards (MP), the number of years
with no missed payments (NMP), and the number of good standing loans
(GSL), as for example in the following equation:

CS=15-18 x MP + 12 x NMP + 10 x GSL

o Logistic regression: Logistic regression is a regression method that can be
applied in situations where the response variable is dichotomous and usually
translated to a binary variable.

e Random forests: A random forest is a collection of decision trees used to
make predictions. Each tree is built using a subset of all observations. In
addition, each tree is built with a subset of all possible descriptors to use in
splitting the observations. When using a random forest to make predictions, the
observation is presented to each tree. Each individual tree makes a prediction
and the results from all the trees are combined to create a final prediction using
either an average or a voting scheme in the case of categorical responses.

e Rule-based classifiers: In Chapter 6, a number of methods were described
that generate rules from the data, for example, associative rules. When the
THEN-part of the rule is a response variable, these rules can be used to build
classification models. When a new observation is presented to the model,
rules are identified that match the IF-part of the rule to the observation. The
predicted classification corresponds to the THEN-part of the rule. If multiple
rules match a single observation, then either the rule with the highest
confidence is selected or a voting scheme is used. Rule-based classifiers
provide a quick method of classification that is easy to interpret.

e Naive Bayes classifiers: This is a method of classification that makes use of
Bayes theorem. It assumes that the descriptor variables used are independent.
The method is capable of handling noise and missing values.

o Partial least squares regression: Partial least squares regression combines
multiple linear regressions and principal component analysis. It can be used
to handle nonlinear multiple-regression problems.

e Support vector machines: Support vector machines can be used for both
classification and regression problems. For classification problems, they
attempt to identify a hyperplane that separates the classes. Despite their
general usefulness, they can be difficult to interpret.

7.7 SUMMARY

Types of models:

o Classification: Models where the response variable is categorical. These are assessed
using: concordance, error rate, specificity, and sensitivity analysis.
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Table 7.20. Summary of predictive modeling approaches in this chapter

Response Descriptor Time  Time Expla-
type type Problem to build to apply nation
Simple linear Single Single Linear Fast Fast Formula
regression continuous continuous
kNN Single any Any Based on Fast Slow  Similar
similar observ-
observations ations
Regression Single Any Based on Slow  Fast Tree
trees continuous property
ranges
Classification Single Any Based on Slow Fast Tree
trees categorical property
ranges
Neural nets  Any Any Nonlinear Slow  Fast No
explan-
ation

e Regression: Models where the response variable is continuous. These are assessed
using r? and residual analysis.

Building a prediction model involves the following steps:

1. Select methods based on problem
2. Separate out training and test sets
3. Optimize the models

4. Assess models generated
Applying a prediction model follows these steps:

1. Evaluate whether an observation can be used with the model
2. Present observations to model
3. Combine results from multiple models (if appropriate)

4. Understand confidence and/or explain how results were computed

Table 7.20 summarizes the different methods described in this chapter.

7.8 EXERCISES

1. A classification prediction model was built using a training set of examples. A
separate test set of 20 examples is used to test the model. Table 7.21 shows the
results of applying this test set. Calculate the model’s:

a. Concordance
b. Error rate
c. Sensitivity
d. Specificity
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Table 7.21. Table of actual vs predicted values
(categorical response)

Observation Actual Predicted
1 0 0
2 1 1
3 1 1
4 0 0
5 0 0
6 1 0
7 0 0
8 0 0
9 1 1

10 1 1

11 1 1

12 0 1

13 0 0

14 1 1

15 0 0

16 1 1

17 0 0

18 1 1

19 0 1

20 0 0

. A regression prediction model was built using a training set of examples. A separate

test set was applied to the model and the results are shown in Table 7.22.

a. Determine the quality of the model using 2
b. Calculate the residual for each observation

. Table 7.23 shows the relationship between the amount of fertilizer used and the

height of a plant.

a. Calculate a simple linear regression equation using Fertilizer as the descriptor and
Height as the response.
b. Predict the height when fertilizer is 12.3

. A kNN model is being used to predict house prices. A training set was used to

generate a kNN model and k is determined to be 5. The unseen observation in
Table 7.24 is presented to the model. The kNN model determines the five observa-
tions in Table 7.25 from the training set to be the most similar. What would be the
predicted house price value?

. A classification tree model is being used to predict which brand of printer a customer

would purchase with a computer. The tree in Figure 7.36 was built from a training set
of examples. For a customer whose Age is 32 and Income is $35,000, which brand
of printer would the tree predict he/she would buy?

. Figure 7.37 shows a simple neural network. An observation with two variables (0.8,

0.2) is presented to the network as shown. What is the predicted output from the
neural network using a sigmoid activation function?



Table 7.22. Table of actual vs predicted values

(continuous response)

Observation Actual Predicted
1 13.7 124
2 17.5 16.1
3 8.4 6.7
4 16.2 15.7
5 5.6 8.4
6 20.4 15.6
7 12.7 13.5
8 5.9 6.4
9 18.5 154

10 17.2 14.5

11 5.9 5.1

12 94 10.2

13 14.8 12.5

14 5.8 5.4

15 12.5 13.6

16 10.4 11.8

17 8.9 7.2

18 12.5 11.2

19 18.5 17.4

20 11.7 12.5

Table 7.23. Table of plant experiment

Fertilizer Height
10 0.7
5 04
12 0.8
18 14
14 1.1
7 0.6
15 1.3
13 1.1
6 0.6
8 0.7
9 0.7
11 0.9
16 1.3
20 1.5
17 1.3

Exercises
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Table 7.24. House with unknown price
Bedroom Number of bathrooms Square feet Garage House price
2 2 1,810 0
Table 7.25. Table of similar observations
Bedroom Number of bathrooms Square feet Garage House price
2 2 1,504 0 355,000
2 2 1,690 0 352,000
2 3 1,945 0 349,000
3 2 2,146 0 356,000
3 2 1,942 0 351,000
Age<25
Purchase = Brand A
Income < $40,000 Income > $40,000

Purchase = Brand B

Purchase = Brand C

Figure 7.36. Classification tree for customer’s brand purchase based on Age and Income

0.8 —»

02 —

Figure 7.37. Simple neural network
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7.9 FURTHER READING

For more information on methods for combining models, such as bagging and boosting, see
Witten (2000), and for confidence metrics for simple linear regression see Kachigan (1991),
Donnelly (2004), and Levine (2005). Fausett (1994) provides additional details on Neural
Networks. The following indicates sources of additional information on the following topics:
multiple linear regression (Kleinbaum 1998), logistic regression (Agresti 2002), random
forests (Kwok 1990), rule-based classifiers (Tang 2005), Naive Bayes (Tang 2005), partial
least squares regressions (Wold 1975), and support vector machines (Cristianini 2000).



Chapter 8

Deployment

8.1 OVERVIEW

To realize the benefits of a data analysis or data mining project, the solution must be
deployed, that is, applied to the business or scientific problem. It is important to plan
this part of the project to ensure that the analysis performed to date positively
influences the business. The following sections briefly outline deliverables and
activities necessary during any deployment step.

8.2 DELIVERABLES

There are many options for delivering data analysis or data mining solutions. Some
of the more popular include:

e Report: A report describing the business intelligence derived from the
project is a common deliverable. The report should be directed to the persons
responsible for making decision. It should focus on significant and actionable
items, that is, it should be possible to translate any conclusions into a
decision that can be used and that makes a difference. It is increasingly
common for the report to be delivered through the corporate intranet to
enable additional interested parties to benefit from the report.

o Integration into existing systems: The integration of the results into
existing operational systems or databases is often one of the most cost
effective approaches to delivering a solution. For example, when a sales team
requires the results of a predictive model, that ranks potential customers on
the basis of the likeliness that they will buy a particular product, the model
may be integrated with the CRM system (Customer Relationship Manage-
ment) that they currently use on a daily basis. This minimizes the need for
training and makes the deployment of the results easier. Prediction models or
data mining results can also be integrated into system accessible to a
customers such as e-commerce web sites. In this situation, customers may
be presented with additional products or services that they may be interested

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.
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in, identified using an embedded prediction model. Models may need to be
integrated into existing operational processes where a model needs to be
constantly applied to operational data. For example, a solution may be the
detection of events leading to errors in a manufacturing system. Catching
these issues early enough may allow a technician to rectify the problem
without stopping the production system. The model needs to be integrated
with the data generated from the system. Any identified anomalies should be
rapidly communicated to those who might be able to prevent the potential
problem. A data mining solution may also require continual access to new
training data since the data from which a model is built is only relevant for a
short period of time. In this situation, it will be essential to tightly integrate
the model building with the data. Core technologies involved in the
deployment include tools used to perform the analysis (statistics, OLAP,
visualizations and data mining), methods for sharing the models generated,
integration with databases and workflow management systems. The further
reading section of this chapter provides links to resources on deploying data
analysis and data mining solutions.

e Standalone software: Another option is the development of a standalone
system. The advantage of this approach is that, since it is not necessary to
integrate with operational systems, the solution may be deployed more
rapidly. However, there is a cost in terms of developing, maintaining and
training.

8.3 ACTIVITIES

The following activities need to be accomplished during the deployment phase:

e Plan and execute the deployment: A plan should be generated describing
the deployment of the solutions. It should include information on how the
solution is to be deployed and to whom. Issues relating to the management of
change, as the solution may introduce changes to some individual’s daily
activities, should be addressed. Also, a deployment may require a training
program that outlines both how to use the new technology and how to
interpret the results. In many situations the value of the data, and hence the
models generated from the data, diminishes over time. In this situation,
updated models may be required and a strategy should be put in place to
ensure the currency of the models. This could be accomplished through an
automated approach or through manually updating of the models and needs
to be planned.

e Measure and monitor performance: It is important to understand if the
models or analysis generated translate into meeting the business objectives
outlined at the start of the project. For example, the models may be
functioning as expected; however, the individuals that were expected to
use the solution are not for some reasons and hence there is no business
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benefit. A controlled experiment (ideally double blind) in the field should be
considered to assess the quality of the results and their business impact. For
example, the intended users of a predictive model could be divided into two
groups. One group, made up of half (randomly selected) of the users, uses the
model results and the other group does not. The business impact resulting
from the two groups could then be measured. When models are continually
updated, the consistency of the results generated should be also monitored
over time.

Review project: At the end of a project, it is always a useful exercise to look
back at what worked and what did not work. This will provide insights to
improve future projects.

8.4 DEPLOYMENT SCENARIOS

Exploratory data analysis and data mining has been deployed to a variety of
problems. The following illustrates some of the areas where this technology has
been deployed:

e Personalized e-commerce: Customers characteristics, based on profiles and

historical purchasing information, can be used to personalize e-commerce
web sites. Customers can be directed to products and services matching their
anticipated needs.

Churn analysis: Profiles of customers discontinuing a particular product or
service can be analyzed and prediction models generated for customers who
are likely to switch. These models can be used to identify at risk customers
providing an opportunity to target them with a focused marketing campaign
in order to retain their business.

Quality control: Quality is critical to all production systems and exploratory
data analysis and data mining approaches are important tools in creating and
maintaining a high quality production system. For example, the 6-sigma
quality control methodology uses many of the statistical methods described
in Chapter 5.

Experimental design and analysis: Experiments are widely used in all
areas of research and development to design, test and assess new products.
Exploratory data analysis and data mining are key tools in both the design of
these experiments and the analysis of the results. For example, every day
biologists are experimentally generating millions of data points concerning
genes and it is critical to make use of exploratory data analysis and data
mining in order to make sense out of this data.

Targeted marketing campaigns: Organizations can use data analysis and
data mining methods to understand profiles of customers who are more likely
to purchase specific products and use this information for more targeted
marketing campaigns with higher response rates.
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e Analyzing the results of surveys: Surveys are a widely used way of
determining opinions and trends in the market place, and the application
of exploratory data analysis and data mining to the process of collecting and
analyzing the result will help to get the answers faster.

e Anomaly detection: In many situations it is the detection of outliers in the
data that is most interesting. For example, the detection of fraudulent
insurance claim applications can be based on the analysis of unusual activity.

8.5 SUMMARY

Table 8.1 summarizes issues to consider when deploying any solution.

8.6 FURTHER READING

The following web sites provide a list of some of the tools for deploying data analysis and/or

data mining solutions:

http://www.angoss.com/

http://www.fairisaac.com/

http://www-306.ibm.com/software/data/iminer/

http://www.insightful.com/
http://www.jmp.com/
http://www.kxen.com/

http://www.microsoft.com/sql/solutions/bi/default.mspx

Table 8.1. Deployment issues
Deliverables Report
Integration into existing
systems
Standalone software
Activities Plan and execute

deployment

Measure and monitor
performance

Review project

Describes significant and actionable items

Cost effective solution, minimal training
cost, minimal deployment cost, access
to up-to-date information

May provide rapid deployment

Describes how and to whom the solution
will be deployed, identify whether there is a
need for change management, describes
any required training, discusses how the
models will be kept up-to-date

Determines to what degree the project
has met the success criteria, ensures that
the model results are consistent over time

To understand what worked and what did
not work




214 Chapter 8 Deployment

http://www.oracle.com/technology/products/bi/odm/index.html
http://www.sas.com/index.html

http://www.spss.com/

http://www.statsoft.com/

http://www.systat.com/

The following resources provide support for integrating data mining solutions:
http://www.dmg.org/
http://www.jcp.org/en/jsr/detail71d=73

The following references provide additional case studies: Guidici (2005), Rudd (2001) and
Berry (2004).
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Conclusions

9.1 SUMMARY OF PROCESS

Exploratory data analysis and data mining is a process involving defining the
problem, collecting and preparing the data, and implementing the analysis. Once
completed and evaluated, the project should be delivered to the consumer concerned
by the information. Following a process has many advantages including avoiding
common pitfalls in analyzing data and ensuring that the project meets expectations.
This book has described the process in four steps:

1. Problem definition: Prior to any analysis, the problem to be solved
should be clearly defined and related to one or more business objectives.
Describing the deliverables will focus the team on delivering the solution
and provides correct expectations to other parties interested in the outcome
of the project. A multidisciplinary team is best suited to solve these
problems driven by a project leader. A plan for the project should be
developed, covering the objectives and deliverables along with a timeline
and a budget. An analysis of the relationship between the cost of the project
and the benefit derived for the business can form a basis for a go/no-go
decision for the project.

2. Data preparation: The quality of the data is the most important aspect
that influences the quality of the results from the analysis. The data
should be carefully collected, integrated, characterized, and prepared for
analysis. Data preparation includes cleaning the variables to ensure
consistent naming and removing potential errors. Eliminating variables
that provide little benefit to any analysis can be done at this stage. The
variables should be characterized and potentially transformed to ensure
that the variables are considered with equal weight, that they match as
closely as possible a normal distribution, and also to enable the use of
the data with multiple analysis methods. Where appropriate, the data set
should be partitioned into smaller sets to simplify the analysis. At the

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.

215



216 Chapter 9 Conclusions

end of the data preparation phase, one should be very familiar with the
data and should already start identifying aspects of the data relating to
the problem being solved. The steps performed in preparing the data
should be documented. A data set ready for analysis should have been
prepared.

3. Implementation of the analysis: There are three primary tasks that relate
to any data analysis or data mining project: summarizing the data, finding
hidden relationships, and making predictions. When implementing the
analysis one should select appropriate methods that match the task, the
data, and the objectives of the project. Available methods include graphing
the data, summarizing the data in tables, descriptive statistics, inferential
statistics, correlation analysis, grouping methods, and mathematical mod-
els. Graphs, summary tables, and descriptive statistics are essential for
summarizing data. Where general statements about populations are
needed, inferential statistics should be used to understand the statistical
significance of the summaries. Where a method is being used for grouping
or prediction, appropriate methods should be selected that match the
objectives of the projects and the available data. These methods should
be fined-tuned, adjusting the parameters within a controlled experiment.
When assessing the quality of a prediction model, a separate test and
training set should be used. When presenting the results of the analysis,
any transformed data should be presented in its original form. Appro-
priate methods for explaining and qualifying the results should be
developed when needed. Where an analysis is based on multiple models,
specific model selection criteria and/or composite models should be
developed.

4. Deployment: A plan should be set up to deliver the results of the analysis to
the already identified consumer. This plan will need to take into account
nontechnical issues of introducing a solution that potentially changes the
user’s daily routine. The plan may need to address the need for continual
updates to the predictive models over time. The plan should be executed as
well as the performance measured. This performance should directly relate
to the business objectives of the project. This performance may change over
time and should be monitored.

Although the process is described as a linear four-step approach, most projects will
invariably need to go between the different stages from time-to-time. Like any
complex technical project, this process needs to be managed by a project leader to
ensure that the project is planned and delivered on time. Communication between
the cross-disciplinary teams and other stakeholders about progress is essential.
Regular status meeting, especially between steps in the process, are critical. Table 9.1
summarizes the process.

Three issues for delivering a successful project should be highlighted. Firstly,
a clear and measurable objective will help to focus the project on issues that
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Table 9.1. Table summarizing process and deliverables

Steps Description Deliverables
1. Problem Define: e Project plan
definition e Objectives

e Deliverables
e Roles and responsibilities
e Current situation

e Timeline
e Costs and benefits
2. Data Prepare and become familiar e High degree of
preparation with the data: familiarity with the data
e Pull together data table e Characterization of data
e Categorize the data e Documentation of the
e Clean the data preparation steps
e Remove unnecessary data e Data set(s) prepared for
e Transform the data analysis
e Segment the data
3. Implementation = Summarizing the data e Results of the data
of the analysis e Use of summary tables, graphs, analysis/data mining

and descriptive statistics to
describe the data

e Use of inferential statistics to make
general statements with confidence

Finding hidden relationships
e Identify grouping methods
based on the problem
e Optimize the grouping results
in a controlled manner

Making predictions
o Select modeling approaches
that match the problem and
data constraints
e Use separate test and
training sets
e Optimize model in a controlled

manner
4. Deployment ¢ Plan and execute deployment e Deployment plan
based on the definition in step 1 e Solution deployed

e Measure and monitor performance e Project review
e Review the project
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make a difference. Secondly, the quality of the data is the most important factor
influencing the quality of the results. The methods used to analyze the data are
not as important. Particular attention should be paid to collecting and preparing
a quality data set for analysis. Thirdly, deployment is where any results
obtained so far are translated into benefits to the business and this step should
be carefully executed and presented to the customer in a form that they can use
directly.

9.2 EXAMPLE
9.2.1 Problem Overview

To illustrate the process described in this book, we will use an example data set from
Newman (1998): The Pima Indian Diabetic Database. This set is extracted from a
database generated by The National Institute of Diabetes and Digestive and Kidney
Diseases of the NIH. The data set contains observations on 768 female patients
between age 21 and 81, and specifies whether they have contracted diabetes in five
years. The following describes a hypothetical analysis scenario to illustrate the
process of making sense of data.

9.2.2 Problem Definition

Objectives

Diabetes is a major cause of morbidity (for example, blindness or kidney failure)
among female Pima Indians of Arizona. It is also one of the leading causes of
death. The objective of the analysis is to understand any general relationships
between different patient characteristics and the propensity to develop diabetes,
specifically:

e Objective 1: Understand differences in the measurements recorded bet-
ween the group that develop diabetes and the group that does not develop
diabetes.

e Objective 2: Identify associations between the different factors and the
development of diabetes that could be used for education and intervention
purposes. Any associations need to make use of general categories, such as
high blood pressure, to be useful.

e Objective 3: Develop a predictive model to estimate whether a patient will
develop diabetes.

The success criterion is whether the work results in a decrease in patients developing
diabetes and this result should be measured over time.

The population of this study consists of female Pima Indians between the age of
21 and 81.
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Deliverables

The deliverables of this project include:

e Report: A report summarizing the data and outlining general associations
that influence diabetes.

e Prediction model software: Software to predict patients likely to become
diabetic. To be useful the models must have sensitivity and specificity values
greater than 60%. The model is to be deployed over an internal network to
health care professions. No explanation of the result is required; however, a
degree of training would be needed for the user to help him/her understand
how to interpret the results. The time to compute any prediction should be
less than five minutes.

Roles and Responsibilities

A team of experts should be put together including individuals with knowledge of
how the data was collected, individuals with knowledge of diabetes, along with data
analysis/data mining experts and IT resources. The team should also include health
care professional representatives who will eventually use the information generated.
Their inclusion would both ensure their opinions are taken into account as well as to
facilitate the acceptance of this new technology.

Current Situation

The team will use an available database of patient records that records whether a
patient develops diabetes in five years. It is assumed that the data represents a
random and unbiased sample from the population defined. The data set is available
from Newman (1998).

Timeline

A timeline should be put together showing the following activities:

e Preparation: Assembling, characterizing, cleaning, transforming, and seg-
menting the data prior to analysis is essential and adequate time should be
allocated for these tasks. The analysis specifically calls for an understanding
of general categories and the preparation should set aside time for this
preparation.

o Implementation of the analysis: The implementation of the analysis will
involve the following data analysis/data mining tasks:

1. Summarizing the data: Understanding differences in the data between
the two groups will require the use of tables and graphs to summarize the
data, descriptive statistics to quantify the differences, and inferential
statistics to make general statements.

2. Finding hidden relationships: The ability to group the data in various
ways will assist in discovering unusual patterns and trends. This project
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requires associations to be found within the data and the results are presented
to facilitate education and prevention, that is, they need to be easy to
understand. Grouping methods that satisfy these criteria should be used.

3. Making predictions: The project calls for the development of a predic-
tion model. Different classification modeling approaches should be
considered and optimized.

e Deployment: A plan for delivering the predictive model to the health care
professionals over the internal network should be developed. In addition to
planning the technical rollout, the appropriate training should be supplied to
the health care professionals. A double blind test to monitor the deployment
is not possible in this case. The monitoring of the deployment should be
periodically tested against new records in the database to ensure that an
appropriate level of accuracy is maintained. In addition, as the database
expands, additional modeling of the data should be investigated to evaluate if
results can be improved.

Costs and Benefits

A cost-benefit analysis would be useful to compare the cost of the project with the
anticipated benefits of the analysis.

9.2.3 Data Preparation

Pull Together Data Table

A data set containing 768 observations has been made available. It contains patient
records describing a number of attributes in addition to whether the patient went on
to develop diabetes in the following five years. The data set contains the following
variables:

e Pregnant: A record of the number of times the patient has been pregnant

e Plasma-Glucose: Plasma—glucose concentration measured using a two-hour
oral glucose tolerance test

e DiastolicBP: Diastolic blood pressure

e TricepsSFT: Triceps skin fold thickness
e Serum-Insulin: Two-hour serum insulin
e BMI: Body mass index

e DPF: Diabetes pedigree function

e Age: Age of the patient

e Class: Diabetes onset within five years

Categorize Variables

Table 9.2 summarizes the variables in the data set along with their anticipated role in
the analysis using the categories described in Section 3.3.
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Table 9.2. Categorization of the variables in the data set

Continuous/  Scale of Anticipated

Variable discrete measurement  role Comments
Pregnant Continuous  Ratio Descriptor Number of times pregnant
Plasma- Continuous  Ratio Descriptor Plasma-glucose concentration

Glucose in the blood in a two-hour

oral glucose tolerance test

DiastolicBP Continuous  Ratio Descriptor  Units: mm Hg
TricepsSFT Continuous  Ratio Descriptor  Units: mm
Serum-Insulin Continuous  Ratio Descriptor  Units: mm U/ml
BMI Continuous  Ratio Descriptor Body mass index
DPF Continuous  Ratio Descriptor Diabetes pedigree function
Age Continuous  Ratio Descriptor Units: years
Class Discrete Ordinal Response 0 — does not contract

diabetes in five years
1 — contracts diabetes
in five years

Clean Variables

At this point, it is important to include those involved in collecting the data to
understand how best to clean the data. A preliminary analysis of the data indicates the
use of zero for missing data. Any assumptions should be validated with those
involved in collection. Table 9.3 shows the number of zero values in each variable.

Removing all observations with missing data would significantly decrease the
size of the data set to analyze. The variables TricepsSFT and Serum-insulin are
candidates for removal and will be discussed in the next section. At this point all
observations with zero values in the following variables will be removed: Pregnant,
Plasma-Glucose, DiastolicBP, and BMI.

When cleaning a data set, it is useful to look for outliers in the data. For
example, there is an observation with a TricepsSFT value of 99. This is over 6.5
standard deviations away from the mean of the data (see Figure 9.1). This

Table 9.3. Number of zeros in each variable

Variable Number of zero values
Pregnant 111
Plasma—Glucose 5
DiastolicBP 35
TricepsSFT 227
Serum-Insulin 374
BMI 11
DPF 0
Age 0

Class 0




222 Chapter 9 Conclusions
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Figure 9.1. Potential error in the data

observation should be discussed with those who collected the data to determine
whether it is an error. For this analysis, the observation will be removed.

Remove Variables

An analysis of the relationship between all assigned descriptor variables was
performed. There is a relationship between BMI and TricepsSFT with a value of
r =0.67 (see Figure 9.2). This indicates that one of these variables could be a
surrogate for the other. Additionally, TricepsSFT has 227 missing data points. For
this analysis, it will be removed based on the number of missing values and its
relationship to BMI. The variable Serum-Insulin is also to be removed from the
data set because of the number of missing values.
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Figure 9.2. Relationship between TricepsSFT and BMI
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Transform Variables

The data is further examined to determine whether any transformations of the data
are required. The following transformations are considered within this analysis:
normalization, discretization, and aggregation.

To ensure that all variables are considered with equal weight in any further
analysis, the min-max normalization, described in Section 3.4.4, was applied to each
variable where the new range is between 0 and 1.

Value — OriginalMin

Value' =
ame OriginalMax — OriginalMin

(NewMax — NewMin) + NewMin

Table 9.4 illustrates a portion of the new table with the newly transformed variables
added to the data set.

The frequency distributions for all variables are examined to see whether the
variables follow a normal distribution and therefore can be used with parametric
modeling approaches without transformation. For example, the DiastolicBP
variable follows a normal distribution and can be used without transformation
(Figure 9.3).

If we wish to use the variable Serum—insulin within modeling approaches that
require a normal distribution, the variable would require a transformation, such as a
log transformation to satisfy this criterion. In Figure 9.4, the Serum—insulin variable
has been applied as a log transformation and now reflects more closely a normal
distribution.

One of the requirements of this analysis is to classify general associations
between classes of variables, such as high blood pressure, and diabetes. To this end,
each variable is binned into a small number of categories. This process should be
performed in consultation with both any subject matter experts and/or the healthcare
professionals who will use the results. This is to ensure that any subject matter or
practical considerations are taken into account prior to the analysis, since the results
will be presented in terms of these categories.

The following summarizes the cut-off values (shown in parentheses) along with
the names of the bins for the variables:

e Pregnant: low (1,2), medium (3,4,5), high (> 6)
e Plasma-Glucose: low (< 90), medium (90-150), high (> 150)
e DiastolicBP: normal (< 80), normal-to-high (80-90), high (> 90)
e BMI: low (< 25), normal (25-30), obese (30-35), severely obese (> 35)
e DPF: low (< 0.4), medium (0.4-0.8), high (> 0.8)
e Age: 20-39, 40-59, 60 plus
e Class: yes (1), no (0)
Table 9.5 summarizes a sample of observations with binned values.

Aggregated variables have already been generated: BMI from the patient’s
weight and height as well as the DPF (diabetes pedigree function).
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DiastolicBP
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Figure 9.3. Frequency distribution of variable DiastolicBP

Deliverable

The results from this stage of the project are a cleaned and transformed data set
ready for analysis along with a description of the steps that were taken to create the
data set. This description is useful for a number of reasons including validating the
results as well as repeating the exercise later with different data. The following is a
list of variables in the cleaned data table.

e Pregnant

e Pregnant (grouped)

e Pregnant (normalized)

e Plasma-Glucose

e Plasma—Glucose (grouped)

e Plasma-Glucose (normalized)

e DiastolicBP

Serum—insulin log (Serum—insulin)

1807 7

135+ 1804
g g
= =]
g 5

Z 90 2 1204
I3 [

45 60-

0 L= 0

0 100 200 300 400 500 600 700 800 900 -3 -2.5 -2 -1.5 -1

Figure 9.4. Log transformation of Serum-insulin
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e DiastolicBP (grouped)

e DiastolicBP (normalized)

e BMI

e BMI (grouped)

e BMI (normalized)

e DPF

e DPF (grouped)

e DPF (normalized)

e Age

e Age (grouped)

e Age (normalized)

e Class

e Diabetes
In Figure 9.5, the frequency distribution of the variable class is shown. Figure 9.6
characterizes the variables assigned as descriptors. For each variable, a frequency

distribution is generated and presented alongside a series of descriptive statistics in
order to characterize the variables.

9.2.4 Implementation of the Analysis

Summarizing the Data

The use of graphs, summary tables, descriptive statistics, and inferential statistics
will be used here to understand the differences between the two groups and the
measured data. Figure 9.7 shows the distribution of the Plasma—Glucose variable

Class

4401

3301
oy
g
2 2201
o
=

1104

0

0 1

Figure 9.5. Frequency distribution of class variables
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Develops diabetes Does not develop diabetes
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Figure 9.7. Plasma—Glucose distributions for the two groups

(light gray). Observations belonging to the two groups are highlighted in dark gray.
In the histogram on the left, the dark gray highlighted observations belong to the
group that went on to develop diabetes. The observations highlighted on the right
histogram are patients that did not develop diabetes. These graphs indicate that the
distribution of Plasma—Glucose data between the groups is significantly different.
Almost all patients with the highest Plasma—Glucose values went on to develop
diabetes. Almost all the patients with the lowest Plasma—Glucose values did not go
on to develop diabetes within five years. In Figure 9.8, the two groups are plotted

|—|:*:'—| Develops diabetes
I ° I Does not develop diabetes

40 60 80 100 120 140 160 180 200
Plasma—Glucose

Figure 9.8. Box plots showing Plasma-Glucose variation between the two groups
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Figure 9.9. Distribution of DiastolicBP between the two groups
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Figure 9.10. Box plots showing DiastolicBP variation between the two groups

alongside each other using box plots. There is a significant shift in the central
tendency of the Plasma—Glucose values between the two groups.

Figure 9.9 shows the distribution for the variable DiastolicBP. The light gray
color is the overall frequency distribution and the highlighted observations on the
left are the group that went on to develop diabetes. The highlighted group on the
right did not develop diabetes. From these graphs it is difficult to see any discernable
trends that differentiate the two groups, since the shape of the distributions is similar,
even though the number of observations is higher in the group without diabetes. If
we plot the two groups using a box plot, we see that the group that went on to
develop diabetes is generally higher than the group that did not (Figure 9.10).

Table 9.6 summarizes the means for all variables between the group that went
on to develop diabetes and the group that did not. Figure 9.11 displays the frequency
distribution for all variables to understand differences between the two groups
(diabetes and not diabetes). It can be seen from the graphs, that the values for
Pregnant, Plasma—Glucose, BMI and Age are significantly different between the
two groups. It is more difficult to see the differences between the variables
DiastolicBP and DPF.

Up to this point, we have used graphs, summary tables, and descriptive statistics
to visualize and characterize the differences between the two groups. We will now
use inferential statistics to understand if these differences are significant enough to
make claims about the general population concerning their differences. We will use a
hypothesis tests to make this assessment, described in Section 5.3.3.

As an example, we will use the DiastolicBP variable. The observations are
divided into two groups, those patients that went on to develop diabetes (group 1)
and those patients that did not go on to develop diabetes (group 2). We will specify a
null and alternative hypothesis:

Table 9.6. Summary table for mean of descriptor variable for each group

Mean
Patient Mean (Plasma— Mean Mean Mean Mean
Diabetes count (Pregnant)  Glucose) (DiastolicBP) (BMI) (DPF) (Age)

no 408 3.87 110.7 70.51 30.58 043 31.93
yes 216 5.65 142 75.3 3472 0.54 385
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Ho: py = 15
Ha: iy > 1y

where p, is the population mean of group 1 and y, is the population mean of group 2.
It is calculated that the sample means are x; = 75.3 and X, = 70.51. The

number of observations in group 1 is 216 (n;) and the number of observations in

group 2 is 408 (n,). The standard deviation of group 1 is 11.95 (s;) with a variance of

142.8 (s%) and the standard deviation of group 2 is 12.27 (s,) with a variance of 150.6

(s%). We wish to make any claims with a 99% confidence level (i.e. « = 0.01).
The following formulas will be used to calculate the hypothesis score:

(X1 — %) — (1 — o)

\/ I‘Ll| +

2 _ (= Dsi+ (- 1)s
P-4+ (m—1)

7=

where

We use these formulas to calculate a hypothesis score:

» (216 — 1)142.8 + (408 — 1)150.6

N

P (216 — 1) + (408 — 1)
(75.3 — 70.51) — (0)

V147.9, /5k 4+ &

A p-value is determined, as described in Section 5.3.3, and identified using
Appendix A.1. The p-value for this score is 0.0000014 and hence the null hypothesis
is rejected and we state that there is a difference. A hypothesis score for all the
variables is presented in Table 9.7.

= 147.9

=4.68

Z

Finding Hidden Relationships

The second objective was to identify general associations in the data to understand
the relationship between the measured fields and whether the patient goes on to
develop diabetes. Since the analysis will make use of categorical data, requires the
identification of associations, and must be easy to interpret, the associative rule
grouping approach was selected (described in Section 6.3). Using the following
variables, the observations were grouped and rules extracted:

Pregnant (grouped)
Plasma—Glucose (grouped)
DiastolicBP (grouped)
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Table 9.7. Hypothesis score for each variable

Standard Hypothesis

count mean deviation test (z) p-value

Pregnant Diabetes 216 5.65 3.42 5.685519 < 0.000001
Not Diabetes 408 3.87 3.87

Plasma—-Glucose Diabetes 216 142 29.91 13.80435 < 0.000001
Not Diabetes 408 110.7 25.24

DiastolicBP Diabetes 216 75.3 11.95 4.68117 0.0000014
Not Diabetes 408 70.51 12.27

BMI Diabetes 216 34.72 6.04 8.032158 < 0.000001
Not Diabetes 408 30.58 6.17

DPF Diabetes 216 0.54 0.34 4.157876  0.000017
Not Diabetes 408 0.43 0.3

Age Diabetes 216 38.5 10.74 6.899296 < 0.000001

Not Diabetes 408 31.93 11.61

BMI (grouped)
DPF (grouped)
Age (grouped)
Diabetes

A restriction to generate groups with more than 30 observations was specified.
Table 9.8 illustrates the top rules extracted from the data where the THEN-part of the
rule is “Diabetes = yes”. Here, all the rules describe combinations of risk factors
that lead to diabetes. The rules all have high confidence values (indicating the
strength of the rule) in addition to a strong positive association as indicated by the
high lift scores. Table 9.9 illustrates associations where the THEN-part of the rule is
“Diabetes = no”. These are the highest ranking rules based on the confidence
values. These rules should be discussed with the subject matter expert to determine
how they should be interpreted by the health care professionals.

Table 9.8. Associative rules in the diabetes group with highest confidence

It Then Support  Confidence  Lift

Plasma—Glucose (grouped) = high Diabetes = yes 6% 0.84 2.44
and Age (grouped) = 40-59

Plasma—Glucose (grouped) = high Diabetes = yes 6.6% 0.82 2.37
and BMI (grouped) = severely obese

Plasma—Glucose (grouped) = high Diabetes = yes 5.6% 0.78 2.25
and BMI (grouped) = obese

Pregnant (grouped) = high and Diabetes = yes 7.5% 0.77 2.23

Plasma—Glucose (grouped) = high
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Table 9.9. Associative rules in the not diabetes group with highest confidence

If

Then

Support

Confidence

Lift

BMI (grouped) = low and
DPF (grouped) = low and
Age (grouped) = 20-39
Pregnant (grouped) = low and Plasma-—
Glucose (grouped) = medium and
BMI (grouped) = low
DiastolicBP (grouped) = normal and
BMI (grouped) = low and DPF
(grouped) = low and
Age (grouped) = 20-39
Pregnant (grouped) = low and Plasma—
Glucose(grouped) = medium and
DiastolicBP (grouped) = normal and
DPF (grouped) = low
and Age (grouped) =20-39
Plasma—Glucose (grouped) =
medium and BMI (grouped) = low
and Age (grouped) =20-39
Pregnant (grouped) = low and
Plasma—Glucose (grouped) = low
Pregnant (grouped) = low and
BMI (grouped) = low
Pregnant (grouped) = low and
Plasma-Glucose(grouped) =
low and Age (grouped) = 20-39
Plasma—Glucose (grouped) = medium
and DiastolicBP (grouped) = normal
and BMI(grouped) = low and
Age (grouped) = 20-39
Pregnant (grouped) = low and
Plasma—Glucose (grouped) = low and
DiastolicBP (grouped) = normal
Pregnant (grouped) = low and
Plasma—Glucose (grouped) =
low and DiastolicBP (grouped) =
normal and Age (grouped) = 20-39
Pregnant (grouped) = low and
BMI (grouped) = low and
Age (grouped) = 20-39
Plasma—Glucose (grouped) = low
and DPF (grouped) = low and
Age (grouped) = 20-39

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

Diabetes = no

6%

5%

5%

8.7%

7.9%

6.6%

6.4%

6.4%

6.4%

6.3%

6.3%

6.3%

6.3%

1

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

1.53

1.53

1.53

1.5

1.5

1.49

1.49

1.49

1.49

1.49

1.49

1.49

1.49
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Making Predictions

The third objective of this exercise was to develop a predictive model to classify
patients into two categories: (1) patients that will develop diabetes in the next five
years and (2) patients that will not develop diabetes in the next five years. Since the
response variable (Class) is categorical, we must develop a classification model.
There are many alternative classification modeling approaches that we could
consider. Since there is no need to explain how these results were calculated,
selecting a method that generates explanations or confidence values is not necessary.
We decided to select k-Nearest Neighbors (described in Section 7.3) and neural
networks (described in Section 7.5) approaches to build the models. For both types
of models, an experiment was designed to optimize the parameters used in
generating the models. Since we are interested in both specificity and sensitivity of
the results, the experiments will measure both scores. The models will be tested
using a 10% cross validation (described in Section 7.1.5).

The analysis performed so far is critical to the process of developing prediction
models. It helps us understand which variables are most influential, as well as
helping us to interpret the results. Table 9.10 illustrates the optimization of the KNN
(k-Nearest Neighbors) model using different descriptor variables with an optimal
value for k, and using the Euclidean distance. The resulting model accuracy is
displayed using the format “‘sensitivity/specificity’”’ along with the best value of k.
Table 9.11 shows a section of the optimization of the neural network models, using
different input variables, different numbers of iterations, and different numbers of
hidden layers. Again, the resulting model accuracy is displayed using the format
““sensitivity/specificity”’.

The following model gave the best overall performance (both sensitivity and
specificity) and was selected: neural network with two hidden layers, 50,000 cycles,
and a learning rate of 0.5 using all six descriptors as inputs. The overall concordance
for this model was 0.79 (or 79%) with a specificity of 0.66 (66%) and a sensitivity of
0.86 (86%).

Once the final model has been built, it is often a valuable exercise to look at
observations that were not correctly predicted. Figure 9.12 presents a series of box
plots for observations predicted to be in the not diabetes group, but who were
diabetic (false positives). The upper box plot represents the set of false positives, the
lower presents all observations. Based on our understanding of the data, diabetes is
often associated with increased levels of Plasma—Glucose. In these examples, the
patients had a lower than expected level of Plasma—Glucose. Other characteristics
are similar to the average for the data set. This indicates that we may be missing
important attributes to classify these observations correctly, such as other risk factors
(e.g. level of physical activity, cholesterol level, etc.).

We can also look at examples where we predicted the patients to become
diabetic when in fact they did not (false negatives). A series of box plots for
the descriptor variables are presented in Figure 9.13. The upper box plots are the
false negatives and the lower box plots are all observations. These patients have
characteristics, based on our understanding of the data, of individuals that would go
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Table 9.10. Optimization of the KNN model

k Sensitivity/Specifivity

PRE PG DBP BMI DPF AGE 21 0.54/0.87
- PG DBP BMI DPF AGE 29 0.6/0.88

PRE - DBP BMI DPF AGE 29 0.41/0.85
PRE PG - BMI DPF AGE 21 0.56/0.88
PRE PG DBP - DPF AGE 22 0.53/0.89
PRE PG DBP BMI - AGE 18 0.56/0.88
PRE PG DBP BMI DPF - 29 0.51/0.9

- - DBP BMI DPF AGE 28 0.41/0.86
- PG - BMI DPF AGE 27 0.62/0.87
- PG DBP - DPF AGE 29 0.58/0.88
- PG DBP BMI - AGE 23 0.6/0.86

- PG DBP BMI DPF - 29 0.5/0.88

PRE - - BMI DPF AGE 16 0.38/0.88
PRE - DBP - DPF AGE 28 0.28/0.91
PRE - DBP BMI - AGE 27 0.41/0.84
PRE - DBP BMI DPF - 25 0.33/0.87
PRE PG - - DPF AGE 28 0.51/0.89
PRE PG - BMI - AGE 29 0.53/0.87
PRE PG - BMI DPF - 29 0.51/0.89
PRE PG DBP - - AGE 29 0.54/0.84
PRE PG DBP - DPF - 28 0.49/0.9

PRE PG DBP BMI - - 29 0.52/0.87
- - - BMI DPF AGE 23 0.5/0.86

- - DBP - DPF AGE 23 0.39/0.85
- - DBP BMI - AGE 27 0.46/0.81
- - DBP BMI DPF - 29 0.35/0.89
- PG - - DPF AGE 23 0.58/0.86
- PG - BMI - AGE 28 0.6/0.87

- PG - BMI DPF - 26 0.49/0.9

- PG DBP - - AGE 25 0.56/0.88
- PG DBP - DPF - 29 0.51/0.88
- PG DBP BMI - - 28 0.46/0.89
PRE - - - DPF AGE 29 0.37/0.85
PRE - - BMI - AGE 24 0.42/0.86
PRE - - BMI DPF - 27 0.36/0.88
PRE - DBP - - AGE 28 0.34/0.85
PRE - DBP - DPF - 29 0.29/0.88
PRE - DBP BMI - - 29 0.31/0.88
PRE PG - - - AGE 22 0.53/0.86
PRE PG - BMI - - 28 0.54/0.89
PRE PG DBP - - - 29 0.48/0.87
PRE PG - - - - 29 0.48/0.88
PRE - DBP - - - 29 0.2/0.88

PRE - - BMI - - 20 0.31/0.87

PRE - - - DPF - 28 0.24/0.91
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Table 9.10. (Continued)

k Sensitivity/Specifivity

PRE - - - - AGE 29 0.39/0.81
- PG DBP - - - 29 0.43/0.9

- PG - BMI - - 29 0.47/0.88
- PG - - DPF - 26 0.45/0.9

- PG - - - AGE 28 0.52/0.87
- - DBP BMI - - 29 0.22/0.88
- - DBP - DPF - 29 0.19/0.91
- - DBP - - AGE 29 0.41/0.81
- - - BMI DPF - 29 0.36/0.87
- - - BMI - AGE 22 0.48/0.84
- - - - DPF AGE 28 0.39/0.85

on to develop diabetes, that is elevated Plasma—Glucose levels and increased BMI.
Again, this would suggest that the data is missing important fields for the
classification of this group of individuals.

9.2.5 Deployment of the Results

The deployment of the results should be carefully planned since this is how the work,
put in so far, will be translated into any anticipated benefits. A report should be
written by the team outlining the analysis and the results. A plan should be
developed describing how the prediction model will be made available to the health
care professionals including the development of any new software, as well as
training the professionals to use and interpret the results. A plan for ongoing
monitoring of the results and for updating the model should also be developed.

As with all projects, certain approaches worked well, whereas others did not
work so well. For example, looking at the false negatives and false positives was an
informative exercise. Understanding and documenting the successes and failures
will allow you to share your experiences as well as improve future projects.

9.3 ADVANCED DATA MINING
9.3.1 Overview

Some common applications of exploratory data analysis and data mining require
special treatment. They all can make use of the techniques described in the book;
however, there are a number of factors that should be considered and the data may
need to be pre-analyzed prior to using it within the framework described in the book.
The further reading section of this chapter contains links to additional resources on
these subjects.
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9.3.2 Text Data Mining
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A common application is data mining information contained in books, journals, web
content, intranet content, and content on your desktop. One of the first barriers to
using the data analysis and data mining techniques described in this book is the
nontabular and textual format of documents. However, if the information can be
translated into a tabular form then we can start to use the methods described on text
documents. For example, a series of documents could be transformed into a data
table as shown in Table 9.12. In this situation each row represents a different
document. The columns represent all words contained in all documents. For each
document, the presence of a word is indicated by ““1°* and the absence of a word is
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Figure 9.13. Summary of contents of false negatives
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Table 9.12. Table generated from documents

Document name “Data’ “Mining” “Textual” “Analysis”
Document A 1 0 1 0
Document B 0 1 0 0
Document C 1 1 0 1
Document D 0 0 0 1

indicated by “0”. For example, Document A has the word “Data’ somewhere in the
document but no mention of the word ‘“Mining”” anywhere in the document. Once
the table is in this format, the data mining approaches described can be used to group
and classify documents as well as looking for word combination patterns. This is a
simple view of data mining text-based unstructured documents. Additional resources
are presented in the further reading section of this chapter describing methods for
data mining unstructured textual documents.

9.3.3 Time Series Data Mining

In many disciplines such as financial, meteorological, and medical areas, data is
collected at specific points in time. Methods for analyzing this type of data are
similar to those outlined in this book. However, when looking at time series data,
there are often underlying trends that need to be factored out. For example,
measuring rain over the course of the year in many locations will change due to the
changing of the seasons. These underlying trends need to be factored out in order to
detect trends not related to seasonal variables.

9.3.4 Sequence Data Mining

In other areas events or phenomena happen in a particular sequence order, with time
not being one of the dimensions to analyze. For example, web log data is comprised
of sequences of pages explored. In addition to the methods described, other
techniques such as hidden Markov models that make use of the state change
information can be used to analyze this data.

9.4 FURTHER READING

Further information on text data mining can be found in Weiss (2004) and Berry (2003) and
information on time series data mining in Last (2004).



Appendix A

Statistical Tables

A.1 NORMAL DISTRIBUTION

Table A.1 represents the area or probability () to the right of specific z-scores for
a normal distribution (see Figure A.1). For example, the area to the right of 1.66
z-score is 0.0485.

A.2 STUDENT’'S T-DISTRIBUTION

Critical values of t are shown in Table A.2 for various degrees of freedom (df). The
area or probability values (x) to the right of the t-values (see Figure A.2) are shown
in the table. For example, with 13 degrees of freedom and 0.025 probability («) the
t-value would be 2.160.

area

Figure A.1. Area to the right of the z-score
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244 Appendix A Statistical tables

Table A.2. Student’s t-distribution

Upper tail area

df 0.1 0.05 0.025 0.01 0.005
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2779
27 1.314 1.703 2.052 2473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.658 1.980 2.358 2.617
o 1.282 1.645 1.960 2.326 2.576

Adapted from Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and
Medical Research, Sixth Edition, Pearson Education Limited, © 1963 R. A. Fisher and F. Yates.
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area

Figure A.2. Area to the right of the t-value

A.3 CHI-SQUARE DISTRIBUTION

Critical values of y? are shown in Table A.3 for various degrees of freedom (df) and
illustrated in Figure A.3. The area or probability values («) to the right of the y?
values are shown in the table. For example, with 9 degrees of freedom and 0.05
probability (), the x> value would be 16.919.

XZ

Figure A.3. Chi-square distribution
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F-distribution 249
A.4 F-DISTRIBUTION

Tables A.4, A.5, A.6 and A.7 show the F-statistics for four different values of «: 0.1,
0.05, 0.01 and 0.005. v; is the number of degrees of freedom for the numerator and
v2 is the number of degrees of freedom for the denominator. Figure A .4 illustrates the
F-distribution. For example, to look up a critical value for the F-statistics where the
numerator degrees of freedom (v;) are 6 and the denominator degrees of freedom
(v) are 15 and « is 0.05, using Table A.S, is 3.94.

F

Figure A.4. F-distribution
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Appendix B

Answers to Exercises

Chapter 3

la.
1b.
lc.
1d.
le.
1f.
lg.
1h.
1i.
1j.
2a.
2b.
2c.
2d.
2e.
2f.
2g.
2h.
2i.
2j.
3a.
3b.
3c.

4,

Discrete
Continuous
Dichotomous
Discrete
Continuous
Continuous
Continuous
Continuous
Continuous
Binary
Nominal
Ratio
Nominal
Nominal
Ratio

Ratio

Ratio

Ratio

Ratio
Nominal

Name

Age, Weight, Systolic blood pressure, Diastolic blood pressure

Diabetes
See Table B.1

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,

By Glenn J. Myatt

Copyright © 2007 John Wiley & Sons, Inc.
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5. See Table B.2
6. See Table B.3
7. See Table B.4 and Table B.5

Appendix B Answers to exercises

Table B.1. Chapter 3, question 4 answer

Weight (kg)
Name Weight (kg) normalized to 0-1
P. Lee 50 0.095
R. Jones 115 0.779
J. Smith 96 0.579
A. Patel 41 0
M. Owen 79 0.4
S. Green 109 0.716
N. Cook 73 0.337
W. Hands 104 0.663
P. Rice 64 0.242
F. Marsh 136 1
Table B.2. Chapter 3, question 5 answer

Weight (kg) categorized

Name Weight (kg) [low, medium, high]
P. Lee 50 low
R. Jones 115 high
J. Smith 96 medium
A. Patel 41 low
M. Owen 79 medium
S. Green 109 high
N. Cook 73 medium
W. Hands 104 high
P. Rice 64 medium
F. Marsh 136 high
Table B.3. Chapter 3, question 6 answer
Name Weight (kg) Height (m) BMI
P. Lee 50 1.52 21.6
R. Jones 115 1.77 36.7
J. Smith 96 1.83 28.7
A. Patel 41 1.55 17.1
M. Owen 79 1.82 23.8
S. Green 109 1.89 30.5
N. Cook 73 1.76 23.6
W. Hands 104 1.71 35.6
P. Rice 64 1.74 21.1
F. Marsh 136 1.78 429
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260 Appendix B Answers to exercises

Table B.4. Chapter 3, question 7 answer (female patients)

Systolic  Diastolic
Blood Weight Height blood blood Tempe-
Name Age Gender group (kg) (m) pressure pressure rature (°F) Diabetes

P. Lee 35 Female ARh" 50 1.52 68 112 98.7 0
A.Patel 70 Female ORh™ 41 1.5 76 125 98.6 0
W. Hands 77 Female ORh™ 104 1.71 107 145 98.3 1
P.Rice 45 Female ORh™ 64 174 101 132 98.6 0

Table B.S. Chapter 3, question 7 answer (male patients)

Systolic Diastolic
Blood Weight Height blood blood Temperature

Name Age Gender group (kg) (m)  pressure pressure (°F) Diabetes
R.Jones 52 Male ORh™ 115 1.77 110 154 98.5 1

J. Smith 45 Male ORh™ 96 1.83 88 136 98.8 0
M.Owen 24 Male ARh™ 79 1.82 65 105 98.7 0
S.Green 43 Male ORh™ 109 1.89 114 159 98.9 1
N.Cook 68 Male ARht 73 176 108 136 99.0 0

F. Marsh 28 Male ORh' 136 178 121 165 98.7 1
Chapter 4

1. See Table B.6
2a. See Table B.7
2b. See Table B.8
2c. See Table B.9

3. See Figure B.1

4. See Figure B.2

Table B.6. Chapter 4, question 1 answer

Store

New York, NY  Washington, DC Totals

Laptop 1 2 3
Product Printer 2 2 4
category Scanner 4 2 6

Desktop 3 2 5

Totals 10 8 18




Appendix B Answers to exercises

Table B.7. Chapter 4, question 2a answer
Number of Sum of sales
Customer observations price ($)
B. March 3 1700
J. Bain 1 500
T. Goss 2 750
L. Nye 2 900
S. Cann 1 600
E. Sims 1 700
P. Judd 2 900
G. Hinton 4 2150
H. Fu 1 450
H. Taylor 1 400
Table B.8. Chapter 4, question 2b answer
Store Number of Mean sale
observations price ($)
New York, NY 10 485
Washington, DC 8 525
Table B.9. Chapter 4, question 2c answer
Number of Sum of
Product category observations profit ($)
Laptop 3 470
Printer 4 360
Scanner 6 640
Desktop 5 295
201
154
&
gr 10
=
5
0 : P —
0=250 250-500 500-750 7501000

Figure B.1.

Frequency distribution
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Sale price ($)
Figure B.2. Scatterplot
Chapter 5
la. 45
1b. 45
le. 48.7
1d. 53
le. 3249
1f. 18.02
1g. See Table B.10
1h. 0.22
1i. -1.5
2. 24.14 — 25.86
3. 0.386 — 0.534
Table B.10. Chapter 5, question 1g answer
Name Age z-score Age
P. Lee 35 -0.76
R. Jones 52 0.18
J. Smith 45 -0.21
A. Patel 70 1.18
M. Owen 24 -1.37
S. Green 43 -0.32
N. Cook 68 1.07
W. Hands 71 1.57
P. Rice 45 -0.21

F. Marsh 28 -1.15

1000



4a.
4b.
4c.
4d.
4e.
Sa.

5b.
Sc.
5d.
6a.

6b.
6¢.
6d.
Ta.

7b.
Tc.
7d.
8a.

8b.
8c.
8d.
9a.
9b.
Oc.
10a.
10b.
10c.
11.
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Hy:p=2

H,: 1 < 2 where p is the average call connection time.
-2.72

0.0033

The phone company can make the claim.

H,: n = 0.9, H,: # > 0.9 where 7 is the proportion of customers pleased
with the service of the bank.

0.33
0.3707
The bank cannot make the claim.

Ho: 1y = up, Hat 4y > u, where p is the average tomato plant height
grown with fertilizer X and p, is the average tomato plant height grown
with fertilizer Y.

2.82
0.0024
The company can make the claim.

Hy: m; = mp, Hy: mp < mp where m; is the proportion of defects, using
manufacturer A, and 7, is the proportion of defects, using manufacturer B.

0.54
0.2946
The company cannot make the claim.

Ho:up = 0, Hy: iy # 0 where u, is the difference between the wear of the
gloves.

15.36

Practically zero.

Yes.

Hy: There is no relationship, H,: There is a relationship.
2.18

Cannot make the claim.

Hy: There is no difference, H,: There is a difference.
1.48

Cannot make the claim.

0.98

Chapter 6

la.
1b.

lc.

4.8
2.8
0
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Table B.11. Chapter 7, question 2b answer

Observation Actual Predicted Residual
1 13.7 12.4 1.3
2 17.5 16.1 1.4
3 8.4 6.7 1.7
4 16.2 15.7 0.5
5 5.6 8.4 -2.8
6 20.4 15.6 4.8
7 12.7 13.5 -0.8
8 5.9 6.4 -0.5
9 18.5 154 3.1

10 17.2 14.5 2.7

11 5.9 5.1 0.8

12 9.4 10.2 -0.8

13 14.8 12.5 2.3

14 5.8 5.4 0.4

15 12.5 13.6 -1.1

16 104 11.8 -1.4

17 8.9 7.2 1.7

18 12.5 11.2 1.3

19 18.5 17.4 1.1

20 11.7 12.5 -0.8

2. 224

3. Support =0.47, Confidence = 1, Lift =1.89
4a. 0.73
4b. 1.0

Chapter 7
la. 0.85

1b. 0.15

lc. 0.89

1d. 0.82

2a. 0.87

2b. See Table B.11

3a. Height = —0.071 + 0.074 Fertilizer
3b. 0.98

4. $352,600

5. Brand B

6. 0.56



Glossary

Accuracy. The accuracy reflects the number of times the model is correct.

Activation function. This is used within a neural network to transform the input level into an
output signal.

Aggregation. A process where the data is presented in a summary form, such as average.

Alternative hypothesis. Within a hypothesis test, the alternative hypothesis (or research
hypothesis) states specific values of the population that are possible when the null
hypothesis is rejected.

Antecedent. An antecedent is the statement or statements in the IF-part of a rule.

Applying predictive models. Once a predictive model has been built, the model can be used
or applied to a data set to predict a response variable.

Artificial neural network. See neural network.

Associative rules. Associative rules (or association rules) result from data mining and present
information in the form “if X then Y.

Average. See mean.
Average linkage. Average linkage is the average distance between two clusters.

Backpropagation. A method for training a neural network by adjusting the weights using
errors between the current prediction and the training set.

Bin. Usually created at the data preparation step, a variable is often broken up into a series of
ranges or bins.

Binary variable. A variable with two possible outcomes: true (1) or false (0).
Binning. Process of breaking up a variable into a series of ranges.

Box plot. Also called a box-and-whisker plot, it is a way of graphically showing the median,
quartiles and extreme values, along with the mean.

Box-Cox transformation. Often used to convert a variable to a normal distribution.

Building predictive models. This is the process of using a training set of examples and
creating a model that can be used for prediction.

Business analyst. A business analyst specializes in understanding business needs and
required solutions.

Categorical data. Data whose values fall into a finite number of categories.

Central limit theorem. States that the distribution of mean values will increasingly follow a
normal distribution as the number of observations increases.

Chi-square. The chi-square statistic is often used for analyzing categorical data.
Churn. Reflects the tendency of subscribers to switch services.

Classification and Regression Trees (CART). Decision trees used to generate
predictions.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright © 2007 John Wiley & Sons, Inc.
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Classification model. A model where the response variable is categorical.

Classification tree. A decision tree that is used for prediction of categorical data.

Cleaning (data). Data cleaning refers to the detecting and correcting of errors in the data
preparation step.

Cleansing. See cleaning.

Clustering. Clustering attempts to identify groups of observations with similar characteristics.

Complete linkage. Maximum distance between an observation in one cluster and an
observation in another one.

Concordance. Reflects the agreement between the predicted and the actual response.

Confidence interval. An interval used to estimate a population parameter.

Confidence level. A probability value that a confidence interval contains the population
parameter.

Constant. A column of data where all values are the same.

Consumer. A consumer is defined in this context as one or more individuals who will make
use of the analysis results.

Contingency table. A table of counts for two categorical variables.

Continuous variable. A continuous variable can take any real number within a range.

Correlation coefficient (r). A measure to determine how closely a scatterplot of two
continuous variables falls on a straight line.

Cross validation. A method for assessing the accuracy of a regression or classification model.
A data set is divided up into a series of test and training sets, and a model is built with each
of the training set and is tested with the separate test set.

Customer Relationship Management (CRM). A database system containing information on
interactions with customers.

Data. Numeric information or facts collected through surveys or polls, measurements or
observations that need to be effectively organized for decision making.

Data analysis. Refers to the process of organizing, summarizing and visualizing data in order
to draw conclusions and make decisions.

Data matrix. See data table.

Data mining. Refers to the process of identifying nontrivial facts, patterns and relationships
from large databases. The databases have often been put together for a different purpose
from the data mining exercise.

Data preparation. Refers to the process of characterizing, cleaning, transforming, and
subsetting data prior to any analysis.

Data table. A table of data where the rows represent observations and the columns represent
variables.

Data visualization. Refers to the presentation of information graphically in order to quickly
identify key facts, trends, and relationships in the data.

Data warehouse. Central repository holding cleaned and transformed information needed by
an organization to make decisions, usually extracted from an operational database.

Decimal scaling. Normalization process where the data is transformed by moving the decimal
place.

Decision tree. A representation of a hierarchical set of rules that lead to sets of observations
based on the class or value of the response variable.
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Deployment. The process whereby the results of the data analysis or data mining are provided
to the user of the information.

Descriptive statistics. Statistics that characterize the central tendency, variability, and shape
of a variable.

Dichotomous variable. A variable that can have only two values.
Discrete variable. A variable that can take only a finite number of values.

Discretization. A process for transforming continuous values into a finite set of discrete
values.

Dummy variable. Encodes a particular group of observations where 1 represents its presence
and O its absence.

Embedded data mining. An implementation of data mining into an existing database system
for delivery of information.

Entropy. A measurement of the disorder of a data set.

Error rate. Reflects the number of times the model is incorrect.

Euclidean distance. A measure of the distance between two points in n-dimensional space.
Experiment. A test performed under controlled conditions to test a specific hypothesis.

Exploratory data analysis. Processes and methods for exploring patterns and trends in the
data that are not known prior to the analysis. It makes heavy use of graphs, tables, and
statistics.

Feed-forward. In neural networks, feed-forward describes the process where information is
fed through the network from the input to the output layer.

Frequency distribution. Description of the number of observations for items or consecutive
ranges within a variable.

Frequency polygram. A figure consisting of lines reflecting the frequency distribution.

Gain. Measures how well a particular splitting of a decision tree separates the observations
into specific classes.

Gaussian distribution. See normal distribution.

Gini. A measure of disorder reduction.

Graphs. An illustration showing the relationship between certain quantities.

Grouping. Methods for bringing together observations that share common characteristics.

Hidden layer. Used in neural networks, hidden layers are layers of nodes that are placed
between the input and output layers.

Hierarchical agglomerative clustering. A bottom-up method of grouping observations
creating a hierarchical classification.

Histogram. A graph showing a variable’s discrete values or ranges of values on the x-axis and
counts or percentages on the y-axis. The number of observations for each value or range is
presented as a vertical rectangle whose length is proportionate to the number of
observations.

Holdout. A series of observations that are set aside and not used in generating any predictive
model but that are used to test the accuracy of the models generated.

Hypothesis test. Statistical process for rejecting or not rejecting a claim using a data set.

Inferential statistics. Methods that draw conclusions from data.

Information overload. Phenomena related to the inability to absorb and manage effectively
large amounts of information, creating inefficiencies, stress, and frustration. It has been
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exacerbated by advances in the generation, storage, and electronic communication of
information.

Input layer. In a neural network, an input layer is a layer of nodes, each one corresponding to
a set of input descriptor variables.

Intercept. Within a regression equation, the point on the y-axis where x is 0.

Interquartile range. The difference between the first and third quartile of a variable.

Interval scale. A scale where the order of the values has meaning and where the difference
between pairs of values can be meaningfully compared. The zero point is arbitrary.

Jaccard distance. Measures the distance between two binary variables.

K-means clustering. A top-down grouping method where the number of clusters is defined
prior to grouping.

K-nearest neighbors (kNN). A prediction method, which uses a function of the k

most similar observations from the training set to generate a prediction, such as the
mean.

Kurtosis. Measure that indicates whether a variable’s frequency distribution is peaked or flat
compared to a normal distribution.

Leaf. A node in a tree or network with no children.

Learning. A process whereby a training set of examples is used to generate a model that
understands and generalizes the relationship between the descriptor variables and one or
more response variables.

Least squares. A common method of estimating weights in a regression equation that
minimizes the sum of the squared deviation of the predicted response values from the
observed response values.

Linear relationship. A relationship between variables that can be expressed as a straight line
if the points are plotted in a scatterplot.

Linear regression. A regression model that uses the equation for a straight line.
Linkage rules. Alternative approaches for determining the distance between two clusters.
Logistic regression. A regression equation used to predict a binary variable.

Mathematical models. The identification and selection of important descriptor variables to
be used within an equation or process that can generate useful predictions.

Mean. The sum of all values in a variable divided by the number of values.
Medium. The value in the middle of a collection of observations.

Min-max normalization. Normalizing a variable value to a predetermine range.
Missing data. Observations where one or more variables contain no value.
Mode. The most commonly occurring value in a variable.

Models. See mathematical model.

Nominal scale. A scale defining a variable where the individual values are categories and no
inference can be made concerning the order of the values.

Multilinear regression. A linear regression equation comprising of more than one descriptor
variable.

Multiple regression. A regression involving multiple descriptor variables.

Negative relationship. A relationship between variables where one variable increases while
the other variable decreases.
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Neural network. A nonlinear modeling technique comprising of a series of interconnected
nodes with weights, which are adjusted as the network learns.

Node. A decision point within a decision tree and a point at which connections join within a
neural network.

Nominal scale. A variable is defined as being measured on a nominal scale if the values
cannot be ordered.

Nonbhierarchical clustering. A grouping method that generates a fixed set of clusters, with no
hierarchical relationship quantified between the groups.

Nonlinear relationship. A relationship where while one or more variables increase the
change in the response is not proportional to the change in the descriptor(s).

Nonparametric. A statistical procedure that does not require a normal distribution of the
data.

Normal distribution. A frequency distribution for a continuous variable, which exhibits a
bell-shaped curve.

Normalizations (standardization). Mathematical transformations to generate a new set of
values that map onto a different range.

Null hypothesis. A statement that we wish to clarify by using the data.
Observation. Individual record in a data table.

Observational study. A study where the data collected was not randomly obtained.
Occam’s Razor. A general rule to favor the simplest theory to explain an event.

On-Line Analytical Processing (OLAP). Tools that provide different ways of summarizing
multidimensional data.

Operational database. A database containing a company’s up-to-date and modifiable
information.

Ordinal scale. A scale measuring a variable that is made of items where the order of the items
has meaning.

QOutlier. A value that lies outside the boundaries of the majority of the data.

Output layer. A series of nodes in a neural network that interface with the output response
variables.

Overfitting. This is when a predictive model is trained to a point where it is unable to
generalize outside the training set of examples it was built from.

Paired test. A statistical hypothesis test used when the items match and the difference is
important.

Parameter. A numeric property concerning an entire population.

Parametric. A statistical procedure that makes assumptions concerning the frequency
distributions.

Placebo. A treatment that has no effect, such as a sugar pill.

Point estimate. A specific numeric estimate of a population parameter.
Poll. A survey of the public.

Population. The entire collection of items under consideration.

Positive relationship. A relationship between variables where as one variable increases the
other also increases.

Prediction. The assignment using a prediction model of a value to an unknown field.
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Predictive model (or prediction model). See mathematical model.
Predictor. A descriptor variable that is used to build a prediction model.

p-value. A p-value is the probability of obtaining a result at least as extreme as the null
hypothesis.

Range. The difference between the highest and the lowest value.

Ratio scale. A scale where the order of the values and the differences between values has
meaning and the zero point is nonarbitrary.

Regression trees. A decision tree used to predict a continuous variable.

Residual. The difference between the actual data point and the predicted data point.
Response variable. A variable that will be predicted using a model.

r-squared. A measure that indicates how well a model predicts.

Sample. A set of data selected from the population.

Sampling error. Error resulting from the collection of different random samples.
Sampling distribution. Distribution of sample means.

Scatterplot. A graph showing two variables where the points on the graph correspond to the
values.

Segmentation. The process where a data set is divided into separate data tables, each sharing
some common characteristic.

Sensitivity. Reflects the number of correctly assigned positive values.
Similarity. Refers to the degree two observations share common or close characteristics.

Simple linear regression. A regression equation with a single descriptor variable mapping to
a single response variable.

Simple nonlinear regression. A regression equation with a single descriptor variable
mapping to a single response variable where whenever the descriptor variable increases, the
change in the response variable is not proportionate.

Simple regression. A regression model involving a single descriptor variable.

Single linkage. Minimum distance between an observation in one cluster and an observation
in another.

Skewness. For a particular variable, skewness is a measure of the lack of symmetry.

Slope. Within a simple linear regression equation, the slope reflects the gradient of the straight
line.

Specificity. Reflects the number of correctly assigned negative values.

Splitting criteria. Splitting criteria are used within decision trees and describe the variable
and condition in which the split occurred.

Spreadsheet. A software program to display and manipulate tabular data.

Standard deviation. A commonly used measure that defines the variation in a data set.

Standard error of the mean. Standard deviation of the means from a set of samples.

Standard error of the proportion. Standard deviation of proportions from a set of
samples.

Statistics. Numeric information calculated on sample data.

Subject matter expert. An expert on the subject of the area on which the data analysis or
mining exercise is focused.

Subset. A portion of the data.
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Sum of squares of error (SSE). This statistic measures the total deviation of the response
from the predicted value.

Summary table. A summary table presents a grouping of the data where each row represent a
group and each column details summary information, such as counts or averages.

Supervised learning. Methods, which use a response variable to guide the analysis.

Support. Represents a count or proportion of observations within a particular group included
in a data set.

Survey. A collection of questions directed at an unbiased random section of the population,
using nonleading questions.

Temporal data mining. See time-series data mining.

Test set. A set of observations that are not used in building a prediction model, but are used in
testing the accuracy of a prediction model.

Textual data mining. The process of extracting nontrivial facts, patterns, and relationships
from unstructured textual documents.

Time-series data mining. A prediction model or other method that uses historical
information to predict future events.

Training set. A set of observations that are used in creating a prediction model.

Transforming (data). A process involving mathematical operations to generate new variables
to be used in the analysis.

Two-sided hypothesis test. A hypothesis test where the alternative hypothesis population
parameter may lie on either side of the null hypothesis value.

Type I error. Within a hypothesis test, a type I error is the error of incorrectly rejecting a null
hypothesis when it is true.

Type II error. Within a hypothesis test, a type II error is the error of incorrectly not rejecting a
null hypothesis when it should be rejected.

Unsupervised learning. Analysis methods that do not use any data to guide the technique
operations.

Value mapping. The process of converting into numbers variables that have been assigned as
ordinal and described using text values.

Variable. A defined quantity that varies.

Variance. The variance reflects the amount of variation in a set of observations.

Venn Diagram. An illustration of the relationship among and between sets.

z-score. The measure of the distance in standard deviations of an observation from the mean.
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Accuracy, 9, 158-165, 167
Agglomerative hierarchical clustering,
111-120, 154
adjusting cut-off distances, 116
creating clusters, 114-116
example, 116-120
grouping process, 111-113
Aggregate table, 39
Aggregation, 31
Alternative hypothesis, 73-74
Anomaly detection, 211
Artificial neural network, see Neural
network
Association rules, see Associative rules
Associative rules, 129-139
antecedent, 134
confidence, 134-135
consequence, 134
example, 137-139, 230
extracting rules, 132-137
grouping, 130-132
lift, 135-137
support, 134
Analysis of variance, see One-way analysis
of variance
Average, see Mean

Bagging, 168

Bar chart, 41

Bin, 30

Binary, see Variable, binary
Binning, 30

Black-box, 197

Boosting, 168

Box plots, 25, 4546, 52, 233
Box-and-whisker plots, see Box plots
Budget, 12, 14-15

Business analyst, 10

Case study, 12
Central limits theorem, 63
Central tendency, 55-57, 96
Charts, see Graphs
Chi-square, 39, 67, 82-84, 91
critical value, 83-84
degrees of freedom, 84
distribution, 243
expected frequencies, 83
observed frequencies, 83
Churn analysis, 210
Claim, 72
Classification, 158-162
Classification and regression tree (CART),
see Decision trees
Classification models, 158, 182, 199,
202, 233
Classification trees, 181-184,
203
Cleaning, 24-26, 32, 219-220
Clustering, 25, 110-129, 168
agglomerative hierarchical clustering,
111-120, 154
bottom-up, 111
hierarchical, 110
k-means clustering, 120-129,
154
nonhierarchical, 110, 120
outlier detection, 25
top-down, 120
Common subsets, 49-51
Concordance, 160
Confidence, 158, 167
Confidence intervals, 67-72
categorical variables, 72
continuous variables, 68—72
critical t-value, 69-71
critical z-score, 68-72
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Index

Comparative statistics, 55, 88-96
correlation coefficient (r), 92-95, 97
direction, 90
multiple variables, 94-96
2, 95-96
shape, 90
visualizing relationships, 90-91

Constant, 21

Consumer, 11

Contingencies, 12, 14, 16

Contingency tables, 36-39, 52, 91,

159-160

Correlation coefficient (r), 92-94, 97

Correlation matrix, 94-95, 46-48

Cost/benefits, 12, 14, 16, 218

CRISP-DM, 7

Cross validation, 167, 233
leave-one-out, 167

Cross-disciplinary teams, 11

Customer relationship management (CRM),

18, 208

Data, 19
Data analysis, 1
process, 1, 6, 213-216
Data analysis/mining expert, 10
Data matrix, see Data table
Data mining, 1
process, 1, 6, 213-216
Data preparation, 2, 5-6, 17-35, 166, 168
cleaning, 24-26
data sources, 17-19
data transformations, 26-31
data understanding, 19-24
example, 217-225
planning, 14
removing variables, 26
segmentation, 31-32
summary, 32-33, 213
Data quality, 216
Data sets, 7
Data smoothing, 30
Data sources, 17-19
Data tables, 19-20, 32, 36, 52
Data visualization, 36-53
Data warehouse, 18
Decision trees, 139—-154, 181-187
child node, 142
example, 151-153, 184-187
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head, 143
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optimization, 141, 184
parent node, 142
parent-child relationship, 142
predicting, 182—184
rules, 151-152, 184-187
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146-149
scoring splits for continuous response,
149-151
splitting criteria, 144—151
splitting points, 142-143
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two-way split, 144
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case study, 12-14
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deliverables, 9-10
roles and responsibilities, 10-11
project plan, 11-12
summary, 14, 16
Deliverables, 9-10, 13, 16, 217, 223, 225
Deployment, 208-212
activities, 209-210, 211
deliverables, 208-209, 211
example, 14, 218, 235
execution, 209, 211
measuring, 209, 211
monitoring, 209, 211
planning, 10, 209, 211
scenarios, 210-211
summary, 2, 5-6, 214-216
Descriptive statistics, 4, 55-63
central tendency, 56-57
example, 62-63
shape, 61-62
variation, 57-61
Discretization, 30-31
Distance, 104-108, 111, 123, 154, 178
Diverse set, 31, 102
Double blind study, 18

E-commerce, 210
Embedded data mining, 209
Entropy, 147-148

Errors, 25, 82, 160
Estimate, 156-157



Euclidean distance, 105-107
Experiments, 18
Experimental analysis, 210
Experimental design, 210
Explanation, 158, 167-168
Exploratory data analysis, 1

False negatives, 159-160, 233-235
False positives, 160, 233
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217-218, 214-215, 230-232
Forecast, 156
Frequency distribution, 23
peak, 62
shape, 61-62
symmetry, 61-62
Frequency polygrams, 40-41, 52

Gain, 148-149

Gaussian distribution, 23

Gini, 147

Graphs, 3, 36, 40-52

Grouping, 4, 102-155
approaches, 108-109
associative rules, 129-139
by ranges, 103—-104
by value combinations, 130-132
by values, 103-104
clustering, 110-129
decision trees, 139-153
methods, 153
overlapping groups, 109, 154
supervised, 108, 140, 154
unsupervised, 108, 129, 154

Histograms, 23, 25, 41-43, 52
Historical databases, 19
Holdout set, 167
Hypothesis test, 67, 72-82, 97, 104,
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alpha (o), 74-75
alternative hypothesis, 73-74
assessment, 74-75
critical z-score, 7476
null hypothesis, 73-74
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p-value, 75-76
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single group, continuous data, 7678
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two groups, categorical data, 80-81
two groups, continuous data, 78-79

Implementation, 2—-6, 14-16, 214-215,
217-218, 225-237

Impurity, 146

Inconsistencies, 24-25

Inferential statistics, 4, 55, 63-88
chi-square, 82-84
confidence intervals, 67-72
hypothesis tests, 72—-82
one-way analysis of variance, 84—88

Integration, 208-209, 211

Intercept, see Intersection

Interquartile range, 58
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Inverse transformation, 26, 174

IT expert, 11, 13, 16

Jaccard distance, 107-108

k-means clustering, 120-129, 154
example, 127-129
grouping process, 122—125
cluster center, 125-127
k-nearest neighbors (kNN), 176-181, 203,
233
learning, 178-179
prediction, 180-181
Kurtosis, 62-63

Least squares, 172-173
Legal issues, 11-12, 16
Linear relationship, 44, 90-91, 169-173, 162
Linkage rules, 113-114
average linkage, 113-114
complete linkage, 113114
single linkage, 113-114
Logistic regression, 202
Lower extreme, 45
Lower quartile, 45

Mathematical models, 4
Maximum value, 39, 57
Mean, 39-40, 45, 57, 96
Median, 39, 45, 96
Minimum value, 39, 57
Misclassification, 147
Missing data, 25-26
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Model parameters, 166

Modeling experiment, 166—167
Multiple graphs, 4652

Multiple linear regression, 199-202
Multivariate models, 166

Naive Bayes classifiers, 202
Negative relationship, 44-45, 90
Neural networks, 187-199, 203, 233-236
activation function, 189-190
backpropagation, 192-196
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cycles, 197
epoch, 197
error, 191-196
example, 194-196, 197-199, 233-236
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hidden layers, 187, 190, 193, 196
input layer, 187-188
layers, 187-188
learning process, 191-192
learning rate, 194-196
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optimize, 196-197
output layers, 187-188, 192-196
prediction, 190-191
topology, 194
using, 196-197
weights, 188—-197
Nonlinear relationships, 44-45, 90-91,
172-176
Nonnumeric terms, 25
Nonparametric procedures, 23-24
Normal distribution, 23-24, 239
Normalization, 26-29
Null hypothesis, 73-74

Objectives, 8-9, 16, 213-216
Objects, 19
Observational study, 18
Observations, 19-20, 36
Occam’s Razor, 167
One-way analysis of variance, 67,
84-89, 97
between group variance, 87
degrees of freedom, 88
F-distribution, 247
F-statistic, 86-88

group means, 86

group variances, 86
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within group variance, 86—87
On-line Analytical Processing (OLAP), 1
Operational databases, 18
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Parameters, 54

Parametric procedures, 23
Partial least squares, 202
Placebo, 80

Point estimate, 67-68

Polls, 18

Pooled standard deviation, 79
Pooled variance, 79
Population variance, 59
Populations, 9, 54, 63
Positive relationship, 44—45, 90

Prediction, 3-6, 156-207. See also Predictive

models
Prediction models, see Predictive models
Predictive models, 9, 31, 156, 217
applying, 158, 167-168, 203
building, 158, 166-167, 203
classification and regression trees,
181-187
classification models, 158—162
defined, 156-158
grouping prior to building, 102
k-nearest neighbors, 176-181
methods, 158, 199-202
neural networks, 187-201
regression models, 162-165
simple regression models, 169-176
specification, 9-10
Predictors, see Variables, descriptors
Preparation, see Data preparation
Principal component analysis, 35
Privacy issues, 11-12, 16
Probability, 65
Problem definition, see Definition
Project leader, 10, 214
Project management, 16
Project plan, 11-12
Proportion, 66-67, 72, 78, 80-81
Purchased data, 19
p-value, 75-76
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Random forest, 202

Random subset, 31, 63
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Regression model, 158, 162-165,
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Regression trees, 181-187, 203
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Research hypothesis, see Alternative
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Residuals, 163-165
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Risks, 12, 14, 16

Roles and responsibilities, 1011, 13,
16, 217

Root mean square, 59
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Rule-based classifiers, 202

Rules, see Associative rules

Sample standard deviation, 59-60
Sample variance, 58
Samples, 54, 63
Sampling distribution, 63-67
Sampling error, 63
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nominal, 21

ordinal, 21-22
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Scatterplot matrix, 48, 94-95
Scatterplots, 25, 43-45, 52, 91, 94-95,
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Searching, 4, 103-104
Segmentation, 31-32, 102, 168
SEMMA, 7
Sensitivity, 160-162, 233-237
Sequence data mining, 238
Sigmoid function, 189-190
Similarity measures, 104—108
Simple linear regression, 169—-172, 203
Simple models, 166
Simple nonlinear regression, 172—-176
Skewness, 61-62
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Specificity, 160-162, 233-236
Standalone software, 209, 211
Standard deviation, 39, 59-60, 96
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of the sample means, 65-66
Standard error
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of the means, 66
Statistical tables, 239-255
Statistics, 54-101
Student’s #-distribution, 69-71, 239
Subject matter experts, 10, 16
Subsets, see Segmentation
Success criteria, 8, 16
Sum, 39
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Sum of squares of error (SSE), 149-151,
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Summarizing the data, 2-5, 217, 225-230

Summary tables, 3—4, 39-40, 52
Support vector machines, 202
Surveys, 18, 211

Tables, 19-20, 3640, 49, 52
Tanh function, 189—190
Targeted marketing campaigns, 210
Test set, 167
Text data mining, 237
Time series data mining, 238
Timetable, 12, 14-16, 217-218
Training set, 167
Transformation, 26-32, 221-223
Box-Cox, 28-29
decimal scaling, 27
exponential, 28
min-max, 27-28, 221-222
z-score, 27
True negatives, 160
True positives, 159-160
t-value, 69-71
degrees of freedom, 71
Two-way cross-classification table,
36-39
Type I error, 82
Type II error, 82

Units, 21, 26
Upper extreme, 45, 57
Upper quartile, 45, 57
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Variables, 19-24, 36 Variation, 55, 57-61, 96
binary, 21 Visualizing relationships,

characterize, 20-24
comparing, 88-97
constant, 21
continuous, 20-21
descriptors, 22-23
dichotomous, 21
discrete, 20-21
dummy, 29-30
labels, 22-23
removing, 26, 32, 220
response, 22, 38
roles, 22-23, 217

90-91
Voting schemes, 168

%°, see Chi-square
X variables, see Variables,
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y-intercept, see Intersection
Y variables, see Variables,
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