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PREFACE

We live in the age of biology—the human and many other organisms’
genomes have been sequenced and we are starting to understand the
function of the metabolic machinery responsible for life on our planet.
Thousands of new genes have been discovered, many of these coding for
enzymes of yet unknown function. Understanding the kinetic behavior
of an enzyme provides clues to its possible physiological role. From
a biotechnological point of view, knowledge of the catalytic properties
of an enzyme is required for the design of immobilized enzyme-based
industrial processes. Biotransformations are of key importance to the
pharmaceutical and food industries, and knowledge of the catalytic
properties of enzymes, essential. This book is about understanding the
principles of enzyme kinetics and knowing how to use mathematical
models to describe the catalytic function of an enzyme. Coverage of the
material is by no means exhaustive. There exist many books on enzyme
kinetics that offer thorough, in-depth treatises of the subject. This book
stresses understanding and practicality, and is not meant to replace, but
rather to complement, authoritative treatises on the subject such as Segel’s
Enzyme Kinetics.

This book starts with a review of the tools and techniques used
in kinetic analysis, followed by a short chapter entitled “How Do
Enzymes Work?”, embodying the philosophy of the book. Characterization
of enzyme activity; reversible and irreversible inhibition; pH effects on
enzyme activity; multisubstrate, immobilized, interfacial, and allosteric
enzyme kinetics; transient phases of enzymatic reactions; and enzyme

xiii



xiv PREFACE

stability are covered in turn. In each chapter, models are developed
from first principles, assumptions stated and discussed clearly, and
applications shown.

The treatment of enzyme kinetics in this book is radically different
from the traditional way in which this topic is usually covered. In this
book, I have tried to stress the understanding of how models are arrived
at, what their limitations are, and how they can be used in a practical
fashion to analyze enzyme kinetic data. With the advent of computers,
linear transformations of models have become unnecessary—this book
does away with linear transformations of enzyme kinetic models, stressing
the use of nonlinear regression techniques. Linear transformations are not
required to carry out analysis of enzyme kinetic data. In this book, I
develop new ways of analyzing kinetic data, particularly in the study of
pH effects on catalytic activity and multisubstrate enzymes. Since a large
proportion of traditional enzyme kinetics used to deal with linearization
of data, removing these has both decreased the amount of information
that must be acquired and allowed for the development of a deeper
understanding of the models used. This, in turn, will increase the efficacy
of their use.

The book is relatively short and concise, yet complete. Time is today’s
most precious commodity. This book was written with this fact in mind;
thus, the coverage strives to be both complete and thorough, yet concise
and to the point.

ALEJANDRO MARANGONI

Guelph, September, 2001
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CHAPTER 1

TOOLS AND TECHNIQUES OF
KINETIC ANALYSIS

1.1 GENERALITIES

Chemists are concerned with the laws of chemical interactions. The the-
ories that have been expounded to explain such interactions are based
largely on experimental results. Two main approaches have been used to
explain chemical reactivity: thermodynamic and kinetic. In thermodynam-
ics, conclusions are reached on the basis of changes in energy and entropy
that accompany a particular chemical change in a system. From the mag-
nitude and sign of the free-energy change of a reaction, it is possible to
predict the direction in which a chemical change will take place. Thermo-
dynamic quantities do not, however, provide any information on the rate
or mechanism of a chemical reaction. Theoretical analysis of the kinetics,
or time course, of processes can provide valuable information concerning
the underlying mechanisms responsible for these processes. For this pur-
pose it is necessary to construct a mathematical model that embodies the
hypothesized mechanisms. Whether or not the solutions of the resulting
equations are consistent with the experimental data will either prove or
disprove the hypothesis.

Consider the simple reaction A+ B ⇀↽ C. The law of mass action states
that the rate at which the reactant A is converted to product C is pro-
portional to the number of molecules of A available to participate in
the chemical reaction. Doubling the concentration of either A or B will
double the number of collisions between molecules that lead to product
formation.

1
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2 TOOLS AND TECHNIQUES OF KINETIC ANALYSIS

The stoichiometry of a reaction is the simplest ratio of the number of
reactant molecules to the number of product molecules. It should not be
mistaken for the mechanism of the reaction. For example, three molecules
of hydrogen react with one molecule of nitrogen to form ammonia: N2 +
3H2 ⇀↽ 2NH3.

The molecularity of a reaction is the number of reactant molecules par-
ticipating in a simple reaction consisting of a single elementary step. Reac-
tions can be unimolecular, bimolecular, and trimolecular. Unimolecular
reactions can include isomerizations (A→ B) and decompositions (A→
B+ C). Bimolecular reactions include association (A+ B→ AB; 2A→
A2) and exchange reactions (A+ B→ C+ D or 2A→ C+ D). The less
common termolecular reactions can also take place (A+ B+ C→ P).

The task of a kineticist is to predict the rate of any reaction under a
given set of experimental conditions. At best, a mechanism is proposed
that is in qualitative and quantitative agreement with the known experi-
mental kinetic measurements. The criteria used to propose a mechanism
are (1) consistency with experimental results, (2) energetic feasibility,
(3) microscopic reversibility, and (4) consistency with analogous reac-
tions. For example, an exothermic, or least endothermic, step is most
likely to be an important step in the reaction. Microscopic reversibility
refers to the fact that for an elementary reaction, the reverse reaction
must proceed in the opposite direction by exactly the same route. Con-
sequently, it is not possible to include in a reaction mechanism any step
that could not take place if the reaction were reversed.

1.2 ELEMENTARY RATE LAWS

1.2.1 Rate Equation

The rate equation is a quantitative expression of the change in concentra-
tion of reactant or product molecules in time. For example, consider the
reaction A+ 3B→ 2C. The rate of this reaction could be expressed as
the disappearance of reactant, or the formation of product:

rate = −d[A]

d t
= −1

3

d[B]

d t
= 1

2

d[C]

d t
(1.1)

Experimentally, one also finds that the rate of a reaction is proportional
to the amount of reactant present, raised to an exponent n:

rate ∝ [A]n (1.2)
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where n is the order of the reaction. Thus, the rate equation for this
reaction can be expressed as

−d[A]

d t
= kr [A]n (1.3)

where kr is the rate constant of the reaction.
As stated implicitly above, the rate of a reaction can be obtained from

the slope of the concentration–time curve for disappearance of reac-
tant(s) or appearance of product(s). Typical reactant concentration–time
curves for zero-, first-, second-, and third-order reactions are shown in
Fig. 1.1(a). The dependence of the rates of these reactions on reactant
concentration is shown in Fig. 1.1(b).
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Figure 1.1. (a) Changes in reactant concentration as a function of time for zero-, first-,
second-, and third-order reactions. (b) Changes in reaction velocity as a function of reac-
tant concentration for zero-, first-, second-, and third-order reactions.
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1.2.2 Order of a Reaction

If the rate of a reaction is independent of a particular reactant concen-
tration, the reaction is considered to be zero order with respect to the
concentration of that reactant (n = 0). If the rate of a reaction is directly
proportional to a particular reactant concentration, the reaction is con-
sidered to be first-order with respect to the concentration of that reactant
(n = 1). If the rate of a reaction is proportional to the square of a particular
reactant concentration, the reaction is considered to be second-order with
respect to the concentration of that reactant (n = 2). In general, for any
reaction A+ B+ C+ · · · → P, the rate equation can be generalized as

rate = kr [A]a[B]b[C]c · · · (1.4)

where the exponents a, b, c correspond, respectively, to the order of the
reaction with respect to reactants A, B, and C.

1.2.3 Rate Constant

The rate constant (kr ) of a reaction is a concentration-independent mea-
sure of the velocity of a reaction. For a first-order reaction, kr has units
of (time)−1; for a second-order reaction, kr has units of (concentration)−1

(time)−1. In general, the rate constant of an nth-order reaction has units
of (concentration)−(n−1)(time)−1.

1.2.4 Integrated Rate Equations

By integration of the rate equations, it is possible to obtain expressions that
describe changes in the concentration of reactants or products as a function
of time. As described below, integrated rate equations are extremely useful
in the experimental determination of rate constants and reaction order.

1.2.4.1 Zero-Order Integrated Rate Equation
The reactant concentration–time curve for a typical zero-order reaction,
A→ products, is shown in Fig. 1.1(a). The rate equation for a zero-order
reaction can be expressed as

d[A]

d t
= −kr [A]0 (1.5)

Since [A]0 = 1, integration of Eq. (1.5) for the boundary conditions A =
A0 at t = 0 and A = At at time t ,

∫ At

A0

d[A] = −kr
∫ t

0
d t (1.6)
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Figure 1.2. Changes in reactant concentration as a function of time for a zero-order
reaction used in the determination of the reaction rate constant (kr ).

yields the integrated rate equation for a zero-order reaction:

[At ] = [A0]− kr t (1.7)

where [At ] is the concentration of reactant A at time t and [A0] is the
initial concentration of reactant A at t = 0. For a zero-order reaction, a
plot of [At ] versus time yields a straight line with negative slope −kr
(Fig. 1.2).

1.2.4.2 First-Order Integrated Rate Equation
The reactant concentration–time curve for a typical first-order reaction,
A→ products, is shown in Fig. 1.1(a). The rate equation for a first-order
reaction can be expressed as

d[A]

d t
= −kr [A] (1.8)

Integration of Eq. (1.8) for the boundary conditions A = A0 at t = 0 and
A = At at time t , ∫ At

A0

d[A]

[A]
= −kr

∫ t

0
d t (1.9)

yields the integrated rate equation for a first-order reaction:

ln
[At ]

[A0]
= −kr t (1.10)

or
[At ] = [A0] e−kr t (1.11)
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For a first-order reaction, a plot of ln([At ]/[A0]) versus time yields a
straight line with negative slope −kr (Fig. 1.3).

A special application of the first-order integrated rate equation is in the
determination of decimal reduction times, or D values, the time required
for a one-log10 reduction in the concentration of reacting species (i.e.,
a 90% reduction in the concentration of reactant). Decimal reduction
times are determined from the slope of log10([At ]/[A0]) versus time plots
(Fig. 1.4). The modified integrated first-order integrated rate equation can
be expressed as

log10
[At ]

[A0]
= − t

D
(1.12)

or
[At ] = [A0] · 10−(t/D) (1.13)

0 10 20 30 40 50 60
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0
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t

ln
 [A
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o]

Figure 1.3. Semilogarithmic plot of changes in reactant concentration as a function of
time for a first-order reaction used in determination of the reaction rate constant (kr ).
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Figure 1.4. Semilogarithmic plot of changes in reactant concentration as a function of
time for a first-order reaction used in determination of the decimal reduction time (D
value).
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The decimal reduction time (D) is related to the first-order rate constant
(kr ) in a straightforward fashion:

D = 2.303

kr
(1.14)

1.2.4.3 Second-Order Integrated Rate Equation
The concentration–time curve for a typical second-order reaction, 2A→
products, is shown in Fig. 1.1(a). The rate equation for a second-order
reaction can be expressed as

d[A]

d t
= −kr [A]2 (1.15)

Integration of Eq. (1.15) for the boundary conditions A = A0 at t = 0 and
A = At at time t , ∫ At

A0

d[A]

[A]2
= −kr

∫ t

0
d t (1.16)

yields the integrated rate equation for a second-order reaction:

1

[At ]
= 1

[A0]
+ kr t (1.17)

or

[At ] = [A0]

1+ [A0]kr t
(1.18)

For a second-order reaction, a plot of 1/At against time yields a straight
line with positive slope kr (Fig. 1.5).

For a second-order reaction of the type A+ B→ products, it is possible
to express the rate of the reaction in terms of the amount of reactant that
is converted to product (P) in time:

d[P]

d t
= kr [A0 − P][B0 − P] (1.19)

Integration of Eq. (1.19) using the method of partial fractions for the
boundary conditions A = A0 and B = B0 at t = 0, and A = At and B =
Bt at time t ,

1

[A0]− [B0]

∫ Pt

0

(
dP

[B0 − P]
− dP

[A0 − P]

)
= −kr

∫ t

0
d t (1.20)
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t
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Figure 1.5. Linear plot of changes in reactant concentration as a function of time for a
second-order reaction used in determination of the reaction rate constant (kr ).

yields the integrated rate equation for a second-order reaction in which
two different reactants participate:

1

[A0 − B0]
ln

[B0][At ]

[A0][Bt ]
= kr t (1.21)

where [At ] = [A0 − Pt ] and [Bt ] = [B0 − Pt ]. For this type of second-
order reaction, a plot of (1/[A0 − B0]) ln([B0][At ]/[A0][Bt ]) versus time
yields a straight line with positive slope kr .

1.2.4.4 Third-Order Integrated Rate Equation
The reactant concentration–time curve for a typical second-order reaction,
3A→ products, is shown in Fig. 1.1(a). The rate equation for a third-
order reaction can be expressed as

d[A]

d t
= −kr [A]3 (1.22)

Integration of Eq. (1.22) for the boundary conditions A = A0 at t = 0 and
A = At at time t , ∫ At

A0

d[A]

[A]3
= −kr

∫ t

0
d t (1.23)

yields the integrated rate equation for a third-order reaction:

1

2[At ]2
= 1

2[A0]2
+ kr t (1.24)
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or

[At ] = [A0]√
1+ 2[A0]2kr t

(1.25)

For a third-order reaction, a plot of 1/(2[At ]2) versus time yields a straight
line with positive slope kr (Fig. 1.6).

1.2.4.5 Higher-Order Reactions
For any reaction of the type nA→ products, where n > 1, the integrated
rate equation has the general form

1

(n− 1)[At ]n−1
= 1

(n− 1)[A0]n−1
+ kr t (1.26)

or

[At ] = [A0]
n−1
√

1+ (n− 1)[A0]n−1kr t
(1.27)

For an nth-order reaction, a plot of 1/[(n− 1)[At ]n−1] versus time yields
a straight line with positive slope kr .

1.2.4.6 Opposing Reactions
For the simplest case of an opposing reaction A ⇀↽ B,

d[A]

d t
= −k1[A]+ k−1[B] (1.28)

where k1 and k−1 represent, respectively, the rate constants for the forward
(A→ B) and reverse (B→ A) reactions. It is possible to express the rate

0 10 20 30 40 50 60
0.00

0.01

0.02

0.03

0.04

0.05

0.06

slope=kr

t

1/
(2

[A
t]2 )

Figure 1.6. Linear plot of changes in reactant concentration as a function of time for a
third-order reaction used in determination of the reaction rate constant (kr ).



10 TOOLS AND TECHNIQUES OF KINETIC ANALYSIS

of the reaction in terms of the amount of reactant that is converted to
product (B) in time (Fig. 1.7a):

d[B]

d t
= k1[A0 − B]− k−1[B] (1.29)

At equilibrium, d[B]/d t = 0 and [B] = [Be], and it is therefore possible
to obtain expressions for k−1 and k1[A0]:

k−1 = k1[A0 − Be]

[Be]
and k1[A0] = (k−1 + k1)[Be] (1.30)

Substituting the k1[A0 − Be]/[Be] for k−1 into the rate equation, we obtain

d[B]

d t
= k1[A0 − B]− k1[A0 − Be][B]

Be
(1.31)

0 10 20 30 40 50 60
0

20

40

60

80

t

(a)

[B
t]

[Be]=50
(k1+k−1)=0.1t−1

0 10 20 30 40 50 60
0

1

2

3

4

5

6

slope=(k1+k−1)

t

(b)

ln
([

B
e]

/[B
e−

B
t])

Figure 1.7. (a) Changes in product concentration as a function of time for a reversible
reaction of the form A ⇀↽ B. (b) Linear plot of changes in product concentration as a
function of time used in the determination of forward (k1) and reverse (k−1) reaction
rate constants.
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Summing together the terms on the right-hand side of the equation, sub-
stituting (k−1 + k1)[Be] for k1[A0], and integrating for the boundary con-
ditions B = 0 at t = 0 and B = Bt at time t ,

∫ Bt

0

dB

[Be − B]/[Be]
= (k1 + k−1)

∫ t

0
d t (1.32)

yields the integrated rate equation for the opposing reaction A ⇀↽ B:

ln
[Be]

[Be − Bt ]
= (k1 + k−1)t (1.33)

or
[Bt ] = [Be]− [Be] e−(k1+k−1)t (1.34)

A plot of ln([Be]/[Be − B]) versus time results in a straight line with
positive slope (k1 + k−1) (Fig. 1.7b).

The rate equation for a more complex case of an opposing reaction,
A+ B ⇀↽ P, assuming that [A0] = [B0], and [P] = 0 at t = 0, is

[Pe]

[A0]2 − [Pe]2
ln

[Pe][A2
0 − Pe]

[A0]2[Pe − Pt ]
= k1t (1.35)

The rate equation for an even more complex case of an opposing reaction,
A+ B ⇀↽ P+ Q, assuming that [A0] = [B0], [P] = [Q], and [P] = 0 at
t = 0, is

[Pe]

2[A0][A0 − Pe]
ln

[Pt ][A0 − 2Pe]+ [A0][Pe]

[A0][Pe − Pt ]
= k1t (1.36)

1.2.4.7 Reaction Half-Life
The half-life is another useful measure of the rate of a reaction. A reaction
half-life is the time required for the initial reactant(s) concentration to
decrease by 1

2 . Useful relationships between the rate constant and the
half-life can be derived using the integrated rate equations by substituting
1
2 A0 for At .

The resulting expressions for the half-life of reactions of different orders
(n) are as follows:

n = 0 · · · t1/2 = 0.5[A0]

kr
(1.37)

n = 1 · · · t1/2 = ln 2

kr
(1.38)
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n = 2 · · · t1/2 = 1

kr [A0]
(1.39)

n = 3 · · · t1/2 = 3

2kr [A0]2
(1.40)

The half-life of an nth-order reaction, where n > 1, can be calculated
from the expression

t1/2 = 1− (0.5)n−1

(n− 1)kr [A0]n−1
(1.41)

1.2.5 Experimental Determination of Reaction Order
and Rate Constants

1.2.5.1 Differential Method (Initial Rate Method)
Knowledge of the value of the rate of the reaction at different reactant
concentrations would allow for determination of the rate and order of
a chemical reaction. For the reaction A→ B, for example, reactant or
product concentration–time curves are determined at different initial reac-
tant concentrations. The absolute value of slope of the curve at t = 0,
|d[A]/d t)0| or |d[B]/d t)0|, corresponds to the initial rate or initial veloc-
ity of the reaction (Fig. 1.8).

As shown before, the reaction velocity (vA) is related to reactant con-
centration,

vA =
∣∣∣∣d[A]

d t

∣∣∣∣ = kr [A]n (1.42)

Taking logarithms on both sides of Eq. (1.42) results in the expression

log vA = log kr + n log [A] (1.43)

∆t

∆A vA = −∆A/∆t

Time
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Figure 1.8. Determination of the initial velocity of a reaction as the instantaneous slope
of the substrate depletion curve in the vicinity of t = 0.
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Figure 1.9. Log-log plot of initial velocity versus initial substrate concentration used in
determination of the reaction rate constant (kr ) and the order of the reaction.

A plot of the logarithm of the initial rate against the logarithm of the initial
reactant concentration yields a straight line with a y-intercept correspond-
ing to log kr and a slope corresponding to n (Fig. 1.9). For more accurate
determinations of the initial rate, changes in reactant concentration are
measured over a small time period, where less than 1% conversion of
reactant to product has taken place.

1.2.5.2 Integral Method
In the integral method, the rate constant and order of a reaction are deter-
mined from least-squares fits of the integrated rate equations to reactant
depletion or product accumulation concentration–time data. At this point,
knowledge of the reaction order is required. If the order of the reaction
is not known, one is assumed or guessed at: for example, n = 1. If nec-
essary, data are transformed accordingly [e.g., ln([At ]/[A0])] if a linear
first-order model is to be used. The model is then fitted to the data using
standard least-squares error minimization protocols (i.e., linear or non-
linear regression). From this exercise, a best-fit slope, y-intercept, their
corresponding standard errors, as well as a coefficient of determination
(CD) for the fit, are determined. The r-squared statistic is sometimes used
instead of the CD; however, the CD statistic is the true measure of the
fraction of the total variance accounted for by the model. The closer the
values of |r2| or |CD| to 1, the better the fit of the model to the data.

This procedure is repeated assuming a different reaction order (e.g.,
n = 2). The order of the reaction would thus be determined by compar-
ing the coefficients of determination for the different fits of the kinetic
models to the transformed data. The model that fits the data best defines
the order of that reaction. The rate constant for the reaction, and its corre-
sponding standard error, is then determined using the appropriate model.
If coefficients of determination are similar, further experimentation may
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be required to determine the order of the reaction. The advantage of the
differential method over the integral method is that no reaction order
needs to be assumed. The reaction order is determined directly from the
data analysis. On the other hand, determination of initial rates can be
rather inaccurate.

To use integrated rate equations, knowledge of reactant or product con-
centrations is not an absolute requirement. Any parameter proportional
to reactant or product concentration can be used in the integrated rate
equations (e.g., absorbance or transmittance, turbidity, conductivity, pres-
sure, volume, among many others). However, certain modifications may
have to be introduced into the rate equations, since reactant concentration,
or related parameters, may not decrease to zero—a minimum, nonzero
value (Amin) might be reached. For product concentration and related
parameters, a maximum value (Pmax) may be reached, which does not
correspond to 100% conversion of reactant to product. A certain amount
of product may even be present at t = 0 (P0). The modifications introduced
into the rate equations are straightforward. For reactant (A) concentration,

[At ] ==⇒ [At − Amin] and [A0] ==⇒ [A0 − Amin] (1.44)

For product (P) concentration,

[Pt ] ==⇒ [Pt − P0] and [P0] ==⇒ [Pmax − P0] (1.45)

These modified rate equations are discussed extensively in Chapter 12,
and the reader is directed there if a more-in-depth discussion of this topic
is required at this stage.

1.3 DEPENDENCE OF REACTION RATES ON TEMPERATURE

1.3.1 Theoretical Considerations

The rates of chemical reactions are highly dependent on temperature.
Temperature affects the rate constant of a reaction but not the order of the
reaction. Classic thermodynamic arguments are used to derive an expres-
sion for the relationship between the reaction rate and temperature.

The molar standard-state free-energy change of a reaction (�G◦) is a
function of the equilibrium constant (K) and is related to changes in the
molar standard-state enthalpy (�H ◦) and entropy (�S◦), as described by
the Gibbs–Helmholtz equation:

�G
◦ = −RT ln K = �H ◦ − T�S◦ (1.46)
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Rearrangement of Eq. (1.46) yields the well-known van’t Hoff equation:

lnK = −�H
◦

RT
+ �S

◦

R
(1.47)

The change in �S◦ due to a temperature change from T1 to T2 is given by

�S
◦
T2
= �S◦T1

+�Cp ln
T2

T1
(1.48)

and the change in �H ◦ due to a temperature change from T1 to T2 is
given by

�H
◦
T2
= �H ◦T1

+�Cp(T2 − T1) (1.49)

If the heat capacities of reactants and products are the same (i.e.,�Cp = 0)
�S
◦ and �H ◦ are independent of temperature. Subject to the condition

that the difference in the heat capacities between reactants and products
is zero, differentiation of Eq. (1.47) with respect to temperature yields a
more familiar form of the van’t Hoff equation:

d lnK

dT
= �H

◦

RT 2
(1.50)

For an endothermic reaction, �H ◦ is positive, whereas for an exother-
mic reaction, �H ◦ is negative. The van’t Hoff equation predicts that the
�H

◦ of a reaction defines the effect of temperature on the equilibrium
constant. For an endothermic reaction, K increases as T increases; for an
exothermic reaction, K decreases as T increases. These predictions are
in agreement with Le Chatelier’s principle, which states that increasing
the temperature of an equilibrium reaction mixture causes the reaction
to proceed in the direction that absorbs heat. The van’t Hoff equation
is used for the determination of the �H ◦ of a reaction by plotting lnK
against 1/T . The slope of the resulting line corresponds to −�H ◦/R
(Fig. 1.10). It is also possible to determine the �S◦ of the reaction from
the y-intercept, which corresponds to �S◦/R. It is important to reiterate
that this treatment applies only for cases where the heat capacities of the
reactants and products are equal and temperature independent.

Enthalpy changes are related to changes in internal energy:

�H
◦ = �E◦ +�(PV ) = �E◦ + P1V1 − P2V2 (1.51)

Hence, �H ◦ and �E◦ differ only by the difference in the PV products
of the final and initial states. For a chemical reaction at constant pressure
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Figure 1.10. van’t Hoff plot used in the determination of the standard-state enthalpy�H ◦

of a reaction.

in which only solids and liquids are involved, �(PV ) ≈ 0, and therefore
�H

◦ and �E◦ are nearly equal. For gas-phase reactions, �(PV ) �= 0,
unless the number of moles of reactants and products remains the same.
For ideal gases it can easily be shown that �(PV ) = (�n)RT . Thus, for
gas-phase reactions, if �n = 0, �H ◦ = �E◦.

At equilibrium, the rate of the forward reaction (v1) is equal to the
rate of the reverse reaction (v−1), v1 = v−1. Therefore, for the reaction
A ⇀↽ B at equilibrium,

k1[Ae] = k−1[Be] (1.52)

and therefore

K = [products]

[reactants]
= [Be]

[Ae]
= k1

k−1
(1.53)

Considering the above, the van’t Hoff Eq. (1.50) can therefore be rewrit-
ten as

d ln k1

dT
− d ln k−1

dT
= �E

◦

RT 2
(1.54)

The change in the standard-state internal energy of a system undergoing
a chemical reaction from reactants to products (�E◦) is equal to the
energy required for reactants to be converted to products minus the energy
required for products to be converted to reactants (Fig. 1.11). Moreover,
the energy required for reactants to be converted to products is equal to
the difference in energy between the ground and transition states of the
reactants (�E‡

1), while the energy required for products to be converted
to reactants is equal to the difference in energy between the ground and
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Figure 1.11. Changes in the internal energy of a system undergoing a chemical reac-
tion from substrate A to product B. �E‡ corresponds to the energy barrier (energy of
activation) for the forward (1) and reverse (−1) reactions, C‡ corresponds to the puta-
tive transition state structure, and �E◦ corresponds to the standard-state difference in the
internal energy between products and reactants.

transition states of the products (�E‡
−1). Therefore, the change in the

internal energy of a system undergoing a chemical reaction from reactants
to products can be expressed as

�E
◦ = Eproducts − Ereactants = �E‡

1 −�E‡
−1 (1.55)

Equation (1.54) can therefore be expressed as two separate differential
equations corresponding to the forward and reverse reactions:

d ln k1

dT
= �E

‡
1

RT 2
+ C and

d ln k−1

dT
= �E

‡
−1

RT 2
+ C (1.56)

Arrhenius determined that for many reactions, C = 0, and thus stated his
law as:

d ln kr
dT

= �E‡

RT 2
(1.57)

The Arrhenius law can also be expressed in the more familiar integrated
form:

ln kr = lnA− �E
‡

RT
or kr = Ae−(�E

‡/RT ) (1.58)

�E‡, or Ea as Arrhenius defined this term, is the energy of activation
for a chemical reaction, and A is the frequency factor. The frequency
factor has the same dimensions as the rate constant and is related to the
frequency of collisions between reactant molecules.
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1.3.2 Energy of Activation

Figure 1.11 depicts a potential energy reaction coordinate for a hypothet-
ical reaction A ⇀↽ B. For A molecules to be converted to B (forward
reaction), or for B molecules to be converted to A (reverse reaction),
they must acquire energy to form an activated complex C‡. This potential
energy barrier is therefore called the energy of activation of the reaction.
For the reaction to take place, this energy of activation is the minimum
energy that must be acquired by the system’s molecules. Only a small
fraction of the molecules may possess sufficient energy to react. The rate
of the forward reaction depends on �E‡

1 , while the rate of the reverse
reaction depends on �E‡

−1 (Fig. 1.11). As will be shown later, the rate
constant is inversely proportional to the energy of activation.

To determine the energy of activation of a reaction, it is necessary to
measure the rate constant of a particular reaction at different temperatures.
A plot of ln kr versus 1/T yields a straight line with slope −�E‡/R

(Fig. 1.12). Alternatively, integration of Eq. (1.58) as a definite integral
with appropriate boundary conditions,

∫ k2

k1

d ln kr =
∫ T2

T1

dT

T 2
(1.59)

yields the following expression:

ln
k2

k1
= �E‡

R

T2 − T1

T2T1
(1.60)
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Figure 1.12. Arrhenius plot used in determination of the energy of activation (Ea) of
a reaction.
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This equation can be used to obtain the energy of activation, or predict
the value of the rate constant at T2 from knowledge of the value of the
rate constant at T1, and of �E‡.

A parameter closely related to the energy of activation is the Z value,
the temperature dependence of the decimal reduction time, or D value.
The Z value is the temperature increase required for a one-log10 reduction
(90% decrease) in the D value, expressed as

log10D = log10 C −
T

Z
(1.61)

or
D = C · 10−T /Z (1.62)

where C is a constant related to the frequency factor A in the Arrhe-
nius equation.

The Z value can be determined from a plot of log10D versus tem-
perature (Fig. 1.13). Alternatively, if D values are known only at two
temperatures, the Z value can be determined using the equation

log10
D2

D1
= −T2 − T1

Z
(1.63)

It can easily be shown that the Z value is inversely related to the energy
of activation:

Z = 2.303RT1T2

�E‡
(1.64)

where T1 and T2 are the two temperatures used in the determination
of �E‡.
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Figure 1.13. Semilogarithmic plot of the decimal reduction time (D) as a function of
temperature used in the determination of the Z value.
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1.4 ACID–BASE CHEMICAL CATALYSIS

Many homogeneous reactions in solution are catalyzed by acids and bases.
A Brönsted acid is a proton donor,

HA+ H2O←−−→ H3O+ + A− (1.65)

while a Brönsted base is a proton acceptor,

A− + H2O←−−→ HA+ OH− (1.66)

The equilibrium ionization constants for the weak acid (KHA) and its
conjugate base (KA−) are, respectively,

KHA = [H3O+][A−]

[HA][H2O]
(1.67)

and

KA− = [HA][OH−]

[A−][H2O]
(1.68)

The concentration of water can be considered to remain constant
(∼55.3 M) in dilute solutions and can thus be incorporated into KHA
and KA− . In this fashion, expressions for the acidity constant (Ka), and
the basicity, or hydrolysis, constant (Kb) are obtained:

Ka = KHA[H2O] = [H3O+][A−]

[HA]
(1.69)

Kb = KA−[H2O] = [HA][OH−]

[A−]
(1.70)

These two constants are related by the self-ionization or autoprotolysis
constant of water. Consider the ionization of water:

2H2O←−−→ H3O+ + OH− (1.71)

where

KH2O = [H3O+][OH−]

[H2O]2
(1.72)

The concentration of water can be considered to remain constant
(∼55.3 M) in dilute solutions and can thus be incorporated into KH2O.
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Equation (1.72) can then be expressed as

Kw = KH2O[H2O]2 = [H3O+][OH−] (1.73)

where Kw is the self-ionization or autoprotolysis constant of water. The
product of Ka and Kb corresponds to this self-ionization constant:

Kw = KaKb = [H3O+][A−]

[HA]
· [HA][OH−]

[A−]
= [H3O+][OH−] (1.74)

Consider a substrate S that undergoes an elementary reaction with an
undissociated weak acid (HA), its conjugate conjugate base (A−), hydro-
nium ions (H3O+), and hydroxyl ions (OH−). The reactions that take
place in solution include

S
k0−−→ P

S+ H3O+
kH+−−→ P+ H3O+

S+ OH−
kOH−−−→ P+ OH−

S+ HA
kHA−−→ P+ HA

S+ A−
kA−−−→ P+ A−

(1.75)

The rate of each of the reactions above can be written as

v0 = k0[S]

vH+ = kH+[H3O+][S]

vOH− = kOH−[OH−][S] (1.76)

vHA = kHA[HA][S]

vA− = kA−[A−][S]

where k0 is the rate constant for the uncatalyzed reaction, kH+ is the
rate constant for the hydronium ion–catalyzed reaction, kOH− is the rate
constant for the hydroxyl ion–catalyzed reaction, kHA is the rate constant
for the undissociated acid-catalyzed reaction, and kA− is the rate constant
for the conjugate base–catalyzed reaction.



22 TOOLS AND TECHNIQUES OF KINETIC ANALYSIS

The overall rate of this acid/base-catalyzed reaction (v) corresponds to
the summation of each of these individual reactions:

v = v0 + vH+ + vOH− + vHA + vA−

= k0[S]+ kH+[H3O+][S]+ kOH−[OH−][S]

+ kHA[HA][S]+ kA−[A−][S]

= (k0 + kH+[H3O+]+ kOH−[OH−]+ kHA[HA]+ kA−[A−])[S]

= kc[S] (1.77)

where kc is the catalytic rate coefficient:

kc = k0 + kH+[H3O+]+ kOH−[OH−]+ kHA[HA]+ kA−[A−] (1.78)

Two types of acid–base catalysis have been observed: general and
specific. General acid–base catalysis refers to the case where a solution
is buffered, so that the rate of a chemical reaction is not affected by the
concentration of hydronium or hydroxyl ions. For these types of reactions,
kH+ and kOH− are negligible, and therefore

kHA, kA− ≫ kH+, kOH− (1.79)

For general acid–base catalysis, assuming a negligible contribution from
the uncatalyzed reaction (k0 ≪ kHA, kA−), the catalytic rate coefficient
is mainly dependent on the concentration of undissociated acid HA and
conjugate base A− at constant ionic strength. Thus, kc reduces to

kc = kHA[HA]+ kA−[A−] (1.80)

which can be expressed as

kc = kHA[HA]+ kA−
Ka[HA]

[H+]
=

(
kHA + kA−

Ka

[H+]

)
[HA] (1.81)

Thus, a plot of kc versus HA concentration at constant pH yields a straight
line with

slope = kHA + kA−
Ka

[H+]
(1.82)

Since the value of Ka is known and the pH of the reaction mixture is
fixed, carrying out this experiment at two values of pH allows for the
determination of kHA and kA− .
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Of greater relevance to our discussion is specific acid–base catalysis,
which refers to the case where the rate of a chemical reaction is propor-
tional only to the concentration of hydrogen and hydroxyl ions present.
For these type of reactions, kHA and kA− are negligible, and therefore

kH+, kOH− ≫ kHA, kA− (1.83)

Thus, kc reduces to

kc = k0 + kH+[H+]+ kOH−[OH−] (1.84)

The catalytic rate coefficient can be determined by measuring the rate
of the reaction at different pH values, at constant ionic strength, using
appropriate buffers.

Furthermore, for acid-catalyzed reactions at high acid concentrations
where k0, kOH− ≪ kH+ ,

kc = kH+[H+] (1.85)

For base-catalyzed reactions at high alkali concentrations where k0, kH+
≪ kOH− ,

kc = kOH−[OH−] = kOH−
Kw

[H+]
(1.86)

Taking base 10 logarithms on both sides of Eqs. (1.85) and (1.86) results,
respectively, in the expressions

log10 kc = log10 kH+ + log10[H+] = log10 kH+ − pH (1.87)

for acid-catalyzed reactions and

log10 kc = log10(KwkOH−)− log10[H+] = log10(KwkOH−)+ pH (1.88)

for base-catalyzed reactions.
Thus, a plot of log10 kc versus pH is linear in both cases. For an acid-

catalyzed reaction at low pH, the slope equals −1, and for a base-catalyzed
reaction at high pH, the slope equals +1 (Fig. 1.14). In regions of interme-
diate pH, log10 kc becomes independent of pH and therefore of hydroxyl
and hydrogen ion concentrations. In this pH range, kc depends solely
on k0.

1.5 THEORY OF REACTION RATES

Absolute reaction rate theory is discussed briefly in this section. Colli-
sion theory will not be developed explicitly since it is less applicable to
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Figure 1.14. Changes in the reaction rate constant for an acid/base-catalyzed reaction as
a function of pH. A negative sloping line (slope = −1) as a function of increasing pH is
indicative of an acid-catalyzed reaction; a positive sloping line (slope = +1) is indicative
of a base-catalyzed reaction. A slope of zero is indicative of pH independence of the
reaction rate.

the complex systems studied. Absolute reaction rate theory is a collision
theory which assumes that chemical activation occurs through collisions
between molecules. The central postulate of this theory is that the rate
of a chemical reaction is given by the rate of passage of the activated
complex through the transition state.

This theory is based on two assumptions, a dynamical bottleneck assum-
ption and an equilibrium assumption. The first asserts that the rate of a
reaction is controlled by the decomposition of an activated transition-
state complex, and the second asserts that an equilibrium exists between
reactants (A and B) and the transition-state complex, C‡:

A+ B −−⇀↽−− C‡ −−→ C+ D (1.89)

It is therefore possible to define an equilibrium constant for the conversion
of reactants in the ground state into an activated complex in the transition
state. For the reaction above,

K‡ = [C‡]

[A][B]
(1.90)

As discussed previously, �G◦ = −RT ln K and ln K = ln k1 − ln k−1.
Thus, in an analogous treatment to the derivation of the Arrhenius equation
(see above), it would be straightforward to show that

kr = ce−(�G‡/RT ) = cK‡ (1.91)
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where �G‡ is the free energy of activation for the conversion of reactants
into activated complex. By using statistical thermodynamic arguments, it
is possible to show that the constant c equals

c = κν (1.92)

where κ is the transmission coefficient and ν is the frequency of the
normal-mode oscillation of the transition-state complex along the reaction
coordinate—more rigorously, the average frequency of barrier crossing.
The transmission coefficient, which can differ dramatically from unity,
includes many correction factors, including tunneling, barrier recrossing
correction, and solvent frictional effects. The rate of a chemical reaction
depends on the equilibrium constant for the conversion of reactants into
activated complex.

Since �G = �H − T�S, it is possible to rewrite Eq. (1.91) as

kr = κνe�S
‡/Re−(�H

‡/RT ) (1.93)

Consider�H = �E + (�n)RT , where�n equals the difference between
the number of moles of activated complex (nac) and the moles of reactants
(nr ). The term nr also corresponds to the molecularity of the reaction (e.g.,
unimolecular, bimolecular). At any particular time, nr ≫ nac and there-
fore �H ≈ �E − nrRT . Substituting this expression for the enthalpy
change into Eq. (1.93) and rearranging, we obtain

kr = κν e(nr+�S
‡)/Re−(�E

‡/RT ) (1.94)

Comparison of this equation with the Arrhenius equation sheds light on
the nature of the frequency factor:

A = κν e(nr+�S
‡)/R (1.95)

The concept of entropy of activation (�S‡) is of utmost importance for
an understanding of reactivity. Two reactions with similar �E‡ values
at the same temperature can proceed at appreciably different rates. This
effect is due to differences in their entropies of activation. The entropy
of activation corresponds to the difference in entropy between the ground
and transition states of the reactants. Recalling that entropy is a measure
of the randomness of a system, a positive �S‡ suggests that the transition
state is more disordered (more degrees of freedom) than the ground state.
Alternatively, a negative �S‡ value suggests that the transition state is
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more ordered (less degrees of freedom) than the ground state. Freely
diffusing, noninteracting molecules have many translational, vibrational
and rotational degrees of freedom. When two molecules interact at the
onset of a chemical reaction and pass into a more structured transition
state, some of these degrees of freedom will be lost. For this reason,
most entropies of activation for chemical reactions are negative. When
the change in entropy for the formation of the activated complex is small
(�S‡ ≈ 0), the rate of the reaction is controlled solely by the energy of
activation (�E‡).

It is interesting to use the concept of entropy of activation to explain
the failure of collision theory to explain reactivity. Consider that for a
bimolecular reaction A+ B→ products, the frequency factor (A) equals
the number of collisions per unit volume between reactant molecules
(Z) times a steric, or probability factor (P ):

A = PZ = κν e2+�S‡/R (1.96)

If only a fraction of the collisions result in conversion of reactants into
products, then P < 1, implying a negative �S‡. For this case, the rate of
the reaction will be slower than predicted by collision theory. If a greater
number of reactant molecules than predicted from the number of collisions
are converted into products, P > 1, implying a positive�S‡. For this case,
the rate of the reaction will be faster than predicted by collision theory.
On the other hand, when P = 1 and �S‡ = 0, predictions from collision
theory and absolute rate theory agree.

1.6 COMPLEX REACTION PATHWAYS

In this section we discuss briefly strategies for tackling more complex
reaction mechanisms. The first step in any kinetic modeling exercise is
to write down the differential equations and mass balance that describe
the process. Consider the reaction

A
k1−−→ B

k2−−→ C (1.97)

Typical concentration–time patterns for A, B, and C are shown in
Fig. 1.15. The differential equations and mass balance that describe this
reaction are
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Figure 1.15. Changes in reactant, intermediate, and product concentrations as a function
of time for a reaction of the form A→ B→ C. Bss denotes the steady-state concentration
in intermediate B at time tss.

dA

d t
= −k1[A] (1.98)

d[B]

d t
= k1[A]− k2[B] (1.99)

d[C]

d t
= k2[B] (1.100)

[A0]+ [B0]+ [C0] = [At ]+ [Bt ]+ [Ct ] (1.101)

Once the differential equations and mass balance have been written
down, three approaches can be followed in order to model complex reac-
tion schemes. These are (1) numerical integration of differential equations,
(2) steady-state approximations to solve differential equations analytically,
and (3) exact analytical solutions of the differential equations without
using approximations.

It is important to remember that in this day and age of powerful com-
puters, it is no longer necessary to find analytical solutions to differential
equations. Many commercially available software packages will carry
out numerical integration of differential equations followed by nonlin-
ear regression to fit the model, in the form of differential equations, to
the data. Estimates of the rate constants and their variability, as well as
measures of the goodness of fit of the model to the data, can be obtained
in this fashion. Eventually, all modeling exercises are carried out in this
fashion since it is difficult, and sometimes impossible, to obtain analytical
solutions for complex reaction schemes.
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1.6.1 Numerical Integration and Regression

1.6.1.1 Numerical Integration
Finding the numerical solution of a system of first-order ordinary differ-
ential equations,

dY

dx
= F(x, Y (x)) Y (x0) = Y0 (1.102)

entails finding the numerical approximations of the solution Y(x) at dis-
crete points x0, x1, x2 < · · · < xn < xn+1 < · · · by Y0, Y1, Y2, . . . , Yn,

Yn+1, . . .. The distance between two consecutive points, hn = xn − xn+1,
is called the step size. Step sizes do not necessarily have to be constant
between all grid points xn. All numerical methods have one property
in common: finding approximations of the solution Y(x) at grid points
one by one. Thus, if a formula can be given to calculate Yn+1 based on
the information provided by the known values of Yn, Yn−1, · · · , Y0, the
problem is solved. Many numerical methods have been developed to find
solutions for ordinary differential equations, the simplest one being the
Euler method. Even though the Euler method is seldom used in practice
due to lack of accuracy, it serves as the basis for analysis in more accurate
methods, such as the Runge–Kutta method, among many others.

For a small change in the dependent variable (Y ) in time (x), the fol-
lowing approximation is used:

dY

dx
∼ �Y

�x
(1.103)

Therefore, we can write

Yn+1 − Yn
xn+1 − xn = F(xn, Yn) (1.104)

By rearranging Eq. (1.104), Euler obtained an expression for Yn+1 in terms
of Yn:

Yn+1 = Yn + (xn+1 − xn)F (xn, Yn) or Yn+1 = Yn + hF(xn, Yn)
(1.105)

Consider the reaction A→ B→ C. As discussed before, the analytical
solution for the differential equation that describes the first-order decay
in [A] is [At ] = [A0] e−kt . Hence, the differential equation that describes
changes in [B] in time can be written as

d[B]

d t
= k1[A0] e−k1t − k2[B] (1.106)
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A numerical solution for the differential equation (1.106) is found using
the initial value [B0] at t = 0, and from knowledge of the values of k1,
k2, and [A0]. Values for [Bt ] are then calculated as follows:

[B1] = [B0]+ h(k1[A0]− k2[B0])

[B2] = [B1]+ h(k1[A0] e−k1t1 − k2[B1])
... (1.107)

[Bn+1] = [Bn]+ h(k1[A0] e−k1tn − k2[Bn])

It is therefore possible to generate a numerical solution (i.e., a set of
numbers predicted by the differential equation) of the ordinary differen-
tial equation (1.106). Values obtained from the numerical integration (i.e.,
predicted data) can now be compared to experimental data values.

1.6.1.2 Least-Squares Minimization (Regression Analysis)
The most common way in which models are fitted to data is by using
least-squares minimization procedures (regression analysis). All these pro-
cedures, linear or nonlinear, seek to find estimates of the equation param-
eters (α, β, γ, . . .) by determining parameter values for which the sum of
squared residuals is at a minimum, and therefore


∂

∑n

1
(yi − ŷi)2
∂α



β,γ,δ,...

= 0 (1.108)

where yi and ŷi correspond, respectively, to the ith experimental and
predicted points at xi . If the variance (si2) of each data point is known
from experimental replication, a weighted least-squares minimization can
be carried out, where the weights (wi) correspond to 1/si2. In this fashion,
data points that have greater error contribute less to the analysis. Estimates
of equation parameters are found by determining parameter values for
which the chi-squared (χ2) value is at a minimum, and therefore


∂

∑n

1
wi(yi − ŷi)2
∂α



β,γ,δ,...

= 0 (1.109)

At this point it is necessary to discuss differences between uniresponse
and multiresponse modeling. Take, for example, the reaction A→ B→
C. Usually, equations in differential or algebraic form are fitted to indi-
vidual data sets, A, B, and C and a set of parameter estimates obtained.
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However, if changes in the concentrations of A, B, and C as a function
of time are determined, it is possible to use the entire data set (A, B,
C) simultaneously to obtain parameter estimates. This procedure entails
fitting the functions that describe changes in the concentration of A, B,
and C to the experimental data simultaneously, thus obtaining one global
estimate of the rate constants. This multivariate response modeling helps
increase the precision of the parameter estimates by using all available
information from the various responses.

A determinant criterion is used to obtain least-squares estimates of
model parameters. This entails minimizing the determinant of the matrix
of cross products of the various residuals. The maximum likelihood esti-
mates of the model parameters are thus obtained without knowledge of the
variance–covariance matrix. The residuals εiu, εju, and εku correspond to
the difference between predicted and actual values of the dependent vari-
ables at the different values of the uth independent variable (u = t0 to
u = tn), for the ith, j th, and kth experiments (A, B, and C), respectively.
It is possible to construct an error covariance matrix with elements νij :

νij =
n∑
u=1

εiuεju (1.110)

The determinant of this matrix needs to be minimized with respect to
the parameters. The diagonal of this matrix corresponds to the sums of
squares for each response (νii , νjj , νkk).

Regression analysis involves several important assumptions about the
function chosen and the error structure of the data:

1. The correct equation is used.
2. Only dependent variables are subject to error; while independent

variables are known exactly.
3. Errors are normally distributed with zero mean, are the same for

all responses (homoskedastic errors), and are uncorrelated (zero
covariance).

4. The correct weighting is used.

For linear functions, single or multiple, it is possible to find analytical
solutions of the error minimization partial differential. Therefore, exact
mathematical expressions exist for the calculation of slopes and intercepts.
It should be noted at this point that a linear function of parameters does
not imply a straight line. A model is linear if the first partial derivative
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of the function with respect to the parameter(s) is independent of such
parameter(s), therefore, higher-order derivatives would be zero.

For example, equations used to calculate the best-fit slope and
y-intercept for a data set that fits the linear function y = mx + b can
easily be obtained by considering that the minimum sum-of-squared resid-
uals (SS) corresponds to parameter values for which the partial differential
of the function with respect to each parameter equals zero. The squared
residuals to be minimized are

(residual)2 = (yi − ŷi)2 = [yi − (mxi + b)]2 (1.111)

The partial differential of the slope (m) for a constant y-intercept is
therefore

(
∂SS

∂m

)
b

= −2
n∑
1

xiyi + 2b
n∑
1

xi + 2m
n∑
1

x2
i = 0 (1.112)

and therefore

m =
∑n

1
xiyi − b

∑n

1
xi∑n

1
x2
i

(1.113)

The partial differential of the y-intercept for a constant slope is

(
∂SS

∂b

)
m

= m
n∑
1

xi −
n∑
1

yi + nb = 0 (1.114)

and therefore

b =
∑n

1
yi −m

∑n

1
xi

n
= y −mx (1.115)

where x and y correspond to the overall averages of all x and y data,
respectively. Substituting b into m and rearranging, we obtain an equation
for direct calculation of the best-fit slope of the line:

m =
∑n

i=1
xiyi −

(∑n

i=1
xi

∑n

i=1
yi/n

)
∑n

i=1
x2
i −

(∑n

i=1
xi

)2
/n

=
∑n

i=1
(xi − x)(yi − y)∑n

i=1
(xi − x)2

(1.116)
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The best-fit y-intercept of the line is given by

b = y −
∑n

i=1
(xi − x)(yi − y)∑n

i=1
(xi − x)2

x (1.117)

These equations could have also been derived by considering the orthog-
onality of residuals using

∑
(yi − ŷi)(xi) = 0.

Goodness-of-Fit Statistics
At this point it would be useful to mention goodness-of-fit statistics. A
useful parameter for judging the goodness of fit of a model to experimental
data is the reduced χ2 value:

χ2
ν =

∑n

1
wi(yi − ŷi)2
ν

(1.118)

where wi is the weight of the ith data point and ν corresponds to the
degrees of freedom, defined as ν = (n− p − 1), where n is the total num-
ber of data values and p is the number of parameters that are estimated.
The reduced χ2 value should be roughly equal to the number of degrees
of freedom if the model is correct (i.e., χ2

ν ≈ 1). Another statistic most
appropriately applied to linear regression, as an indication of how closely
the dependent and independent variables approximate a linear relationship
to each other is the correlation coefficient (CC):

CC =
∑n

i=1
wi(xi − x)(yi − y)[∑n

i=1
wi(xi − x)2

]1/2 [∑n

i=1
wi(yi − y)2

]1/2 (1.119)

Values for the correlation coefficient can range from −1 to +1. A CC
value close to ±1 is indicative of a strong correlation. The coefficient of
determination (CD) is the fraction (0 < CD ≤ 1) of the total variability
accounted for by the model. This is a more appropriate measure of the
goodness of fit of a model to data than the R-squared statistic. The CD
has the general form

CD =
∑n

i=1
wi(yi − y)2 −

∑n

i=1
wi(yi − ŷi)2∑n

i=1
wi(yi − y)2

(1.120)

Finally, the r2 statistic is similar to the CD. This statistic is often used
erroneously when, strictly speaking, the CD should be used. The root of
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the r2 statistic is sometimes erroneously reported to correspond to the CD.
An r2 value close to ±1 is indicative that the model accounts for most of
the variability in the data. The r2 statistic has the general form

r2 =
∑n

i=1
wiyi

2 −
∑n

i=1
wi(yi − ŷi)2∑n

i=1
wiyi2

(1.121)

Nonlinear Regression: Techniques and Philosophy
For nonlinear functions, however, the situation is more complex. Iterative
methods are used instead, in which parameter values are changed simulta-
neously, or one at a time, in a prescribed fashion until a global minimum is
found. The algorithms used include the Levenberg–Marquardt method, the
Powell method, the Gauss–Newton method, the steepest-descent method,
simplex minimization, and combinations thereof. It is beyond our scope
in this chapter to discuss the intricacies of procedures used in nonlin-
ear regression analysis. Suffice to say, most modern graphical software
packages include nonlinear regression as a tool for curve fitting.

Having said this, however, some comments on curve fitting and non-
linear regression are required. There is no general method that guarantees
obtaining the best global solution to a nonlinear least-squares minimiza-
tion problem. Even for a single-parameter model, several minima may
exist! A minimization algorithm will eventually succeed in find a mini-
mum; however, there is no assurance that this corresponds to the global
minimum. It is theoretically possible for one, and maybe two, parameter
functions to search all parameter initial values exhaustively and find the
global minimum. However, this approach is usually not practical even
beyond a single parameter function.

There are, however, some guidelines that can be followed to increase
the likelihood of finding the best fit to nonlinear models. All nonlinear
regression algorithms require initial estimates of parameter values. These
initial estimates should be as close as possible to their best-fit value so
that the program can actually succeed in finding the global minimum. The
development of good initial estimates comes primarily from the scientists’
physical knowledge of the problem at hand as well as from intuition and
experience. Curve fitting can sometimes be somewhat of an artform.

Generally, it is useful to carry out simulations varying initial estimates
of parameter values in order to develop a feeling for how changes in ini-
tial estimate values will affect the nonlinear regression results obtained.
Some programs offer simplex minimization algorithms that do not require
the input of initial estimates. These secondary minimization procedures
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may provide values of initial estimates for the primary minimization pro-
cedures. Once a minimum is found, there is no assurance, however, that it
corresponds to the global minimum. A standard procedure to test whether
the global minimum has been reached is called sensitivity analysis. Sen-
sitivity analysis refers to the variability in results (parameter estimates)
obtained from nonlinear regression analysis due to changes in the values
of initial estimates. In sensitivity analysis, least-squares minimizations are
carried out for different starting values of initial parameter estimates to
determine whether the convergence to the same solution is attained. If
the same minimum is found for different values of initial estimates, the
scientist can be fairly confident that the minimum proposed is the best
answer. Another approach is to fit the model to the data using different
weighting schemes, since it is possible that the largest or smallest val-
ues in the data set may have an undue influence on the final result. Very
important as well is the visual inspection of the data and plotted curve(s),
since a graph can provide clues that may aid in finding a better solution
to the problem.

Strategies exist for systematically finding minima and hence finding the
best minimum. In a multiparameter model, it is sometimes useful to vary
one or two parameters at a time. This entails carrying out the least-squares
minimization procedure floating one parameter at a time while fixing the
value of the other parameters as constants and/or analyzing a subset of the
data. This simplifies calculations enormously, since the greater the number
of parameters to be estimated simultaneously, the more difficult it will be
for the program to find the global minimum. For example, for the reaction
A→ B→ C, k1 can easily be estimated from the first-order decay of
[A] in time. The parameter k1 can therefore be fixed as a constant, and
only k2 and k3 floated. After preliminary parameter estimates are obtained
in this fashion, these parameters should be fixed as constants and the
remaining parameters estimated. Only after estimates are obtained for all
the parameters should the entire parameter set be fitted simultaneously.
It is also possible to assign physical limits, or constraints, to the values
of the parameters. The program will find a minimum that corresponds to
parameter values within the permissible range.

Care should be exercised at the data-gathering stage as well. A common
mistake is to gather all the experimental data without giving much thought
as to how the data will be analyzed. It is extremely useful to use the model
to simulate data sets and then try to fit the model to the simulated data.
This exercise will promptly point out where more data would be useful
to the model-building process. It is a good investment of time to simulate
the experiment and data analysis to identify where problems may lie and
identify regions of data that may be most important in determining the
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properties of the model. The data gathered must be amenable to analysis
in such a way as to shed light on the model.

For difficult problems, the determination of best-fit parameters is a
procedure that benefits greatly from experience, intuition, perseverance,
skepticism, and scientific reasoning. A good answer requires good initial
estimates. Start the minimization procedure with the best possible ini-
tial estimates for parameters, and if the parameters have physical limits,
specify constraints on their value. For complicated models, begin model
fitting by floating a single parameter and using a subset of the data that
may be most sensitive to changes in the value of the particular parame-
ter. Subsequently, add parameters and data until it is possible to fit the
full model to the complete data set. After the minimization is accom-
plished, test the answers by carrying out sensitivity analysis. Perhaps run
a simplex minimization procedure to determine if there are other minima
nearby and whether or not the minimization wanders off in another direc-
tion. Finally, plot the data and calculated values and check visually for
goodness of fit—the human eye is a powerful tool. Above all, care should
be exercised; if curve fitting is approached blindly without understanding
its inherent limitations and nuances, erroneous results will be obtained.

The F -test is the most common statistical tool used to judge whether
a model fits the data better than another. The models to be compared are
fitted to data and reduced χ2 values (χ2

ν ) obtained. The ratio of the χν2

values obtained is the F -statistic:

Fdfn,dfd =
χ2
ν (a)

χ2
ν (b)

(1.122)

where df stands for degrees of freedom, which are determined from

df = n− p − 1 (1.123)

where n and p correspond, respectively, to the total number of data points
and the number of parameters in the model. Using standard statistical
tables, it is possible to determine if the fits of the models to the data
are significantly different from each other at a certain level of statistical
significance.

The analysis of residuals (ŷi − yi), in the form of the serial correlation
coefficient (SCC), provides a useful measure of how much the model
deviates from the experimental data. Serial correlation is an indication of
whether residuals tend to run in groups of positive or negative values or
tend to be scattered randomly about zero. A large positive value of the
SCC is indicative of a systematic deviation of the model from the data.
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The SCC has the general form

SCC = √n− 1

∑n

i=1

√
wi(ŷi − yi)√wi−1(ŷi−1 − yi−1)∑n

i=1
[wi(ŷi − yi)]2

(1.124)

Weighting Scheme for Regression Analysis
As stated above, in regression analysis, a model is fitted to experimental
data by minimizing the sum of the squared differences between experi-
mental and predicted data, also known as the chi-square (χ2) statistic:

χ2 =
n∑
i=1

(yi − ŷi)2
s2
i

=
n∑
i=1

wi(yi − ŷi)2 (1.125)

Consider a typical experiment where the value of a dependent variable is
measured several times at a particular value of the independent variable.
From these repeated determinations, a mean and variance of a sample
of population values can be calculated. If the experiment itself is then
replicated several times, a set of sample means (yi) and variances of
sample means (s2

i ) can be obtained. This variance is a measure of the
experimental variability (i.e., the experimental error, associated with yi).
The central limit theorem clearly states that it is the means of population
values, and not individual population values, that are distributed in a
Gaussian fashion. This is an essential condition if parametric statistical
analysis is to be carried out on the data set. The variance is defined as

s2
i =

∑ni

i=1
(yi − yi)2
ni − 1

(1.126)

A weight wi is merely the inverse of this variance:

wi = 1

s2
i

(1.127)

The two most basic assumptions made in regression analysis are that
experimental errors are normally distributed with mean zero and that
errors are the same for all data points (error homoskedasticity). System-
atic trends in the experimental errors or the presence of outliers would
invalidate these assumptions. Hence, the purpose of weighting residuals
is to eliminate systematic error heteroskedasticity and excessively noisy
data. The next challenge is to determine which error structure is present
in the experimental data—not a trivial task by any means.
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Ideally, each experiment would be replicated sufficiently so that indi-
vidual data weights could be calculated directly from experimentally deter-
mined variances. However, replicating experiments to the extent that
would be required to obtain accurate estimates of the errors is expensive,
time consuming, and impractical. It is important to note that if insufficient
data points are used to estimate individual errors of data points, incorrect
estimates of weights will be obtained. The use of incorrect weights in
regression analysis will make matters worse—if in doubt, do not weigh
the data.

A useful technique for the determination of weights is described below.
The relationship between the variance of a data point and the value of the
point can be explored using the relationship

s2
i = Kyαi (1.128)

A plot of ln s2
i against ln yi yields a straight line with slope = α and y-

intercept = lnK (Fig. 1.16). The weight for the ith data point can then
be calculated as

wi = 1

s2
i

∼ K

s2
i

= y−αi (1.129)

K is merely a constant that is not included in the calculations, since
interest lies in the determination of the relative weighting scheme for a
particular data set, not in the absolute values of the weights.

If α = 0, s2
i is not dependent on the magnitude of the y values, and

w = 1/K for all data points. This is the case for an error that is constant
throughout the data (homogeneous or constant error). Thus, if the error
structure is homogeneous, weighting of the data is not required. A value

slope=a

ln yi

ln
 s

i2

lnK

Figure 1.16. Log-log plot of changes in the variance (s2
i ) of the ith sample mean as a

function of the value of the ith sample mean (yi). This plot is used in determination of
the type of error present in the experimental data set for the establishment of a weighting
scheme to be used in regression analysis of the data.
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of α > 0 is indicative of a dependence of s2
i on the magnitude of the

y value. This is referred to as heterogeneous or relative error structure.
Classic heterogeneous error structure analysis usually places α = 2 and
therefore wi ∼ 1/Ky2

i . However, all values between 0 and 2 and even
greater than 2 are possible. The nature of the error structure in the data
(homogeneous or heterogeneous) can be visualized in a plot of residual
errors (yi − yi) (Figs. 1.17 and 1.18).

To determine an expression for the weights to be used, the following
equation can be used:

wi = y−αi (1.130)

The form of yi will vary depending on the function used. It could corre-
spond to the velocity of the reaction (v) or the reciprocal of the velocity
of the reaction (1/v or [S]/v). For example, for a classic heterogeneous

−8

−6

−4

−2

0

2

4

yi

6

8

y i
−y

i

Figure 1.17. Mean residual pattern characteristic of a homogeneous, or constant, error
structure in the experimental data.
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Figure 1.18. Mean residual pattern characteristic of a heterogeneous, or relative, error
structure in the experimental data.
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error with α = 2, the weights for different functions would be

wi(vi) = 1

v2
i

wi

(
1

v1

)
= v2

i wi

(
[Si]

vi

)
= v2

i

[Si]2
(1.131)

It is a straightforward matter to obtain expressions for the slope and
y-intercept of a weighted least-squares fit to a straight line by solving
the partial differential of the χ2 value. The resulting expression for the
slope (m) is

m =
∑n

i=1
wixiyi −

(∑n

i=1
wixi

∑n

i=1
wiyi

/∑n

i=1
wi

)

∑n

i=1
wix

2
i −

(∑n

i=1
wixi

)2
/∑n

i=1
wi

=
∑n

i=1
wi(xi − x)(yi − y)∑n

i=1
wi(xi − x)2

(1.132)

and the corresponding expression for the y-intercept (b) is

b =
∑n

i=1
wiyi∑n

i=1
wi

−
∑n

i=1
wi(xi − x)(yi − y)∑n

i=1
wi(xi − x)2

∑n

i=1
wiyi∑n

i=1
wi

(1.133)

1.6.2 Exact Analytical Solution (Non-Steady-State
Approximation)

Exact analytical solutions for the reaction A→ B→ C can be obtained by
solving the differential equations using standard mathematical procedures.
Exact solutions to the differential equations for the boundary conditions
[B0] = [C0] = 0 at t = 0, and therefore [A0] = [At ]+ [Bt ]+ [Ct ], are

[At ] = [A0] e−k1t (1.134)

[Bt ] = k1[A0]
e−k1t − e−k2t

k2 − k1
(1.135)

[Ct ] = [A0]
[

1+ 1

k1 − k2
(k2e−k1t − k1e−k2t )

]
(1.136)

Figure 1.15 shows the simulation of concentration changes in the system
A→ B→ C. The models (equations) are fitted to the experimental data
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using nonlinear regression, as described previously, to obtain estimates of
k1 and k2.

1.6.3 Exact Analytical Solution (Steady-State Approximation)

Steady-state approximations are useful and thus are used extensively in
the development of mathematical models of kinetic processes. Take, for
example, the reaction A→ B→ C (Fig. 1.15). If the rate at which A is
converted to B equals the rate at which B is converted to C, the con-
centration of B remains constant, or in a steady state. It is important to
remember that molecules of B are constantly being created and destroyed,
but since these processes are occurring at the same rate, the net effect is
that the concentration of B remains unchanged (d[B]/d t = 0), thus:

d[B]

d t
= 0 = k1[A]− k2[B] (1.137)

Decreases in [A] as a function of time are modeled as a first-order
decay process:

[At ] = [A0] e−k1t (1.138)

The value of k1 can be determined as discussed previously.
From Eqs. (1.137) and (1.138) we can deduce that

[B] = k1

k2
[A] = k1

k2
[A0] e−k1t (1.139)

If the steady state concentration of B [Bss], the value of k1, and the
time at which that steady state was reached (tss) are known, k2 can be
determined from

k2 = k1

[Bss]
[A0] e−k1tss (1.140)

The steady state of B in the reaction A→ B→ C is short lived (see
Fig. 1.15). However, for many reactions, such as enzyme-catalyzed reac-
tions, the concentrations of important reaction intermediates are in a steady
state. This allows for the use of steady-state approximations to obtain ana-
lytical solutions for the differential equations and thus enables estimation
of the values of the rate constants.



CHAPTER 2

HOW DO ENZYMES WORK?

An enzyme is a protein with catalytic properties. As a catalyst, an enzyme
lowers the energy of activation of a reaction (Ea), thereby increasing the
rate of that reaction without affecting the position of equilibrium—forward
and reverse reactions are affected to the same extent (Fig. 2.1). Since the
rate of a chemical reaction is proportional to the concentration of the
transition-state complex (S‡), lowering the activation energy effectively
leads to an increase in the reaction rate. An enzyme increases the rate
of a reaction mostly by specifically binding to, and thus stabilizing, the
transition-state structure.

Based on Linus Pauling’s views, Joseph Kraut eloquently pointed out
that “an enzyme can be considered a flexible molecular template, designed
by evolution to be precisely complementary to the reactants in their acti-
vated transition-state geometry, as distinct from their ground-state geom-
etry. Thus an enzyme strongly binds the transition state, greatly increas-
ing its concentration, and accelerating the reaction proportionately. This
description of enzyme catalysis is now usually referred to as transition-
state stabilization.”

Consider the thermodynamic cycle that relates substrate binding to
transition-state binding:
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Figure 2.1. Changes in the internal energy of a system undergoing a chemical reaction
from substrate S to product P. Ea corresponds to the energy of activation for the forward
reaction of enzyme-catalyzed (e) and uncatalyzed (u) reactions. S‡ corresponds to the
putative transition-state structure.

E+ S
K

‡
u−−⇀↽−− E+ S‡ ku−−→ E+ P

�||||� Ks
||��|| Kt

ES −−⇀↽−−
K

‡
e

ES‡ −−→
ke

E+ P

(2.1)

The upper pathway represents the uncatalyzed reaction; the lower pathway
represents the enzyme-catalyzed reaction. Four equilibrium constants can
be written for the scheme (2.1):

Ks = [E][S]

[ES]
Kt = [E][S‡]

[ES‡]

K‡
e =

[ES‡]

[ES]
K‡

u =
[E][S‡]

[E][S]

(2.2)

The ratio of the equilibrium constants for conversion of substrate from
the ground state to the transition state in the presence and absence of
enzyme is related to the ratio of the dissociation constants for ES and ES‡

complexes:

K‡
e

K
‡
u

= [ES‡]/[ES]

[E][S‡]/[E][S]
= [E][S]/[ES]

[E][S‡]/[ES‡]
= Ks

Kt

(2.3)

As discussed in Chapter 1, absolute reaction rate theory predicts that the
rate constant of a reaction (kr ) is directly proportional to the equilibrium
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constant for formation of the transition-state complex from reactants in
the ground state (K‡):

kr = κνK‡ (2.4)

Relative changes in reaction rates due to enzyme catalysis are given by
the ratio of reaction rates for the conversion of substrate to product in the
presence (ke) and absence (ku) of enzyme:

ke

ku

= κeνeK
‡
e

κuνuK
‡
u

= κeνeKs

κuνuKt

(2.5)

The magnitudes of the enzymatic rate acceleration, ke/kn, can be
extremely large, in the range 1010 to 1014. Considering that it is unlikely
that the ratio κeνe/κnνn differs from unity by orders of magnitude
(even though no data exist to support this assumption), we can rewrite
Eq. (2.5) as

ke

ku

≈ Ks

Kt

(2.6)

The ratio Ks/Kt must therefore also be in the range 1010 to 1014.
This important result suggests that substrate in the transition state must

necessarily bind to the enzyme much more strongly than substrate in
the ground state, by a factor roughly equal to that of the enzymatic rate
acceleration. Equation (2.6) provides a conceptual framework for under-
standing enzyme action. For example, one can address the question of
how good an enzyme can be. Identifying ke with kcat, Eq. (2.5) can be
rewritten as

kcat

Ks

= ku

κeνe

κuνu

1

Kt

(2.7)

The ratio kcat/Ks (M−1 s−1) is the second-order rate constant for the
reaction of free enzyme with substrate. The magnitude of this rate constant
cannot be greater than the diffusion coefficient of the reactants. Thus, a
perfectly evolved enzyme will have increased strength of transition-state
binding (i.e., decreased Kt ) until such a diffusion limit is reached for the
thermodynamically favored direction of the reaction.



CHAPTER 3

CHARACTERIZATION OF
ENZYME ACTIVITY

3.1 PROGRESS CURVE AND DETERMINATION OF
REACTION VELOCITY

To determine reaction velocities, it is necessary to generate a progress
curve. For the conversion of substrate (S) to product (P), the general
shape of the progress curve is that of a first-order exponential decrease in
substrate concentration (Fig. 3.1):

[S− Smin] = [S0 − Smin]e−kt (3.1)

or that of a first-order exponential increase in product concentration
(Fig. 3.1):

[P− P0] = [Pmax − P0](1− e−kt ) (3.2)

where [S0], [Smin], and [S] correspond, respectively, to initial substrate
concentration (t = 0), minimum substrate concentration (t →∞), and
substrate concentration at time t , while [P0], [Pmax], and [P] correspond,
respectively, to initial product concentration (t = 0), maximum product
concentration (t →∞), and product concentrations at time t (Fig. 3.1).

The rate of the reaction, or reaction velocity (v), corresponds to the
instantaneous slope of either of the progress curves:

v = −dS

d t
= dP

d t
(3.3)

44

Enzyme Kinetics: A Modern Approach. Alejandro G. Marangoni
Copyright 2003 John Wiley & Sons, Inc.

ISBN: 0-471-15985-9



PROGRESS CURVE AND DETERMINATION OF REACTION VELOCITY 45

Time

C
on

ce
nt

ra
tio

n

So

Po

Pmax

Smin

Figure 3.1. Changes in substrate (S) and product (P) concentration as a function of time,
from initial values (S0 and P0) to final values (Pmax and Smin).

However, as can be appreciated in Fig. 3.1, reaction velocity (i.e., the
slope of the curve) decreases in time. Some causes for the drop include:

1. The enzyme becomes unstable during the course of the reaction.
2. The degree of saturation of the enzyme by substrate decreases as

substrate is depleted.
3. The reverse reaction becomes more predominant as product accu-

mulates.
4. The products of the reaction inhibit the enzyme.
5. Any combination of the factors above cause the drop.

It is for these reasons that progress curves for enzyme-catalyzed reac-
tions do not fit standard models for homogeneous chemical reactions, and
a different approach is therefore required. Enzymologists use initial veloc-
ities as a measure of reaction rates instead. During the early stages of an
enzyme-catalyzed reaction, conversion of substrate to product is small
and can thus be considered to remain constant and effectively equal to
initial substrate concentration ([St ] ≈ [S0]). By the same token, very lit-
tle product has accumulated ([Pt ] ≈ 0); thus, the reverse reaction can be
considered to be negligible, and any possible inhibitory effects of product
on enzyme activity, not significant. More important, the enzyme can be
considered to remain stable during the early stages of the reaction. To
obtain initial velocities, a tangent to the progress curve is drawn as close
as possible to its origin (Fig. 3.2). The slope of this tangent (i.e., the initial
velocity, is obtained using linear regression). Progress curves are usually
linear below 20% conversion of substrate to product.

Progress curves will vary depending on medium pH, temperature, ionic
strength, polarity, substrate type, and enzyme and coenzyme concentration,
among many others. Too often, researchers use one-point measurements to
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Figure 3.2. Determination of the initial velocity of an enzyme-catalyzed reaction from
the instantaneous slope at t = 0 of substrate depletion (a) or product accumulation (b)
progress curves.

determine reaction velocities. The time at which a one-time measurement
takes place is usually determined from very few progress curves and for
a limited set of experimental conditions. A one-point measurement may
not be valid for all reaction conditions and treatments studied. For proper
enzyme kinetic analysis, it is essential to obtain reaction velocities strictly
from the initial region of the progress curve. By using the wrong time for
the derivation of rates (not necessarily initial velocities), a linear relation-
ship between enzyme concentration and velocity will not be obtained, this
being a basic requirement for enzyme kinetic analysis. For the reaction
to be kinetically controlled by the enzyme, the reaction velocity must be
directly proportional to enzyme concentration (Fig. 3.3).

To reiterate, for valid kinetic data to be collected:

1. The enzyme must be stable during the time course of the measure-
ments used in the calculation of the initial velocities.
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Figure 3.3. Dependence of reaction initial velocity on enzyme concentration in the reac-
tion mixture.

2. Initial rates are used as reaction velocities.
3. The reaction velocity must be proportional to the enzyme concen-

tration.

Sometimes the shape of progress curves is not that of a first-order expo-
nential increase or decrease, shown in Fig. 3.1. If this is the case, the best
strategy is to determine the cause for the abnormal behavior and modify
testing conditions accordingly, to eliminate the abnormality. Continuous
and discontinuous methods used to monitor the progress of an enzymatic
reaction may not always agree. This can be the case particularly for two-
stage reactions, in which an intermediate between product and substrate
accumulates. In this case, disappearance of substrate may be a more reli-
able indicator of activity than product accumulation. For discontinuous
methods, at least three points are required, one at the beginning of the
reaction (t = 0), one at a convenient time 1, and one at time 2, which
should correspond to twice the length of time 1. This provides a check of
the linearity of the progress curve.

The enzyme unit (e.u.) is the most commonly used standard unit of
enzyme activity. One enzyme unit is defined as that amount of enzyme that
causes the disappearance of 1 µmol (or µEq) of substrate, or appearance
of 1 µmol (or µEq) of product, per minute:

1 e.u. = 1 µmol

min
(3.4)

Specific activity is defined as the number of enzyme units per unit mass.
This mass could correspond to the mass of the pure enzyme, the amount of
protein in a particular isolate, or the total mass of the tissue from where
the enzyme was derived. Regardless of which case it is, this must be
stated clearly. Molecular activity (turnover number), on the other hand,
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corresponds to the number of substrate molecules converted to product
per molecule (or active center) of enzyme per unit time.

3.2 CATALYSIS MODELS: EQUILIBRIUM AND STEADY STATE

An enzymatic reaction is usually modeled as a two-step process: substrate
(S) binding by enzyme (E) and formation of an enzyme–substrate (ES)
complex, followed by an irreversible breakdown of the enzyme–substrate
complex to free enzyme and product (P):

E+ S
k−1−−⇀↽−−
k1

ES
kcat−−→ E+ P (3.5)

3.2.1 Equilibrium Model

In the equilibrium model of Michaelis and Menten, the substrate-binding
step is assumed to be fast relative to the rate of breakdown of the ES
complex. Therefore, the substrate binding reaction is assumed to be at
equilibrium. The equilibrium dissociation constant for the ES complex
(Ks) is a measure of the affinity of enzyme for substrate and corresponds
to substrate concentration at 1

2Vmax:

Ks = [E][S]

[ES]
(3.6)

Thus, the lower the value of Ks , the higher the affinity of enzyme for
substrate.

The velocity of the enzyme-catalyzed reaction is limited by the rate of
breakdown of the ES complex and can therefore be expressed as

v = kcat[ES] (3.7)

where kcat corresponds to the effective first-order rate constant for the
breakdown of ES complex to free product and free enzyme. The rate
equation is usually normalized by total enzyme concentration ([ET ] =
[E]+ [ES]):

v

[ET ]
= kcat[ES]

[E]+ [ES]
(3.8)

where [E] and [ES] correspond, respectively, to the concentrations of free
enzyme and enzyme–substrate complex. Substituting [E][S]/Ks for [ES]
yields
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v

[ET ]
= kcat([E][S]/Ks)

[E]+ [E][S]/Ks

(3.9)

Dividing both the numerator and denominator by [E], multiplying the
numerator and denominator by Ks , and rearranging yields the familiar
expression for the velocity of an enzyme-catalyzed reaction:

v = kcat[ET ][S]

Ks + [S]
(3.10)

By defining Vmax as the maximum reaction velocity, Vmax = kcat[ET ],
Eq. (3.10) can be expressed as

v = Vmax[S]

Ks + [S]
(3.11)

The assumptions of the Michaelis–Menten model are:

1. The substrate-binding step and formation of the ES complex are fast
relative to the breakdown rate. This leads to the approximation that
the substrate binding reaction is at equilibrium.

2. The concentration of substrate remains essentially constant during
the time course of the reaction ([S0] ≈ [St ]). This is due partly to
the fact that initial velocities are used and that [S0] ≫ [ET ].

3. The conversion of product back to substrate is negligible, since very
little product has had time to accumulate during the time course of
the reaction.

These assumptions are based on the following conditions:

1. The enzyme is stable during the time course of the measurements
used to determine the reaction velocities.

2. Initial rates are used as reaction velocities.
3. The reaction velocity is directly proportional to the total enzyme

concentration.

Rapid equilibrium conditions need not be assumed for the derivation
of an enzyme catalysis model. A steady-state approximation can also be
used to obtain the rate equation for an enzyme-catalyzed reaction.

3.2.2 Steady-State Model

The main assumption made in the steady-state approximation is that the
concentration of enzyme–substrate complex remains constant in time (i.e.,
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d[ES]/d t = 0). Thus, the differential equation that describes changes in
the concentration of the ES complex in time equals zero:

d[ES]

d t
= k1[E][S]− k−1[ES]− k2[ES] = 0 (3.12)

Rearrangement yields an expression for the Michaelis constant, Km:

Km = [E][S]

[ES]
= k−1 + k2

k−1
(3.13)

This Km will be equivalent to the dissociation constant of the ES complex
(Ks) only for the case where k−1 ≫ k2, and therefore Km = k−1/k1. The
Michaelis constant Km corresponds to substrate concentration at 1

2Vmax.
As stated before, the rate-limiting step of an enzyme-catalyzed reaction

is the breakdown of the ES complex. The velocity of an enzyme-catalyzed
reaction can thus be expressed as

v = kcat[ES] (3.14)

As for the case of the equilibrium model, substitution of the [ES] term
for [E][S]/Km and normalization of the rate equation by total enzyme
concentration, [ET ] = [E+ ES] yields

v

[ET ]
= kcat([E][S]/Km)

[E]+ [E][S]/Km

(3.15)

Dividing both the numerator and denominator by [E], multiplying the
numerator and denominator by Km, substituting Vmax for kcat[ET ], and
rearranging yields the familiar expression for the velocity of an enzyme-
catalyzed reaction:

v = Vmax[S]

Km + [S]
(3.16)

For the steady-state case, Ks has been replaced by Km. In most cases,
though, substrate binding occurs faster than the breakdown of the ES
complex, and thus Ks ≈ Km. This makes the models equivalent.

3.2.3 Plot of v versus [S]

The general shape of a velocity versus substrate concentration curve is
that of a rectangular hyperbola (Fig. 3.4). At low substrate concentra-
tions, the rate of the reaction is proportional to substrate concentration. In
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this region, the enzymatic reaction is first order with respect to substrate
concentration (Fig. 3.4). For the case where [S] ≪ Km, Eq. (3.16) will
reduce to

v = kcat

Km

[ET ][S] = Vmax

Km

[S] (3.17)

where kcat/Km (M−1 s−1) is the second-order rate constant for the reac-
tion, while Vmax/Km (s−1) is the first-order rate constant for the reaction.
Knowledge of enzyme concentration allows for the calculation of kcat/Km

from Vmax/Km. There are some physical limits to this ratio. The ultimate
limit on the value of kcat/Km is dictated by k1. This step is controlled solely
by the rate of diffusion of substrate to the active site of the enzyme. This,
in turn, is related to the solvent viscosity. This limits the value of k1
to 108 to 109 M−1 s−1. The ratio kcat/Km for many enzymes is in this
range. This suggests that the catalytic activity of many enzymes depends
solely on the rate of diffusion of the substrate to the active site! However,
specific spatial arrangements of enzymes can lead to the removal of this
maximum rate limitation imposed by diffusion. For example, the product
of one enzymatic reaction can be channeled into the active site of a second
enzyme, for further conversion.

At higher concentrations, the velocity of the reaction remains approx-
imately constant and effectively insensitive to changes in substrate con-
centration. In this region the order of the enzymatic reactions is zero
order with respect to substrate (Fig. 3.4). For the case where [S] ≫ Km,
Eq. (3.17) will reduce to

v = kcat[ET ] = Vmax (3.18)
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Figure 3.4. Initial velocity versus substrate concentration plot for an enzyme-catalyzed
reaction. Notice the first- and zero-order regions of the curve, where the reaction velocity
is, respectively, linearly dependent and independent of substrate concentration.
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Figure 3.5. Initial velocity versus substrate concentration plot for an enzyme with Vmax =
80 nM min−1 and Km = 37 µM .

The value of Km varies widely, for most enzymes; however, it generally
lies between 10−1 and 10−7 M . The value of Km depends on the type
of substrate and on environmental conditions such as pH, temperature,
ionic strength, and polarity. Km and Ks correspond to the concentration
of substrate at half-maximum velocity (Fig. 3.5). This fact can readily
be shown by substitution of [S] by 1

2Km in Eq. (3.16). It is important to
remember that Km equals Ks only when the breakdown of the ES complex
takes place much more slowly than the binding of substrate to the enzyme
(i.e., when k−1 ≫ k2) and thus

Km = k−1

k1
= Ks (3.19)

Under these conditions, Km is also a measure of the strength of the ES
complex or the affinity of enzyme for substrate. The kcat, molecular activ-
ity, or turnover number of an enzyme is the number of substrate molecules
converted to product by an enzyme molecule per unit time when the
enzyme is fully saturated with substrate.

3.3 GENERAL STRATEGY FOR DETERMINATION OF THE
CATALYTIC CONSTANTS Km AND Vmax

The first step in the determination of the catalytic constants of an enzyme-
catalyzed reaction is validation of the Michaelis–Menten assumptions, in
particular the fact that the enzyme should be stable during the time course
of the reaction. Selwyn’s test can be used to test for enzyme stability.
Briefly, plots of the extent of the reaction (%) as a function of the product
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Figure 3.6. Selwyn plot for an enzyme.

of initial enzyme concentration by time ([E0]t) for different initial enzyme
concentrations ([E0]) should be superimposable (Fig. 3.6). If the enzyme
is becoming inactivated during the course of the reaction, the rate of the
reaction will not be proportional to initial enzyme concentration ([E0]),
and the plots will not be superimposable.

Reaction velocity should also be linearly proportional to enzyme con-
centration (Fig. 3.3). The latter condition also constitutes an implicit check
of the assumption that combination of enzyme with substrate does not sig-
nificantly deplete substrate concentration. Reaction velocities at substrate
concentrations in the range 0.5 to 10Km should be used if possible. These
should be spaced more closely at low substrate concentrations, with at
least one high concentration approaching Vmax. Concentrations of 1

3 , 1
2 ,

1, 2, 4, and 8Km are appropriate, with at least three replicate determina-
tions per substrate concentration. The Michaelis–Menten model can then
be fitted to velocity versus concentration data using standard nonlinear
regression techniques to obtain estimates of Km and Vmax.

3.4 PRACTICAL EXAMPLE

In what follows, we describe a typical analysis of velocity versus substrate
concentration data set. Five replicates of reaction velocities were deter-
mined at each substrate concentration, and the data are shown in Table 3.1.
It is good practice to start by constructing a residual plot (Fig. 3.7). In
this case, residuals refer to the difference between the mean of a set of
data points (yi) and each individual data point j at a particular substrate
concentration i:

mean residual = yij − yi (3.20)
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TABLE 3.1 Velocity as a Function of Substrate Concentration for a Putative
Enzyme

Velocity (nmol L−1 min−1)
Substrate
Concentration (mM) a b c d e

0 0 0 0 0 0
8.33 13.8 11.5 10 12.6 15

10 16 14.5 17 10 21
12.5 19 16 21 13 23
16.7 23.6 21.4 26 19.5 27
20 26.7 22 28 20 29
25 40 38.6 42.5 39 41
33.3 36.3 41 35 37 40
40 40 39 42 37.6 43
50 44.4 38.6 47 36 50
60 48 47 49 45 51.2
80 50 48.4 52.6 46.3 54.6

100 70 65 75 62.5 76
150 60 59.5 63.8 57.3 65.8
200 66.7 62.5 70 61 72

0 10 20 30 40 50 60 70 80
−10

−5

0

5

10

y i
j−

y i

yi

Figure 3.7. Mean residual analysis for the experimental data set. The patterns obtained
suggest a homogeneous, or constant, error structure in the data.

These residuals will be referred to as mean residuals. It is important to
realize that the criterion used to judge whether a weighted regression
analysis should be carried out is the error structure of the experimental
data, not the error structure of the fit of the model to the data. The
mean-residuals plot depicted in Fig. 3.7 suggests that the error structure
of the data is homogeneous, or constant. This being the case, weighting
is not necessary. A more quantitative analysis of the error structure of
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TABLE 3.2 Average and Standard Deviation of the
Five Replicates of Velocity Determinations

Substrate
Concentration
(mM)

v

(nmol L−1 min−1) SD x n

0 0 0 5
8.3 12.6 1.94 5

10 15.7 3.99 5
12.5 18.4 3.97 5
16.7 23.5 3.11 5
20 25.1 3.93 5
25 40.2 1.57 5
33.3 37.9 2.53 5
40 40.3 2.19 5
50 43.2 5.81 5
60 48.0 2.30 5
80 50.4 3.29 5

100 69.7 5.95 5
150 61.3 3.44 5
200 66.4 4.71 5
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Figure 3.8. Log-log plot of changes in the variance (s2
i ) of the ith sample mean as a

function of the value of the ith sample mean (yi). This plot is used in determination of
the type of error present in the experimental data set for the establishment of a weighting
scheme to be used in regression analysis of the data. The value of the slope of the line
(α) suggests a homogeneous, or constant, error in the experimental data.

the data can also be carried out as described in Chapter 1. A log-log plot
of the variance of the mean (yi) of the five replicates at each substrate
concentration (Table 3.2) versus that particular mean is shown in Fig. 3.8.
The slope of the line is 0.36 (r2 = 0.063, p = 0.39) and is not significantly
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different from zero (p > 0.05). We can therefore safely conclude that it
is not necessary to carry out weighted regression analysis.

Nonlinear regression (no weighting) of the Michaelis–Menten model
to the experimental data allowed for rapid and accurate determination of
the catalytic parameters of this enzyme-catalyzed reaction. The estimates
of Vmax and Km, their standard error, 95% confidence intervals, and the
goodness of the fit of the model to the data are shown in Table 3.3. The fit
of the model to data was excellent (r2 = 0.93), as can be appreciated in
Fig. 3.9. This particular software package also provides a runs test. The
runs test determines whether the curve deviates systematically from the
data. A run is a series of consecutive points that are either all above or
all below the regression curve. Another way of saying this is that a run
is a consecutive series of points whose residuals are either all positive or
all negative. If the data points are randomly distributed above and below
the regression curve, it is possible to calculate the expected number of
runs. If fewer runs than expected are observed, it may be a coincidence

TABLE 3.3 Results for the Nonlinear Least-Squares
Fit of Experimental Data to the Michaelis–Menten
Model

Best-fit values
V 81.1
K 38.62

Std. error
V 2.727
K 3.315

95% Confidence intervals
V 75.66–86.54
K 32.00–45.23

Goodness of fit
Degrees of freedom 73
r2 0.934
Absolute sum of squares 2022
SD x 5.263

Runs test
Points above curve 29
Points below curve 41
Number of runs 40
p Value (runs test) 0.915
Deviation from model Not significant

Data
Number of x values 15
Number of y replicates 5
Total number of values 75
Number of missing values 0
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Figure 3.9. Velocity versus substrate concentration plot for the experimental data set.

or it may mean that an inappropriate regression model was chosen and
the curve deviates systematically from the experimental data. The p value
provides a measure of statistical certainty to the test. The p values are
always one-tailed, asking about the probability of observing as few runs
(or fewer) than observed. If more runs than expected are observed, the p

value will be higher than 0.50. If the runs test reports a low p value, it may
be concluded that the data do not follow the selected model adequately.
Another check for the adequacy of the model in describing the trends
observed in the data is a residuals plot. This time, however, a residual
refers to the difference between the value predicted by the model (ŷi) and
the individual experimental points:

fit residual = yij − ŷi (3.21)

These residuals will be referred to as fit residuals. The values of the veloc-
ities predicted, at each substrate concentration, used in the calculation of
these fit residuals are shown in Table 3.4. Finally, the random distribution
of fit residuals shown in Fig. 3.10 suggests that the model fits the data
adequately. A systematic trend in the fit residuals would suggest a sys-
tematic error in the fit and possibly a failure of the model to describe the
behavior of the system. It is important to remember that these fit residuals
should not be used in determination of the error structure of the data or
to make judgments on possible weighting strategies. This would be the
case only if ŷi = yi .

The fit of the model to the data should be carried out using the entire
set of experimental values rather than the means of the replicate determi-
nations at each substrate concentration. This will increase the precision,
and possibly the accuracy, of the estimates obtained.
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TABLE 3.4 Velocities Predicted at Various
Substrate Concentrations

Substrate
Concentration
(mM)

Predicted Velocity
(nmol L−1 min−1)

8.3 14.3
10 16.6
12.5 19.8
16.7 24.4
20 27.6
25 31.8
33.3 37.5
40 41.2
50 45.7
60 49.3
80 54.6

100 58.5
150 64.4
199 50.5
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Figure 3.10. Fit residual analysis for the experimental data set. The patterns obtained
suggest that the model fits the data well.

3.5 DETERMINATION OF ENZYME CATALYTIC PARAMETERS
FROM THE PROGRESS CURVE

It is theoretically possible to derive Vmax and Km values for an enzyme
from a single progress curve (Fig. 3.11). This is certainly an attractive
proposition since measuring initial velocity as a function of several sub-
strate concentrations can be a lengthy and tedious task. The velocity of
an enzyme-catalyzed reaction can be determined from the disappearance
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Figure 3.11. Linear plot used in the determination of catalytic parameters Vmax and Km

from a single progress curve.

of substrate (−d[S]/d t) or appearance of product (d[P]/d t) as a function
of time. In terms of disappearance of substrate, the Michaelis–Menten
model can be expressed as

−d[S]

d t
= Vmax[S]

Ks + [S]
(3.22)

Multiplication of the numerator and denominator on both sides by (Km +
[S]), division of both sides by [S], and integration for the boundary con-
ditions [S] = [S0] at t = 0 and [S] = [St ] at time t ,

−Km

∫ S

S0

d[S]

[S]
−

∫ S

S0

d[S] = Vmax

∫ t

0
d t (3.23)

yields the integrated form of the Michaelis–Menten model:

Km ln
[S0]

[St ]
+ [S0 − St ] = Vmaxt (3.24)

In this model, [St ] is not an explicit function of time. This can represent a
problem since most commercially available curve-fitting programs cannot
fit implicit functions to experimental data. Thus, to be able to use this
implicit function in the determination of kcat and Km, it is necessary to
modify its form and transform the experimental data accordingly. Dividing
both sides by t and Km and rearranging results in the expression

1

t
ln

[S0]

[St ]
= − [S0 − St ]

Kmt
+ Vmax

Km

(3.25)
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A plot of t−1 ln([S0]/[St ]) versus [S0 − St ]/t yields a straight line
with slope = −1/Km, x-intercept = Vmax, and y-intercept = Vmax/Km

(Fig. 3.11). The values of the slope and intercept can readily be obtained
using linear regression. Thus, from a single progress curve (i.e., a single
[St ]– t data set) it is possible to obtain estimates of Km and kcat.

If this procedure sounds too good to be true, it probably is. The major
problem with this procedure is that the following conditions must be met:

1. The enzyme must be stable during the time course of the measure-
ments used in the determination of reaction velocity.

2. The reverse reaction (product to substrate) must be negligible.
3. The product must not be inhibitory to enzyme activity.

If these conditions are not met, particularly the first one, this procedure
is not valid. Enzyme destabilization, reaction reversibility, and product
inhibition considerations can be incorporated into the kinetic model; how-
ever, this procedure is complex, and the validity of the results obtained
can be questionable.



CHAPTER 4

REVERSIBLE ENZYME INHIBITION

An inhibitor is a compound that decreases the rate of an enzyme-catalyzed
reaction. Moreover, this inhibition can be reversible or irreversible.
Reversible enzyme inhibition can be competitive, uncompetitive, or linear
mixed type, each affecting Ks and Vmax in a specific fashion. In this
chapter, each type of reversible inhibition is discussed in turn. This is
followed by two examples of strategies used to determine the nature
of the inhibition as well as to obtain estimates of the enzyme–inhibitor
dissociation constant (Ki).

4.1 COMPETITIVE INHIBITION

In this type of reversible inhibition, a compound competes with an
enzyme’s substrate for binding to the active site,

E+ S
Ks−−⇀↽−− ES

kcat−−→ E+ P
+
I
�||||� Ki

EI

(4.1)

This results in an apparent increase in the enzyme–substrate dissociation
constant (Ks) (i.e., an apparent decrease in the affinity of enzyme for
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substrate) without affecting the enzyme’s maximum velocity (Vmax). The
rate equation for the formation of product, the dissociation constants for
enzyme–substrate (ES) and enzyme–inhibitor (EI) complexes, and the
enzyme mass balance are, respectively:

v = kcat [ES]

Ks = [E][S]

[ES]
Ki = [E][I]

[EI]
(4.2)

[ET ] = [E]+ [ES]+ [EI] = [E]+ [E][S]

Ks

+ [E][I]

Ki

Normalization of the rate equation by total enzyme concentration (v/[ET ])
and rearrangement results in the following expression for the velocity of
an enzymatic reaction in the presence of a competitive inhibitor:

v = Vmax[S]

K∗s + [S]
= Vmax[S]

αKs + [S]
(4.3)

where K∗s corresponds to the apparent enzyme–substrate dissociation con-
stant in the presence of an inhibitor. In the case of competitive inhibition,
K∗s = αKs , where

α = 1+ [I]

Ki

(4.4)

4.2 UNCOMPETITIVE INHIBITION

In this type of reversible inhibition, a compound interacts with the en-
zyme–substrate complex at a site other than the active site,

E+ S
Ks−−⇀↽−− ES

kcat−−→ E+ P

+
I

�||||� Ki

ESI

(4.5)

This results in an apparent decrease in both Vmax and Ks . The apparent
increase in affinity of enzyme for substrate (i.e., a decrease in Ks) is due
to unproductive substrate binding, resulting in a decrease in free enzyme
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concentration. Half-maximum velocity, or half-maximal saturation, will
therefore be attained at a relatively lower substrate concentration. The
rate equation for the formation of product, the dissociation constants
for enzyme–substrate (ES) and ES–inhibitor (ESI) complexes and the
enzyme mass balance are, respectively,

v = kcat[ES]

Ks = [E][S]

[ES]
Ki = [ES][I]

[ESI]

[ET ] = [E]+ [ES]+ [ESI] = [E]+ [E][S]

Ks

+ [E][S][I]

KsKi

(4.6)

Normalization of the rate equation by total enzyme concentration (v/[ET ])
and rearrangement results in the following expression for the velocity of
an enzymatic reaction in the presence of an uncompetitive inhibitor:

v = V ∗max(S)

K∗s + (S)
= (Vmax/α)[S]

(Ks/α)+ [S]
(4.7)

where V ∗max and K∗s correspond, respectively, to the apparent enzyme
maximum velocity and apparent enzyme–substrate dissociation constant
in the presence of an inhibitor. In the case of uncompetitive inhibition,
V ∗max = Vmax/α and K∗s = Ks/α, where

α = 1+ [I]

Ki

(4.8)

4.3 LINEAR MIXED INHIBITION

In this type of reversible inhibition, a compound can interact with both
the free enzyme and the enzyme–substrate complex at a site other than
the active site:

E+ S
Ks−−⇀↽−− ES

kcat−−→ E+ P

+ +
I I
�||||� Ki

�||||� δKi

EI+ S −−⇀↽−−
δKs

ESI

(4.9)
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This results in an apparent decrease in Vmax and an apparent increase
in Ks . The rate equation for the formation of product, the dissociation
constants for enzyme–substrate (ES and ESI) and enzyme–inhibitor (EI
and ESI) complexes, and the enzyme mass balance are, respectively,

v = kcat[ES]

Ks = [E][S]

[ES]
δKs = [EI][S]

[ESI]
Ki = [E][I]

[EI]
δKi = [ES][I]

[ESI]

[ET ] = [E]+ [ES]+ [EI]+ [ESI] = [E]+ [E][S]

Ks

+ [E][I]

Ki

+ [E][S][I]

KsδKi

(4.10)

Normalization of the rate equation by total enzyme concentration (v/[ET ])
and rearrangement results in the following expression for the velocity of
an enzymatic reaction in the presence of a linear mixed type inhibitor:

v = V ∗max(S)

K∗s + (S)
= (Vmax/β)[S]

(α/β)Ks + [S]
(4.11)

where V ∗max and K∗s correspond, respectively, to the apparent enzyme
maximum velocity and apparent enzyme–substrate dissociation constant
in the presence of an inhibitor. In the case of linear mixed inhibition,
V ∗max = Vmax/β and K∗s = (α/β)Ks , where

α = 1+ [I]

Ki

(4.12)

and

β = 1+ [I]

δKi

(4.13)

4.4 NONCOMPETITIVE INHIBITION

Noncompetitive inhibition is a special case of linear mixed inhibition
where δ = 1 and α = β. Thus, the expression for the velocity of an enzy-
matic reaction in the presence of a noncompetitive inhibitor becomes

v = V ∗max(S)

Ks + (S)
= (Vmax/α)[S]

Ks + [S]
(4.14)
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TABLE 4.1 Summary of the Effects of Reversible Inhibitors on Apparent Enzyme
Catalytic Parameters V ∗

max and K ∗
s

Competitive Uncompetitive Linear Mixed Noncompetitive

V ∗max No effect (−) Decrease (↓) Decrease (↓) Decrease (↓)
Vmax Vmax/α Vmax/β Vmax/α

K∗s Increase (↑) Decrease (↓) Increase (↑) No effect (−)
αKs Ks/α (α/β)Ks Ks

where V ∗max corresponds to the apparent enzyme maximum velocity in
the presence of an inhibitor. In the case of noncompetitive inhibition,
V ∗max = Vmax/α, where

α = 1+ [I]

Ki

(4.15)

Thus, for noncompetitive inhibition, an apparent decrease in Vmax is
observed while Ks remains unaffected. A summary of the effects of
reversible inhibitors on the catalytic parameters Ks and Vmax is presented
in Table 4.1.

4.5 APPLICATIONS

A typical enzyme inhibition experiment will be designed to determine the
nature of the inhibition process as well estimate the magnitude of Ki .
For this purpose, initial velocities should be determined at substrate con-
centrations in the range 0.5 to 2–5Ks , in the absence of an inhibitor, as
well as at inhibitor concentrations in the range 0.5 to 2–5Ki . Collecting
data in this range of substrate and inhibitor concentrations will allow for
the accurate and unambiguous determination of both the nature of the
inhibition process and the magnitude of Ki . In the examples below, only
four substrate concentrations and one inhibitor concentration are used.
This can only be done if the single inhibitor concentration is close to
the Ki and substrate concentrations are in the range 0.5 to 2–5Ks . Other-
wise, catalytic parameters cannot be estimated accurately using regression
techniques—or any technique, for that matter.

4.5.1 Inhibition of Fumarase by Succinate

The enzyme fumarase catalyzes the hydration of fumarate to malate. This
enzyme is known to be reversibly inhibited by succinate. Reaction veloc-
ities were determined in triplicate at different substrate concentrations, in
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the presence and absence of succinate, and the results are summarized in
Table 4.2.

The Michaelis–Menten model was fitted to the experimental data using
standard nonlinear regression techniques to obtain estimates of V ∗max and
K∗s (Fig. 4.1). Best-fit values of V ∗max and K∗s of corresponding standard
errors of the estimates plus the number of values used in the calculation
of the standard error, and of the goodness-of-fit statistic r2 are reported in
Table 4.3. These results suggest that succinate is a competitive inhibitor of
fumarase. This prediction is based on the observed apparent increase in Ks

in the absence of changes in Vmax (see Table 4.1). At this point, however,
the experimenter cannot state with any certainty whether the observed
apparent increase in Ks is a true effect of the inhibitor or merely an act
of chance. A proper statistical analysis has to be carried out. For the
comparison of two values, a two-tailed t-test is appropriate. When more
than two values are compared, a one-way analysis of variance (ANOVA),

TABLE 4.2 Rate of Hydration of Fumarate to Malate by Fumarase at various
Substrate Concentrationsa

Velocity (a.u.)
Substrate
Concentration (M) Without Inhibitor With Inhibitor

5.0× 10−5 0.91 0.95 0.99 0.57 0.53 0.61
1.0× 10−4 1.43 1.47 1.39 0.95 0.91 0.99
2.0× 10−4 2.00 2.04 1.96 1.40 1.36 1.44
5.0× 10−4 2.50 2.54 2.46 2.13 2.09 2.17

aIn the presence and absence of 0.05 M succinate.
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Figure 4.1. Initial velocity versus substrate concentration plot for fumarase in the absence
and presence of the reversible inhibitor succinate.
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TABLE 4.3 Estimates of the Catalytic Parameters for the Fumarase-Catalyzed
hydration of Fumarate to Malatea

V ∗max (a.u.) Std. Errorb (M) K∗s (M) Std. Errorb (M) r2

Without inhibitor 3.07 4.54× 10−2 (12) 112× 10−6 4.57× 10−6 (12) 0.9959
With inhibitor 3.10 8.34× 10−2 (12) 232× 10−6 1.34× 10−5 (12) 0.9953

aIn the presence and absence of succinate.
bNumber in parentheses.

followed by a post-test to determine the statistical significance of differ-
ences between individual values, has to be carried out. Two-tailed t-tests
revealed significant differences between Ks values in the presence and
absence of succinate (p < 0.001), whereas no significant differences were
detected between Vmax values (p > 0.05).

Having established that succinate acts as a competitive inhibitor, it is
possible to determine the value of α:

α = K∗s
Ks

= 0.232

0.112
= 2.07 (4.16)

The magnitude of the enzyme–inhibitor dissociation constant can be
obtained from knowledge of [I] and α using Eq. 4.4,

Ki = [I]

α − 1
= 5.00× 10−2 M

2.07− 1
= 0.0465 M (4.17)

4.5.2 Inhibition of Pancreatic Carboxypeptidase A by
β-Phenylpropionate

The enzyme carboxypeptidase catalyzes the hydrolysis of the synthetic
peptide substrate benzoylglycylglycyl-L-phenylalanine (Bz-Gly-Gly-Phe).
This enzyme is known to be reversibly inhibited by β-phenylpropionate.
Reaction velocities were determined in triplicate at different substrate
concentrations, in the presence and absence of β-phenylpropionate, and
results summarized in Table 4.4.

The Michaelis–Menten model was fitted to the experimental data using
standard nonlinear regression techniques to obtain estimates of V ∗max and
K∗s (Fig. 4.2). Best-fit values of V ∗max and K∗s , corresponding standard
errors of the estimates plus the number of values used in the calculation of
the standard error, and goodness-of-fit statistic r2 are reported in Table 4.5.

A statistically significant decrease in Vmax (p < 0.0001) and increase
in Ks (p = 0.0407) were observed upon addition of the inhibitor. This
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TABLE 4.4 Rate of Hydrolysis of the Synthetic Substrate Benzoylglycylglycyl-L-
Phenylalanine by Pancreatic Carboxypeptidase A as a Function of Substrate
Concentrationa

Velocity (a.u.)
Substrate
Concentration (M) Without Inhibitor With Inhibitor

2.5× 10−5 3000 2950 3050 1550 1500 1600
5.0× 10−5 4900 4950 4850 2500 2550 2450
1.0× 10−4 7100 7050 7150 3700 3750 3650
2.0× 10−4 9100 9150 9050 4500 4550 4450

aIn the presence and absence of 1× 10−4 M of the reversible inhibitor β-phenylpropionate.
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Figure 4.2. Initial velocity versus substrate concentration plot for pancreatic carboxypep-
tidase A in the absence and presence of the reversible inhibitor β-phenylpropionate.

TABLE 4.5 Estimates of the Catalytic Parameters for the Carboxypeptidase-
Catalyzed Hydrolysis of Bz-Gly-Gly-Phea

V ∗max (a.u.) Std. Errorb (M) K∗s (M) Std. Errorb (M) r2

No inhibitor 1.28× 104 84.0 (12) 8.07× 10−5 1.22× 10−6 (12) 0.9996
Plus inhibitor 6.20× 103 130 (12) 7.24× 10−5 3.64× 10−6 (12) 0.9955

aIn the presence and absence of β-phenylpropionate.
bNumber in parentheses.

suggested that β-phenylpropionate acts as a linear mixed-type inhibitor
of carboxypeptidase A. Having established that β-phenylpropionate acts
as a linear mixed-type competitive inhibitor of carboxypeptidase A, it is
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possible to determine the values of α and α/β,

β = Vmax

V ∗max
= 12,790

6196
= 2.06 (4.18)

α

β
= K∗s

Ks

= 8.07e − 5

7.24e − 5
= 1.12 (4.19)

Using this information, α was estimated to have a value of 2.30. The
magnitude of the enzyme–inhibitor dissociation constant (Ki) could then
be estimated from knowledge of α using Eq. 4.12:

Ki = [I]

α − 1
= 1× 10−4 M

(2.30− 1)
= 7.68× 10−5 M (4.20)

Finally, an estimate of the magnitude of δ can be obtained from knowledge
of [I], Ki , and β using Eq. 4.13:

δ = [I]

(β − 1)Ki

= 1× 10−4 M

(2.06− 1)(7.68× 10−5 M)
= 1.22 (4.21)

Using this value, δKi was estimated to be 9.40× 10−5 M .

4.5.3 Alternative Strategies

It is also theoretically possible to determine the nature of the inhibition
process by comparing the goodness of fit for each of the inhibition models
to experimental data. An F -test could then be carried out to determine
if a particular model fits the data significantly better than another. In
principle, the model that best fits the data should help define the nature
of the inhibition process. In the author’s opinion, however, this strategy
is not very fruitful. Usually, differences in the goodness of fit between
inhibition models, and even between inhibition and the non inhibition
model, are not statistically significant. Even though this procedure could
be automated, it is cumbersome and time consuming.



CHAPTER 5

IRREVERSIBLE ENZYME INHIBITION

In many circumstances, inhibitors affect enzyme activity in an irreversible
fashion. It is sometimes difficult to distinguish between the effects of a
reversible and irreversible inhibitors since irreversible inhibition could be
interpreted as noncompetitive reversible inhibition. However, the appar-
ent enzyme–inhibitor equilibrium dissociation constant (Ki) derived for
an irreversible inhibitor is dependent on enzyme concentration, preincu-
bation time, and substrate concentration. A true equilibrium Ki would be
independent of all these factors. Not a conclusive proof, time dependence
of the inhibitory effects may be indicative of irreversibility.

We present some simple models that can be used to analyze irreversible
inhibition data. In all of these treatments, the concentration of inhibitor
will be considered to be in excess of that of enzyme (i.e., [I] ≫ [E]).
Under these conditions, inhibitor concentration is assumed to remain con-
stant during the course of the reaction. Thus, inhibitor concentration will
remain unchanged from its initial value [I0], (i.e., [I] ≈ [I0]). This con-
dition, which is relevant to an experimental situation, will simplify the
mathematical treatment considerably.

Under conditions where [I] ≫ [E], all irreversible inhibition patterns
can be modeled using a first-order association kinetic model of the form

[EI∗] = [ET ](1− exp−k′t ) (5.1)

where [EI∗] corresponds to the concentration of irreversible enzyme–
inhibitor complex and [ET ] corresponds to total enzyme concentration
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Figure 5.1. (a) Increases in the concentration of inhibited enzyme as a function of time
for simple irreversible enzyme inhibition. (b) Semilogarithmic plot used in determination
of the inhibition rate constant for the case of simple irreversible inhibition.

(Fig. 5.1a). The first-order association rate constant can therefore be deter-
mined by fitting this model to [EI∗] versus time data using nonlinear
regression procedures. Alternatively, the model can be linearized to

ln
(

1− [EI∗]
[ET ]

)
= −k′t (5.2)

Thus, a plot of the natural logarithm of 1− [EI∗]/[ET ] as a function
of time should yield a straight line (Fig. 5.1b). The slope of the line,
which corresponds to −k′, can be determined using standard linear regres-
sion procedures.

The pseudo-first-order inhibition constant, k′ (s−1), will have differ-
ent meanings, depending on the exact inhibition mechanism (see below).
Four different phenomenological irreversible inhibition mechanisms are
discussed in turn.
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5.1 SIMPLE IRREVERSIBLE INHIBITION

The interaction of an enzyme (E) with an irreversible inhibitor (I), which
results in the formation of an irreversible enzyme–inhibitor complex
(EI∗), can be modeled as a second-order reaction between two dissim-
ilar substrates:

E+ I
ki−−→ EI∗ (5.3)

where ki is the second-order rate constant of inhibition (M−1 s−1).
The differential equation that describes the formation of irreversible
enzyme–inhibitor complex, and the mass balance for the enzyme are,
respectively,

d[EI∗]
d t
= ki[I][E] (5.4)

and
[ET ] = [E]+ [EI∗] (5.5)

where [ET ], [E], [EI∗], and [I] correspond, respectively, to total enzyme
concentration, irreversible enzyme–inhibitor complex, free enzyme, and
inhibitor concentrations. Substitution of [E] for [ET ]− [EI∗], and [I0] for
[I] into Eq. (5.4) results in a first-order ordinary differential equation of
the form

d[EI∗]
d t
= ki[I0][ET − EI∗] = k′[ET − EI∗] (5.6)

where
k′ = ki[I0] (5.7)

Integration of Eq. (5.5) after variable separation,

∫ EI∗

0

d[EI∗]
[ET − EI∗]

= k′
∫ t

0
d t (5.8)

yields a first-order association kinetic model that describes the changes in
concentration of the reversible enzyme–inhibitor complex (EI∗) in time:

[EI∗] = [ET ](1− exp−k′t ) (5.9)

Since the initial inhibitor concentration is known, the experimentally deter-
mined peudo-first-order inhibition rate constant, k′ (s−1), can be used to
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obtain estimates of the second-order inhibition rate constant ki (M−1 s−1):

ki = k′

[I0]
(5.10)

Substrate may protect the enzyme from the effects of irreversible inhibi-
tors, and the model has to be modified to take this fact into consideration.

5.2 SIMPLE IRREVERSIBLE INHIBITION IN THE
PRESENCE OF SUBSTRATE

Consider the interactions of free enzyme with inhibitor and substrate:

E+ I
ki−−→ EI∗

E+ S
Ks−−⇀↽−− ES

(5.11)

The differential equation that describes the formation of irreversible
enzyme–inhibitor complex, the dissociation constant for the ES complex,
and the mass balance for the enzyme are, respectively,

d[EI∗]
d t
= ki[E][I] (5.12)

Ks = [E][S]

[ES]
(5.13)

[ET ] = [E]+ [EI∗]+ [ES] (5.14)

where [ET ], [E], [EI∗] and [ES] correspond, respectively, to total
enzyme concentration, and the concentrations of free enzyme,
irreversible enzyme–inhibitor complex, and enzyme–substrate complex.
The concentration of free enzyme is given by

[E] = [ES] ·Ks

[S]
(5.15)

Substitution of [ET ]− [E]− [EI∗] for [ES], and rearrangement, results in
the following expression for the concentration of free enzyme:

[E] = [ET − EI∗] ·Ks

Ks + [S]
(5.16)
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Substitution of Eq. (5.16) for [E], and [I0] for [I] into Eq. (5.12), results
in a first-order ordinary differential equation of the form

d[EI∗]
d t
= ki[I0]

[ET − EI∗] ·Ks

Ks + [S]
= k′[ET − EI∗] (5.17)

where

k′ = kiKs

Ks + [S]
[I0] (5.18)

Integration of Eq. (5.17) after variable separation,

∫ EI∗

0

d[EI∗]
[ET − EI∗]

= k′
∫ t

0
d t (5.19)

yields a first-order association kinetic model that describes the time-
dependent changes in concentration of an irreversible enzyme–inhibitor
complex (EI∗) in the presence of substrate:

[EI∗] = [ET ](1− exp−k′t ) (5.20)

To obtain an estimate of ki , a k′ versus [I0] data set has to be created at
a fixed substrate concentration. A plot of this k′ versus [I0] data would
yield a straight line (Fig. 5.2). With the aid of standard linear regression
procedures, the value of the slope of this line can be obtained. This slope
corresponds to

slope = kiKs

Ks + [S]
(5.21)
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Figure 5.2. Initial inhibitor concentration dependence of the inhibition rate constant for
simple irreversible enzyme inhibition in the presence of substrate.
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Since accurate estimates of Ks can be obtained independently, it is there-
fore possible simply to solve for ki .

5.3 TIME-DEPENDENT SIMPLE IRREVERSIBLE INHIBITION

Consider the time-dependent interaction of inhibitor with free enzyme:

E+ I
Ki−−⇀↽−− EI

ki−−→ EI∗ (5.22)

A rapid reversible interaction between enzyme (E) and inhibitor (I) is
followed by a slower, irreversible reaction, which transforms the reversible
enzyme–inhibitor complex (EI) into an irreversible enzyme–inhibitor
complex (EI∗). The differential equation that describes the formation of
enzyme–inhibitor complex, the dissociation constant for the EI complex,
and the mass balance for the enzyme are, respectively,

d[EI∗]
d t
= ki[EI] (5.23)

Ki = [E][I]

[EI]
(5.24)

[ET ] = [E]+ [EI]+ [EI∗] (5.25)

Substitution of [ET ]− [EI]− [EI∗] for [E] in Eq. (5.24) and rearrange-
ment yields

[EI] = [ET − EI∗]
1+Ki/[I0]

(5.26)

Substitution of Eq. (5.26) into Eq. (5.23) results in a first-order ordinary
differential equation of the form

d[EI∗]
d t
= ki

[ET − EI∗]
1+Ki/[I0]

= k′[ET − EI∗] (5.27)

where

k′ = ki

1+Ki/[I0]
= ki[I0]

Ki + [I0]
(5.28)

Integration of Eq. (5.27) after variable separation,

∫ EI∗

0

d[EI∗]
[ET − EI∗]

= k′
∫ t

0
d t (5.29)
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Figure 5.3. Initial inhibitor concentration dependence of the inhibition rate constant for
time-dependent irreversible enzyme inhibition.

yields a first-order association kinetic model that describes the time depen-
dence of changes in concentration of the irreversible enzyme–inhibitor
complex (EI∗):

[EI∗] = [ET ](1− exp−k′t ) (5.30)

To obtain estimates of Ki and ki , a k′ versus [I0] data set has to be created.
A plot of these k′ versus [I0] data would yield a rectangular hyperbola
(Fig. 5.3). With the aid of standard nonlinear regression procedures, the
values of Ki and ki can be obtained.

5.4 TIME-DEPENDENT SIMPLE IRREVERSIBLE INHIBITION IN
THE PRESENCE OF SUBSTRATE

Consider the interactions of free enzyme with inhibitor and substrate:

E+ I
Ki−−⇀↽−− EI

ki−−→ EI∗

E+ S
Ks−−⇀↽−− ES

(5.31)

The differential equation that describes the formation of the irreversible
enzyme–inhibitor complex, the equilibrium dissociation constants for the
reversible enzyme–inhibitor (Ki) and enzyme–substrate (Ks) complexes,
and the mass balance for the enzyme are, respectively,

d[EI∗]
d t
= ki[EI] (5.32)
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Ki = [E][I]

[EI]
Ks = [E][S]

[ES]
(5.33)

[ET ] = [E]+ [EI]+ [EI∗]+ [ES] (5.34)

An expression for the concentration of the EI complex can be obtained
from the enzyme mass balance and dissociation constants:

[EI] = [E][I]

Ki

= [ET − EI− EI∗ − ES][I]

Ki

= [ET − EI∗ − ES]

1+Ki/[I0]
(5.35)

A relationship between [ES] and [EI] can be obtained from the dissociation
constants for enzyme–substrate and enzyme–inhibitor complexes:

[E] = [ES]
Ks

[S]
= [EI]

Ki

[I]
(5.36)

The concentration of the ES complex can therefore be expressed as

[ES] = [EI]
Ki[S]

Ks[I]
(5.37)

Substitution of Eq. (5.37) into Eq. (5.35) and rearrangement yields

[EI] = [ET − EI∗]
1+Ki/[I0](1+ [S]/KS)

(5.38)

Substitution of Eq. (5.38) into Eq. (5.32) yields a first-order ordinary dif-
ferential equation of the form

d[EI∗]
d t
= ki[EI] = ki

1+Ki/[I0](1+ [S]/KS)
[ET − EI∗] = k′[ET − EI∗]

(5.39)

where

k′ = ki

1+Ki/[I0](1+ [S]/KS)
= ki[I0]

Ki(1+ [S]/KS)+ [I0]
(5.40)

Integration of Eq. (5.39) after variable separation,

∫ EI∗

0

d[EI∗]
[ET − EI∗]

= k′
∫ t

0
d t (5.41)
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Figure 5.4. Initial inhibitor concentration dependence of the inhibition rate constant for
time-dependent irreversible enzyme inhibition in the presence of substrate.

yields a first-order association kinetic model which describes the time
dependence of changes in concentration of the irreversible enzyme–inhi-
bitor complex (EI∗) in the presence of substrate:

[EI∗] = [ET ](1− exp−k′t ) (5.42)

To obtain estimates of Ki and ki , a k′ versus [I0] data set at a fixed
substrate concentration has to be created. A plot of these k′ versus [I0]
data would yield a rectangular hyperbola (Fig. 5.4). Estimates of Ki and
ki can be obtained by fitting Eq. (5.40) to the k′ versus [I0] data using
standard nonlinear regression procedures. Since accurate estimates of Ks

can be obtained independently, it is fixed as a constant.

5.5 DIFFERENTIATION BETWEEN TIME-DEPENDENT AND
TIME-INDEPENDENT INHIBITION

In principle, it is possible to distinguish between time-dependent and time-
independent irreversible inhibition from k′ versus [I0] plots. A straight
line suggests time-independent irreversible inhibition (Fig. 5.2), whereas
a rectangular hyperbola is suggestive of time-dependent irreversible inhi-
bition (Fig. 5.4).



CHAPTER 6

pH DEPENDENCE OF
ENZYME-CATALYZED REACTIONS

The activity of an enzyme is profoundly affected by pH. Usually, enzymes
display a bell-shaped activity versus pH profile (Fig. 6.1). The decrease in
activity on either side of the pH optimum can be due to two general causes.
First, pH may affect the stability of the enzyme, causing it to become
irreversibly inactivated. Second, pH may affect the kinetic parameters of
the enzymatic reaction: It may affect the stability of the ES complex, the
velocity of the rate-limiting step, or both. The second case is relevant
to the discussion in this chapter. Interestingly, the pH dependence of
enzyme-catalyzed reactions is similar to that of acid- and base-catalyzed
chemical reactions. Thus, it is possible, at least in principle, to determine
the pK and state of ionization of the functional groups directly involved
in catalysis, and possibly their chemical nature.

6.1 THE MODEL

To understand the effects of pH on enzyme-catalyzed reactions, a model
must be built that can account for both the pH dependence of the
catalytically active functional groups in the enzyme, and any ionizable
groups in the substrate. We consider the case where the substrate does
not ionize, while ionizable groups are present in the free enzyme and
enzyme–substrate (ES) complex. The reactive form of the enzyme and
the ES complex is the monoionized (EH or EHS) form of a diacidic (EH2)
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Figure 6.1. pH dependence of the first-order rate constant (Vmax/Ks) of an enzyme in
(a) linear and (b) semilogarithmic scales.

species. Thus, the catalytic process, taking into consideration the state of
ionization of the enzyme, can be modeled as

E ES
�||||� Ke2

�||||� Kes2

S+ EH
Ks−−⇀↽−− EHS

kcat−−→ EH+ P

�||||� Ke1
�||||� Kes1

EH2 EH2S

(6.1)

The velocity of the reaction, equilibrium dissociation, and ionization con-
stants for the different enzyme species, and enzyme mass balance are

v = kcat [EHS] (6.2)

Ks = [EH][S]

[EHS]
(6.3)
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Ke1 = [EH][H]

[EH2]
Ke2 = [E][H]

[EH]

Kes1 = [EHS][H]

[EH2S]
Kes2 = [ES][H]

[EHS]
(6.4)

[ET ] = [E]+ [EH]+ [EH2]+ [ES]+ [EHS]+ [EH2S] (6.5)

Normalization of the velocity term by total enzyme concentration (v/[ET ])
and rearrangement results in the following expression:

v = V ∗max[S]

K∗s + [S]
= (Vmax/α)[S]

(β/α)Ks + [S]
(6.6)

where V ∗max and K∗s correspond, respectively, to apparent enzyme maxi-
mum velocity and apparent enzyme–substrate dissociation constant at a
particular pH. For the model above, V ∗max = Vmax/α and K∗s = (β/α)Ks ,
where

α = 1+ [H+]

Kes1
+ Kes2

[H+]
(6.7)

and

β = 1+ [H+]

Ke1
+ Ke2

[H+]
(6.8)

Explicit expressions for the relationship between apparent and true enzyme
catalytic parameters are shown below.

V ∗max = Vmax

(
1+ [H+]

Kes1
+ Kes2

[H+]

)−1

(6.9)

K∗s = Ks

1+ [H+]/Ke1 +Ke2/[H+]

1+ [H+]/Kes1 +Kes2/[H+]
(6.10)

V ∗max

K∗s
= Vmax

Ks

(
1+ [H+]

Ke1
+ Ke2

[H+]

)−1

(6.11)

Since Vmax = kcat[ET ], Eq. (6.11) can be expressed in terms of kcat/Ks if
so required:

k∗cat

K∗s
= kcat

Ks

(
1+ [H+]

Ke1
+ Ke2

[H+]

)−1

(6.12)

These expressions are particularly useful in helping determine the pK

and chemical nature of the catalytically active functional groups in the
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Figure 6.2. Relative proportions of a diprotic enzyme as a function of pH.

enzyme. In general, if V ∗max, K∗s , V ∗max/K
∗
s , or k∗cat/K

∗
s are plotted versus

pH, the patterns obtained will reflect the chemical nature and acid–base
properties (pK values) of the functional groups present.

The treatment above is essentially equivalent to the treatment of the
pH dependence of a polyprotic acid (see Chapter 1). In our case, the
enzyme is considered to be a diprotic acid. Increases and decreases in
activity as a function of pH simply mirror the increases and decreases in
the concentration of the catalytically active species EH (Fig. 6.2). Notice
how the bell-shaped pattern for activity as a function of pH (darker lines)
corresponds to the net increase and decrease in EH concentration.

6.2 pH DEPENDENCE OF THE CATALYTIC PARAMETERS

For our model, the patterns obtained for the pH dependence of log10V
∗
max,

log10(V
∗
max/K

∗
s ), and − log10 K∗s are shown in Fig. 6.3. The log10V

∗
max

and log10(V
∗
max/K

∗
s ) versus pH graphs may be broken down into linear

segments having slopes of −1, 0, and +1. As discussed in the review of
specific acid–base catalysis of chemical reactions, a change in the slope of
a log10(V

∗
max/K

∗
s ), or log10V

∗
max, versus pH plot from +1 to 0 as a function

of increasing pH suggests the necessity of a basic group in the catalytic
step, while a change of slope from 0 to −1 suggests the necessity of an
acidic group in the catalytic step. The pH at which these linear segments
intersect corresponds to the kinetically apparent pK value of the enzyme’s
amino acid side-chain functional groups involved in catalysis (Fig. 6.3).
These pK values are usually shifted significantly from their corresponding
pK values in a free amino acid. This effect is due to both shielding of the
groups from the aqueous environment by the substrate and by the protein
itself. Active sites of enzymes have unique chemical characteristics, which



pH DEPENDENCE OF THE CATALYTIC PARAMETERS 83

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
−1.0

−0.5

0.0

0.5

1.0

Kes1 Kes2Ke1 Ke2

log V*
max

−log Ks
*

pH

log V*
max/Ks

*

Figure 6.3. Simulation of the pH dependence of the logarithm of the catalytic parameters
Vmax, Vmax/Ks , and Ks for a diprotic enzyme.

TABLE 6.1 pK and Enthalpy of Ionization Values for Amino Acid Side Groups

Group pKa (298 K) �H
◦ (kcal mol−1)

α-Carboxyl (terminal) 3.0–3.2 0± 1.5
β-Carboxyl (aspartic) 3.0–4.7 0± 1.5
γ -Carboxyl (glutamic) 4.4 0± 1.5
Imidazolium (histidine) 5.6–7.0 +6.9–7.5
α-Amino (terminal) 7.6–8.4 +10–13
Sulfhydryl (cysteine) 8–9 +6.5–7.0
ε-Amino (lysine) 9.4–10.6 +10–12
Phenolic hydroxyl (tyrosine) 9.8–10.4 +6.0
Guanidinium (arginine) 11.6–12.6 +12–13

can lead to the promotion, or inhibition, of ionization of groups located
within. Nevertheless, comparison of the experimentally determined pK

values to tabulated pK values for side-chain functional groups of amino
acids (Table 6.1) can help identify the chemical nature of such groups
within the enzyme.

Another parameter that can prove helpful in identification of the chem-
ical nature of the charged groups involved in the reaction is the enthalpy
of ionization (�H

◦). This enthalpy of ionization is determined from the
temperature dependence of the equilibrium ionization constant Ka, as
described in the chemical kinetics section. The identity of amino acids
present in the active site of an enzyme could be potentially identified
from their characteristic pK and �H

◦ (Table 6.1).
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6.3 NEW METHOD OF DETERMINING pK VALUES OF
CATALYTICALLY RELEVANT FUNCTIONAL GROUPS

The usual way in which the putative pK values of catalytic groups
were determined in the past was by considering the log10(V

∗
max/K

∗
s ) and

log10V
∗
max versus pH curves in Fig. 6.3 to be composed of three straight

lines with slopes +1, 0, and −1. The pH at which these lines intercept
corresponds roughly to the pK values of the catalytic groups. However, a
more efficient way of determining the points of inflection of these curves
is to determine the pH at which the slope of the log10(V

∗
max/K

∗
s ) and

log10V
∗
max versus pH curves equals 0.5 and −0.5. For the log10(V

∗
max/K

∗
s )

versus pH curve, the pH where the slope equals 0.5 corresponds to the
pKe1 value, while the pH where the slope equals −0.5 corresponds to the
pKe2 value. For the log10V

∗
max versus pH curve, the pH where the slope

equals 0.5 corresponds to pKes1, while the pH where the slope equals
−0.5 corresponds to pKes2 (Fig. 6.4).

Consider the expression for the hydrogen ion dependence of Vmax or
Vmax/Ks of an enzyme-catalyzed reaction:

Y ∗ = Y

(
1+ [H+]

K1
+ K2

[H+]

)−1

= Y
K1[H+]

[H+]2 +K1[H+]+K1K2
(6.13)

where Y ∗ represents V ∗max or V ∗max/K
∗
s , Y represents Vmax or Vmax/Ks ,

K1 represents Kes1 or Ke1, and K2 represents Kes2 or Ke2. A logarithmic
transformation of Eq. (6.13), results in the expression

log Y ∗ = log (YK1)+ log [H+]− log ([H+]2 +K1[H+]+K1K2)

(6.14)

The first derivative of Eq. (6.14) as a function of − log [H+] (i.e., pH) is

d(log Y ∗)
d(pH)

= 2[H+]2 −K1[H+]

[H+]2 +K1[H+]+K1K2
− 1 (6.15)

For the case where [H+] = K1 and K2
1 ≫ K1K2,

d(log Y ∗)
d(pH)

= 0.5 (6.16)

For the case where [H+] = K2 and K2
1 ≫ K1K2,

d(log Y ∗)
d(pH)

= −0.5 (6.17)
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versus pH plots as a function of pH.
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Consider the expression for the hydrogen ion dependence of the Ks of an
enzyme-catalyzed reaction:

K∗s = Ks

1+ [H+]/Ke1 +Ke2/[H+]

1+ [H+]/Kes1 +Kes2/[H+]

= Ks

Kes1

Ke1

[H+]2 +Ke1[H+]+Ke1Ke2

[H+]2 +Kes1[H+]+Kes1Kes2
(6.18)
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Figure 6.5. (a) Simulation of log Vmax/Ks or log Vmax patterns as a function of the close-
ness between K1 and K2 values in the enzyme. (b) Errors between actual and predicted pK

values as a function of the difference in pK values of the catalytic groups in the enzyme.
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dependence of a log Vmax/Ks versus pH data set.

A logarithmic transformation of Eq. (5.18), results in the expression

− log K∗s = − log
KsKes1

Ke1
− log([H+]2 +Ke1[H+]+Ke1Ke2)

+ log([H+]2 +Kes1[H+]+Kes1Kes2 (6.19)

The first derivative of Eq. (6.19) as a function of − log[H+] (i.e., pH) is

d(− log K∗s )

d(pH)
= 2[H+]2 +Ke1[H+]

[H+]2 +Ke1[H+]+Ke1Ke2

− 2[H+]2 +Kes1[H+]

[H+]2 +Kes1[H+]+Kes1Kes2
(6.20)

It is not as easy to calculate a value for this derivative at [H+] = K , since
the exact value will depend not only on the relative magnitude of Ke1
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versus Ke2, but also of Kes1 versus Kes2. We do not recommend working
with this expression, since the results obtained can be ambiguous.

Caution must be exercised when using this approach to determine
the pK values of the catalytic groups since considerable error can be
introduced in their determination if they happen to be numerically close.
Figure 6.5(a) is a simulation of log10(V

∗
max/K

∗
s ) or log10V

∗
max versus

pH patterns as a function of the closeness between K1 and K2 values.
Figure 6.5(b) shows the error between actual and predicted pK values as
a function of the difference between pK values. Our simulation shows
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that as long at the difference between pK values is greater than 1 pH
unit, the error introduced in the determination of pK values will be less
than 0.1 pH unit.

Figure 6.6(a) shows an actual analysis of the pH dependence of V ∗max/

K∗s for the hydration of fumarate by the enzyme fumarase. The slope of
the line at the midpoint between two subsequent pH values was calculated
from the data as

slope(pH2−pH1)/2 =
log Y ∗2 − log Y ∗1

pH2 − pH1
(6.21)

where Y ∗ could correspond to V ∗max/K
∗
s or V ∗max. A general trend line

through the data points was obtained by interpolation. From this trend
line, the pH values at which the slope was +0.5 and −0.5 were easily
determined. This procedure proved to be rapid, accurate, and reliable.

In our experience, drawing straight lines through the usual small num-
ber of data points, as carried out in the Dixon analysis, was not easy,
particularly for the slope = 0 line. This ambiguity made it difficult to
have confidence in the pK values determined. The procedure developed
in this chapter is more reliable. On the other hand, the pK values obtained
using the Dixon analysis and the analysis presented in this chapter were
found to be similar (Fig. 6.6b).

Before leaving this topic, we would like to draw to the attention of the
reader that many enzymes may have only one ionizable group among their
catalytic groups. For this case, the patterns obtained for the pH dependence
of the catalytic parameters will be half that of their two-ionizable-group
counterparts (Fig. 6.7). For this case, the determination of pKe and pKes

values is less prone to error since there is no interference from a second
ionizable group.



CHAPTER 7

TWO-SUBSTRATE REACTIONS

Up to this point, the kinetic treatment of enzyme-catalyzed reactions has
dealt only with single-substrate reactions. Many enzymes of biological
importance, however, catalyze reactions between two or more substrates.
Using the imaginative nomenclature of Cleland, two-substrate reactions
can be classified as ping-pong or sequential. In ping-pong mechanisms,
one or more products must be released before all substrates can react.
In sequential mechanisms, all substrates must combine with the enzyme
before the reaction can take place. Furthermore, sequential mechanisms
can be ordered or Random. In ordered sequential mechanisms, substrates
react with enzyme, and products are released, in a specific order. In ran-
dom sequential mechanisms, on the other hand, the order of substrate
combination and product release is not obligatory. These reactions can
be classified even further according to the molecularity of the kinetically
important steps in the reaction. Thus, these steps can be uni (unimolecu-
lar), bi (bimolecular), ter (termolecular), quad (quadmolecular), pent (pen-
tamolecular), hexa (hexamolecular), and so on. This molecularity applies
both to substrates and products. Using Cleland’s schematics, examples
of ping-pong bi bi, ordered-sequential bi bi, and random-sequential bi bi
reactions are, respectively,

A BP

(EA E′P) E′ (E′B EQ)

Q

EE

(7.1)
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A B P

EA (EAB EPQ)

Q

EE EQ

(7.2)

B A Q P

EEAB EPQE

BA QP

(7.3)

Irrespective of the mechanism, all two-substrate enzyme-catalyzed reac-
tions of the type

A+ B←−−−−→ P+ Q (7.4)

obey the equation

v

V ′max
= [S]

K ′ + [S]
(7.5)

under conditions where the concentration of one of the two substrates is
held constant while the other is varied. For Eq. (7.5), [S] corresponds to
the variable substrate’s concentration, while K ′ and V ′max correspond to
the apparent Michaelis constant and apparent maximum velocity for the
enzymatic reaction, respectively.

Kinetic analysis of multiple substrate reactions could stop at this point.
However, if more in-depth knowledge of the mechanism of a particular
multisubstrate reaction is required, a more intricate kinetic analysis has to
be carried out. There are a number of common reaction pathways through
which two-substrate reactions can proceed, and the three major types are
discussed in turn.

7.1 RANDOM-SEQUENTIAL Bi Bi MECHANISM

For the random-sequential bi bi mechanism, there is no particular order
in the sequential binding of substrates A or B to the enzyme to form the
ternary complex EAB. A general scheme for this type of reactions is
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E+ A
KA

s−−⇀↽−− EA
+ +
B B
�||||� KB

s
�||||� KAB

EB+ A −−⇀↽−−
KBA

EAB −−→
kcat

E+ P+ Q

(7.6)

In this model we assume that rapid equilibrium binding of either substrate
A or B to the enzyme takes place. For the second stage of the reaction,
equilibrium binding of A to EB and B to EA, or a steady state in the
concentration of the EAB ternary complex, may be assumed.

The rate equation for the formation of product, the equilibrium dissocia-
tion constant for the binary enzyme–substrate complexes EA and EB (KA

s

and KB
s ), the equilibrium dissociation (Ks) or steady-state Michaelis (Km)

constants for the formation of the ternary enzyme–substrate complexes
EAB (KAB and KBA), and the enzyme mass balance are, respectively,

v = kcat[EAB] (7.7)

KA
s =

[E][A]

[EA]
KB

s =
[E][B]

[EB]
(7.8)

KBA = [EB][A]

[EBA]
KAB = [EA][B]

[EAB]

[ET ] = [E]+ [EA]+ [EB]+ [EAB] (7.9)

A useful relationship exists among these constants:

KA
s

KB
s

= KBA

KAB
(7.10)

Normalization of the rate equation by total enzyme concentration (v/[ET ])
and rearrangement in light of Eq. (7.10) results in the rate equation for
random-order bi bi mechanisms:

v

Vmax
= [A][B]

KA
s KAB +KAB[A]+KBA[B]+ [A][B]

(7.11)

where Vmax = kcat[ET ].
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7.1.1 Constant [A]

For the case where the concentration of substrate A is held constant,
Eq. (7.11) can be expressed as

v

V ′max
= [B]

K ′ + [B]
(7.12)

where

V ′max =
Vmax[A]

KBA + [A]
(7.13)

and

K ′ = KA
s KAB +KAB[A]

KBA + [A]
= KAB(KA

s + [A])

KBA + [A]
(7.14)

From determinations of K ′ and V ′max at different fixed concentrations of
substrate A, it is possible to obtain estimates of Vmax, KA

s , KAB, and
KBA. V ′max displays a hyperbolic dependence on substrate A concentra-
tion (Fig. 7.1a). Thus, by fitting Eq. (7.13) to V ′max –[A] experimental data
using nonlinear regression, it is possible to obtain estimates of Vmax and
KBA. K ′ also displays a hyperbolic dependence on substrate A concentra-
tion (Fig. 7.1b). However, this hyperbola does not go through the origin.
At [A] = 0 (y-intercept), K ′ = KA

s KAB/KBA (or KB
s ), while in the limit

where [A] approaches infinity, K ′ = KAB (Fig. 7.1b). Thus, by fitting
Eq. (7.14) to K ′ − [A] experimental data using nonlinear regression, it is
possible to obtain estimates of KA

s KAB/KBA and KAB. Since the values
of KAB, KBA, and KB

s (y-intercept) are known, it is straightforward to
obtain an estimate of KA

s using Eq. (7.10):

KA
s =

KB
s KBA

KAB
(7.15)

7.1.2 Constant [B]

For the case where the concentration of substrate A is held constant,
Eq. (7.11) can be expressed as

v

V ′max
= [A]

K ′ + [A]
(7.16)

where

V ′max =
Vmax[B]

KAB + [B]
(7.17)
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Figure 7.1. Fixed substrate concentration dependence for enzymes displaying random-
sequential mechanisms: (a) Dependence of V ′max on [A]; (b) dependence of K ′ on [A];
(c) dependence of V ′max on [B]; (d) dependence of K ′ on [B].

and

K ′ = KA
s KAB +KBA[B]

KAB + [B]
= KB

s KBA +KBA[B]

KAB + [B]
= KBA(KB

s + [B])

KAB + [B]
(7.18)

From determinations of K ′ and V ′max at different fixed concentrations of
substrate B, it is possible to obtain estimates of Vmax, KB

s , KAB, and
KBA. V ′max displays a hyperbolic dependence on substrate B concentra-
tion (Fig. 7.1c). Thus, by fitting Eq. (7.17) to V ′max –[B] experimental data
using nonlinear regression, it is possible to obtain estimates of Vmax and
KAB. K ′ also displays a hyperbolic dependence on substrate B concentra-
tion (Fig. 7.1d). However, this hyperbola does not go through the origin.
At [B] = 0 (y-intercept), K ′ = KB

s KBA/KAB (or KA
s ), while in the limit

where [B] approaches infinity, K ′ = KBA (Fig. 7.1d). Thus, by fitting
Eq. (7.18) to K ′–[B] experimental data using nonlinear regression, it is
possible to obtain estimates of KA

s and KBA. Since the values of KAB,
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KBA, and KA
s are known, it is straightforward to obtain an estimate of

KB
s using Eq. (7.10):

KB
s =

KA
s KAB

KBA
(7.19)

7.2 ORDERED-SEQUENTIAL Bi Bi MECHANISM

For this mechanism, the enzyme must bind substrate A first, followed
by binding of substrate B, to form the ternary complex EAB. A general
scheme for this type of reactions is

E+ A
KA

s−−⇀↽−− EA+ B
KAB

−−⇀↽−− EAB
kcat−−→ E+ P+ Q (7.20)

The rate equation for the formation of product, the equilibrium dissoci-
ation constant for the binary enzyme–substrate complex EA (KA

s ), the
equilibrium dissociation (Ks), or steady-state Michaelis (Km) constant for
the formation of the ternary enzyme–substrate complex EAB (KAB), and
the enzyme mass balance are, respectively,

v = kcat[EAB] (7.21)

KA
s =

[E][A]

[EA]
KAB = [EA][B]

[EAB]
(7.22)

[ET ] = [E]+ [EA]+ [EAB] (7.23)

Normalization of the rate equation by total enzyme concentration (v/[ET ])
and rearrangement results in the rate equation for ordered-sequential bi
bi mechanisms:

v

Vmax
= [A][B]

KA
s KAB +KAB[A]+ [A][B]

(7.24)

where Vmax = kcat[ET ].

7.2.1 Constant [B]

For the case where the concentration of substrate B is held constant,
Eq. (7.24) can be expressed as

v

V ′max
= [A]

K ′ + [A]
(7.25)
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where

V ′max =
Vmax[B]

KAB + [B]
(7.26)

and

K ′ = KA
s KAB

KAB + [B]
(7.27)

From determinations of K ′ and V ′max at different fixed concentrations of
substrate B, it is possible to obtain estimates of Vmax, KA

s , and KAB. V ′max
displays a hyperbolic dependence on substrate B concentration (Fig. 7.2a).
Thus, by fitting Eq. (7.26) to V ′max –[B] experimental data using nonlinear
regression, it is possible to obtain estimates of Vmax and KAB. K ′ also
displays a hyperbolic dependence on substrate B concentration (Fig. 7.2b).
However, the y-intercept ([B] = 0) of this hyperbola equals KA

s , while
in the limit where [B] approaches infinity, K ′ = 0 (Fig. 7.2b). Thus, by
fitting Eq. (7.27) to K ′–[B] experimental data using nonlinear regression,
it is possible to obtain an estimate of KA

s .

7.2.2 Constant [A]

For the case where the concentration of substrate A is held constant,
Eq. (7.24) can be expressed as

v

V ′max
= [B]

K ′ + [B]
(7.28)

where
V ′max = Vmax (7.29)

and

K ′ = KA
s KAB

[A]
+KAB (7.30)

From determinations of K ′ at different fixed concentrations of substrate
A, it is possible to obtain estimates of KA

s and KAB. K ′ displays a hyper-
bolic dependence on substrate A concentration (Fig. 7.2c). The slope of
this function equals KA

s KAB. In the limit where [A] approaches infinity,
K ′ = KAB (Fig. 7.2c). Thus, by fitting Eq. (7.30) to K ′–[A] experimental
data using nonlinear regression, it is possible to obtain estimates of KA

s

and KAB.
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Figure 7.2. Fixed substrate concentration dependence for enzymes displaying ordered
sequential mechanisms: (a) Dependence of V ′max on [B]; (b) dependence of K ′ on [B];
(c) dependence of K ′ on [A].

7.2.3 Order of Substrate Binding

The dependence of V ′max on the fixed substrate’s concentration can be used
as an indicator of substrate-binding order. A fixed substrate’s concentra-
tion dependence of V ′max is associated with the second substrate to bind
to the enzyme. A fixed substrate’s concentration independence of V ′max is
associated with the first substrate to bind to the enzyme.



98 TWO-SUBSTRATE REACTIONS

7.3 PING-PONG Bi Bi MECHANISM

For this mechanism, the enzyme must bind substrate A first, followed by
the release of product P and the formation of the enzyme species E′. This
is followed by binding of substrate B to E′ and the breakdown of the
E′B complex to free enzyme E and the second product Q. Thus, for ping
pong mechanisms, no ternary complex is formed. A general steady-state
scheme for this type of reactions is

KA
m KB

m

E+ A
k1−−⇀↽−−
k−1

EA
k2−−→ E′ + B

k3−−⇀↽−−
k−3

E′B
k4−−→ E

(7.31)

The rate equation, steady-state Michaelis constants, and enzyme mass
balance for this mechanism are, respectively,

v = k4[E′B] (7.32)

KA
m =

k−1 + k2

k1
= [E][A]

[EA]
KB

m =
k−3 + k4

k3
= [E′][B]

[E′B]
(7.33)

[ET ] = [E]+ [EA]+ [E′]+ [E′B] (7.34)

A relationship between E and E′ can also be obtained, assuming a steady-
state in the concentration of E′:

[E] = k4

k2

KA
m

KB
m

[E′][B]

[A]
(7.35)

Normalization of the rate equation by total enzyme concentration
(v/[ET ]), substitution, and rearrangement yields the following rate equa-
tion for ping-pong bi bi mechanisms:

v

Vmax
= [A][B]

(k4/k2)KA
m[B]+KB

m[A]+ [A][B](1+ k4/k2)
(7.36)

where Vmax = kcat[ET ] and kcat = k4. For the case where the rate-limiting
step of the reaction is the conversion of E′B into EQ (i.e., k2 ≫ k4),
Eq. (7.36) reduces to

v

Vmax
= [A][B]

αKA
m[B]+KB

m[A]+ [A][B]
(7.37)

where α = k4/k2.
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7.3.1 Constant [B]

For the case where the concentration of substrate B is held constant,
Eq. (7.37) can be expressed as

v

V ′max
= [A]

K ′ + [A]
(7.38)

where

V ′max =
Vmax[B]

KB
m + [B]

(7.39)

and

K ′ = αKA
m[B]

KB
m + [B]

(7.40)

From determinations of K ′ and V ′max at different fixed concentrations of
substrate B, it is possible to obtain estimates of Vmax, αKA

m , and KB
m. V ′max

displays a hyperbolic dependence on substrate B concentration (Fig. 7.3a).
Thus, by fitting Eq. (7.39) to V ′max –[B] experimental data using nonlinear
regression, it is possible to obtain estimates of Vmax and KB

m. K ′ also
displays a hyperbolic dependence on substrate B concentration (Fig. 7.3b).
Thus, by fitting Eq. (7.40) to K ′–[B] experimental data using nonlinear
regression, it is possible to obtain estimates of αKA

m and KB
m.

7.3.2 Constant [A]

For the case where the concentration of substrate A is held constant,
Eq. (7.37) can be expressed as

v

V ′max
= [A]

K ′ + [A]
(7.41)

where

V ′max =
Vmax[A]

αKA
m + [A]

(7.42)

and

K ′ = KB
m[A]

αKA
m + [A]

(7.43)

From determinations of K ′ and V ′max at different fixed concentrations of
substrate A, it is possible to obtain estimates of Vmax, αKA

m , and KB
m. V ′max

displays a hyperbolic dependence on substrate A concentration (Fig. 7.3c).
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Figure 7.3. Fixed substrate concentration dependence for enzymes displaying ping-pong
mechanisms: (a) Dependence of V ′max on [B]; (b) dependence of K ′ on [B]; (c) depen-
dence of V ′max on [A]; (d) dependence of K ′ on [A].

Thus, by fitting Eq. (7.42) to V ′max –[A] experimental data using nonlinear
regression, it is possible to obtain estimates of Vmax and αKA

m . K ′ also dis-
plays a hyperbolic dependence on substrate A concentration (Fig. 7.3d).
Thus, by fitting Eq. (7.43) to K ′–[A] experimental data using nonlinear
regression, it is possible to obtain estimates of αKA

m and KB
m.

7.4 DIFFERENTIATION BETWEEN MECHANISMS

Differentiation between reaction mechanisms can be achieved by care-
ful scrutiny of the K ′ versus substrate concentration patterns (Fig. 7.4).
The adage that a picture tells a thousand words is quite applicable in
this instance. It is difficult to determine the mechanism of an enzyme-
catalyzed reaction from steady-state kinetic analysis. The determination
of the mechanism of an enzymatic reaction is neither a trivial task nor an
easy task. The use of dead-end inhibitors and alternative substrates, study
of the patterns of product inhibition, and isotope-exchange experiments
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Figure 7.4. Dependence of the apparent Michaelis constant (K ′) on the concentration of
fixed substrate for random-sequential, ordered-sequential, and ping-pong mechanisms.

all shed light on the possible nature of a mechanism. Haldane and Dalziel
relationships sometimes help discriminate between possible mechanisms.
Once very popular, the use of steady-state kinetic analysis to determine the
mechanism of an enzymatic reaction has decreased in favor of pre-steady-
state analysis of kinetic data obtained from rapid-reaction techniques.



CHAPTER 8

MULTISITE AND COOPERATIVE
ENZYMES

Many enzymes are oligomers composed of distinct subunits. Often, the
subunits are identical, each bearing an equivalent catalytic site. If the sites
are identical and independent of each other, the presence of substrate at
one site will have no effect on substrate binding and catalytic proper-
ties at other sites. Therefore, kinetic treatments developed for single-site
enzymes will also apply to multisite enzymes. Phenomenologically, the
kinetic behavior of n single-site enzymes is indistinguishable from the
behavior of one enzyme with n active sites. Thus, the rate equation for
an oligomeric enzyme with n independent, noninteracting active sites is

v

Vmax
= [S]

ks + [S]
(8.1)

where Vmax = kcat[ET ] and ks is the microscopic dissociation constant of
the ESn complexes.

In cooperative enzymes, on the other hand, low- and high-affinity sub-
strate binding sites are present, and cooperative binding of substrate to
enzyme can take place. The binding of one substrate molecule induces
structural and/or electronic changes that result in altered substrate binding
affinities in the remaining vacant sites. The enzyme’s substrate bind-
ing affinity can theoretically either increase (positive cooperativity) or
decrease (negative cooperativity). An increase in affinity upon substrate
binding is, however, the most common response.

102

Enzyme Kinetics: A Modern Approach. Alejandro G. Marangoni
Copyright 2003 John Wiley & Sons, Inc.

ISBN: 0-471-15985-9



SEQUENTIAL INTERACTION MODEL 103

[S]
V

el
oc

ity

Figure 8.1. Initial velocity versus substrate concentration curve for a cooperative enzyme.

Enzyme activity can also be affected by binding of substrate and non-
substrate ligands, which can act as activators or inhibitors, at a site other
than the active site. These enzymes are called allosteric. These responses
can be homotropic or heterotropic. Homotropic responses refer to the
allosteric modulation of enzyme activity strictly by substrate molecules;
heterotropic responses refer to the allosteric modulation of enzyme activity
by nonsubstrate molecules or combinations of substrate and nonsubstrate
molecules. The allosteric modulation can be positive (activation) or neg-
ative (inhibition). Many allosteric enzymes also display cooperativity,
making a clear differentiation between allosterism and cooperativity some-
what difficult.

Cooperative substrate binding results in sigmoidal v versus [S] curves
(Fig. 8.1). The Michaelis–Menten model is therefore not applicable to
cooperative enzymes. Two major equilibrium models have evolved to
describe the catalytic behavior of cooperative enzymes: the sequential
interaction and concerted transition models. The reader should be aware
that other models have also been developed, such as equilibrium associ-
ation–dissociation models, as well as several kinetic models. These are
not discussed in this chapter.

8.1 SEQUENTIAL INTERACTION MODEL

8.1.1 Basic Postulates

The basic premise of the sequential interaction (SI) model is that signifi-
cant changes in enzyme conformation take place upon substrate binding,
which result in altered substrate binding affinities in the remaining active
sites (Fig. 8.2). For the case of positive cooperativity, each substrate
molecule that binds makes it easier for the next substrate molecule to bind.
The resulting v versus [S] curve therefore displays a marked slope increase
as a function of increasing substrate concentration. Upon saturation of the
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Figure 8.2. Diagrammatic representation of the sequential interaction of substrate with
a four-site cooperative enzyme. Binding of one substrate molecule alters the substrate
affinity of other sites. The constants k depict microscopic dissociation constants for the
first, second, third, and fourth sites, respectively.

active sites, the slope of the curve steadily decreases. This results in
a sigmoidal v versus [S] curve (Fig. 8.1). For a hypothetical tetrameric
cooperative enzyme with four active sites, the rate equation for the for-
mation of product and enzyme mass balance are

v = kcat[ES1]+ 2kcat[ES2]+ 3kcat[ES3]+ 4kcat[ES4] (8.2)

[ET ] = [E]+ [ES1]+ [ES2]+ [ES3]+ [ES4] (8.3)

The equilibrium dissociation constants, both macroscopic or global (Kn)
and microscopic or intrinsic (kn), for the various ESn complexes are

K1 = 1

4
k1 = [E][S]

[ES1]
[ES1] = [E][S]

K1
= 4[E][S]

k1

K2 = 2

3
k2 = [ES1][S]

[ES2]
[ES2] = [E][S]2

K1K2
= 6[E][S]2

k1k2

K3 = 3

2
k3 = [ES2][S]

[ES3]
[ES3] = [E][S]3

K1K2K3
= 4[E][S]3

k1k2k3

K4 = 4k4 = [ES3][S]

[ES4]
[ES4] = [E][S]4

K1K2K3K4
= [E][S]4

k1k2k3k4

(8.4)

Upon substrate binding, dissociation constants can decrease for the case
of positive cooperativity (increased affinity of enzyme for substrate)
or decrease in the case of negative cooperativity (decreased affinity of
enzyme for substrate).

Normalization of the rate equation by total enzyme concentration
(v/[ET ]), substitution of the different ESn terms with the appropriate
expression containing microscopic dissociation constants, and rearrange-
ment results in the following expression for the velocity of a four-site
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cooperative enzyme:

v

Vmax
= [S]/k1 + 3[S]2/k1k2 + 3[S]3/k1k2k3 + [S]4/k1k2k3k4

1+ 4[S]/k1 + 6[S]2/k1k2 + 4[S]3/k1k2k3 + [S]4/k1k2k3k4

(8.5)

where Vmax = 4kcat[ET ]. For the special case where an enzyme has pro-
nounced positive cooperativity, the concentrations of ES, ES2, and ES3
are small compared to the concentration of ES4. Thus, if these terms are
omitted from both the rate equation and enzyme mass balance [Eqs. (8.2)
and (8.3)], Eq. (8.5) reduces to

v

Vmax
≈ [S]4/k1k2k3k4

1+ [S]4/k1k2k3k4
= [S]4

k′ + [S]4
(8.6)

where k′ = k1k2k3k4.

8.1.2 Interaction Factors

The concept of interaction factors is frequently used in the treatment
of cooperative enzymes. In this treatment, all substrate-binding sites are
assumed to have the same intrinsic microscopic dissociation constant, k.
The intrinsic dissociation constant of the ES complex was defined previ-
ously as k1, and for this treatment, k1 becomes k.

Upon substrate binding to the first active site, the intrinsic dissocia-
tion constant of the second substrate-binding site (ES2) will change by a
factor α:

k2 = αk (8.7)

Upon binding of a second substrate molecule, the intrinsic dissociation
constant of the third substrate-binding site will change further by a
factor β:

k3 = αβk (8.8)

Upon binding of a third substrate molecule, the intrinsic dissociation
constant of the fourth substrate-binding site will change further by a
factor γ :

k4 = αβγ k (8.9)

Thus, for a four-site highly cooperative enzyme, the overall enzyme–sub-
strate intrinsic dissociation constant (k′) of the enzyme can be expressed
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as the product of the four separate constants, or as the product of three
interaction factors and the intrinsic dissociation constant of all sites:

k′ = k1k2k3k4 = α3β2γ k4 (8.10)

Interaction factors (f ) will have values in the range f < 1 for positive
cooperativity and f > 1 for negative cooperativity. It is very difficult to
obtain accurate estimates of individual interaction factors, or intrinsic dis-
sociation constants, from steady-state kinetic analysis of enzyme activity.

8.1.3 Microscopic versus Macroscopic Dissociation Constants

It is important to understand the difference between macroscopic and
microscopic dissociation constants. The number of different ways that
substrate molecules can occupy n active sites within an enzyme, without
replacement and without regard to the order of the occupancy (i.e., the
number of combinations, C) is given by

C = n!

(n− s)! s!
(8.11)

where n represents the number of sites available for substrate binding in
the enzyme and s corresponds to the number of substrate molecules bound
per enzyme. For example, in the case of a tetramer with four active sites
(n = 4), where only two sites are filled (s = 2), the number of possible
ways in which enzyme and substrate can form an ES2 microscopic species
equals 6 (see Fig. 8.3). The concentration of each individual microscopic
ES2 species would then be [ES2]/6. Relationships between macroscopic
and microscopic dissociation constants are obtained upon substitution of
macroscopic ESn concentration terms with microscopic ESn concentration
terms. This treatment assumes an equal probability of occurrence for each
microscopic species. For example, the macroscopic dissociation constant
for the reaction ES3 � ES2 + S is

Ks = [ES2][S]

[ES3]
(8.12)

As discussed above, the number of possible ways in which enzyme and
substrate can form an ES2 microscopic species equals 6. For the ES and
ES3 complexes, four different microscopic species can form, while only
one microscopic species exists for the ES4 complex (Fig. 8.3). Thus, the
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Figure 8.3. Possible ways in which, respectively, one, two, three, and four substrate
molecules can randomly occupy binding sites in a four-site cooperative enzyme.

concentration of ES2 microscopic species is [ES2]/6. The concentration
of the ES, ES3, and ES4 complexes is, respectively, [ES]/4, [ES3]/4, and
ES4. Considering the above, the microscopic dissociation constant for the
reaction ES3 � ES2 + S is

ks = ([ES2]/6)[S]

[ES3]/4
= 2

3

[ES2][S]

[ES3]
(8.13)

Therefore, the relationship between macroscopic (Ks) and microscopic
(ks) dissociation constants for this reaction is

Ks = 3

2
ks (8.14)

8.1.4 Generalization of the Model

It follows from Eq. (8.6) that for the case of an enzyme with n active
sites displaying a high degree of cooperativity,

v

Vmax
= [S]n

k′ + [S]n
(8.15)

This model has the same form as the well-known Hill equation. For
historical reasons, the SI model in the form of Eq. (8.15) will be referred
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to as the Hill equation. It is important to realize that Hill equation was
not originally derived in the fashion described above. The Hill constant,
k′, Hill coefficient, n, and Vmax are parameters used to characterize the
catalytic properties of cooperative enzymes. The Hill constant is related
to the enzyme–substrate dissociation constants (k′ = �kn) and provides
an estimate of the affinity of the enzyme for a particular substrate. The
relationship between the Hill constant and the substrate concentration at
1
2Vmax [S0.5] is

k′ = [S0.5]n (8.16)

The Hill constant is an index of the affinity of the enzyme for the sub-
strate, but it is not the enzyme–substrate dissociation constant. It has units
of (concentration)n, which makes comparison between reactions with dif-
ferent n values difficult.

The Hill coefficient is an index of the cooperativity in the substrate
binding process—the greater the value of n, the higher the cooperativity.
For the case where n = 1 (no cooperativity), the Hill equation reduces
to the Michaelis–Menten model. If the cooperativity of the sites is low,
n will not correspond to the number of substrate-binding sites, but the
minimum number of effective substrate-binding sites. Regardless of this
limitation, the Hill equation can still be used to characterize the kinetic
behavior of a cooperative enzyme. In this case, n becomes merely an
index of cooperativity, which can have noninteger values.

Estimates of the parameters k′ and n are obtained using standard non-
linear regression procedures available in most modern graphical software
packages. By fitting the Hill equation to experimental v versus [S] data,
estimates of k′, n, and Vmax can easily be obtained. Simulations of v

versus [S] behavior using Eq. (8.15) are shown in Fig. 8.4. As can be
appreciated in Fig. 8.4(a), the greater the Hill exponent, the more pro-
nounced the sigmoidicity of the curve. For the case where n = 1, the Hill
equation reduces to the Michaelis–Menten model. Increases in the value
of the Hill constant, k′, will decrease the steepness of the v versus [S]
curve (Fig. 8.4b). Thus, from a topological perspective, the shape (i.e.,
sigmoidicity and steepness) of the curve can be adequately described by
these two parameters.

The Hill equation is a three-parameter function (k′, n, Vmax), and con-
stitutes the simplest equation that describes the kinetic behavior of coop-
erative enzymes. From a practical point of view, the next most useful
model is the symmetry model. Even though it only accounts for positive
cooperativity and is based on somewhat arbitrary assumptions, this model
can account for allosteric effects.
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Figure 8.4. (a) Simulation of the effects of varying the Hill exponent (n) on the shape
of the initial velocity versus substrate concentration curve for a cooperative enzyme.
(b) Simulation of the effects of varying the Hill constant (k′) on the shape of the initial
velocity versus substrate concentration curve for a cooperative enzyme.

8.2 CONCERTED TRANSITION OR SYMMETRY MODEL

The concerted transition (CT) or symmetry model, a departure from prior
models of cooperativity, accounted for allosterism but could not explain
anticooperativity. This model is based on the following postulates:

1. Allosteric enzymes are composed of identical protomers that occupy
equivalent positions within the enzyme. A protomer is a structural
unit that contains a unique binding site for each specific ligand (e.g.,
substrate and activator). A protomer does not necessarily correspond
to one subunit (a single polypeptide chain).

2. Each protomer can only exist in either of two conformational states,
R (relaxed, or high substrate binding affinity) or T (taut, or low
substrate binding affinity). The dissociation constant for the R-state
protomer–substrate complexes, kR, is lower than that of the T-state
protomer–substrate complexes, kT (Fig. 8.5).
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Figure 8.5. Diagrammatic representation of the concerted transition model for a two-site
cooperative enzyme.

3. All protomers within the enzyme must be in either the R or T
state—mixed conformations are not allowed. The R and T states of
the enzyme are in equilibrium with each other. Thus, an equilibrium
constant (L) can be written for the R � T transition (L = [T]/[R]).

4. The binding affinity of a specific ligand depends on the conformation
of the enzyme (R or T), and not on neighboring site occupancy.

Based on equilibrium arguments, a general expression for the velocity
of a cooperative enzyme-catalyzed reaction can be derived. The equilib-
rium macroscopic (KT, KR) and microscopic (kT, kR) dissociation con-
stants for the different enzyme–substrate species present in a two-protomer
enzyme are

KR = 1

2
kR = [R][S]

[RS]
[RS] = [R][S]

KR
= 2[R][S]

kR

KR = 2kR = [RS][S]

[RS2]
[RS2] = [R][S]2

K2
R

= [R][S]2

k2
R

KT = 1

2
kT = [T][S]

[TS]
[TS] = [T][S]

KT
= 2[T][S]

kT

KT = 2kT = [TS][S]

[TS2]
[TS2] = [T][S]2

K2
T

= [T][S]2

k2
T

(8.17)

A useful parameter sometimes reported in kinetic studies is the nonexclu-
sive binding coefficient (c). This coefficient is defined as the ratio of the
intrinsic enzyme–substrate dissociation constants for the enzyme in the R
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and T states:

c = kR

kT
(8.18)

A lower value of the nonexclusive binding coefficient is associated with a
higher cooperativity, and therefore sigmoidicity, of the velocity curves. A
lower value of this coefficient implies a decreased affinity of the T state
for substrate relative to the R state. If the enzyme in the T state does not
bind substrate (kT = ∞), c = 0.

To simplify the mathematical treatment, further assumptions have to be
made (see Fig. 8.6):

1. Substrate can only bind to the R state of the protomer; substrate
does not bind to the T state of the protomer (c = 0).

2. The R state of the protomer is catalytically active and the T state is
catalytically inactive.

3. The values of kR, kT, and L are the same for all ESn species.

Thus, the rate equation for the formation of product and the mass bal-
ance for the enzyme are given by

v = kcat[RS]+ 2kcat[RS2] (8.19)

[ET ] = [R0]+ [T0]+ [RS]+ [RS2] (8.20)

Normalization by total enzyme concentration (v/[ET ]), substitution of
the different terms containing microscopic dissociation constants, and

L
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kR kR

kR kR

RS SR
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RoTo

Figure 8.6. Simplified version of the concerted transition model for a two-site cooperative
enzyme. In this case the T state of the enzyme is assumed not to bind substrate.
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rearrangement results in the following rate equation for a two-protomer
allosteric enzyme:

v

Vmax
= ([S]/kR)(1+ [S]/kR)

L+ (1+ [S]/kR)2
(8.21)

where Vmax = 2kcat[ET ]. This equation can be generalized for the case of
an n-protomer enzyme:

v

Vmax
= ([S]/kR)(1+ [S]/kR)n−1

L+ (1+ [S]/kR)n
(8.22)

where Vmax = nkcat[ET ], n is the number of protomers per enzyme, kR
is the intrinsic enzyme–substrate dissociation constant for the R-state
enzyme, and L is the allosteric constant for the R � T transition of the
native enzyme (L = [T0]/[R0]).

One could envision how an allosteric effector would alter the balance
between the R and T states, thus affecting L. The presence of an activator
would lead to a decrease in L, while the presence of an inhibitor would
lead to an increase in L. An activator is believed to bind preferentially
to, and therefore stabilize, the R state of an enzyme, while an inhibitor is
believed to bind preferentially to, and stabilize, the T state of an enzyme.
An activator would therefore decrease the sigmoidicity of the v versus [S]
curve, while an inhibitor would increase it.

The effect of activators and inhibitors on the value of the conforma-
tional equilibrium constant L can be determined from

Lapp = L
(1+ [I]/kTI)

n

(1+ [A]/kRI)n
(8.23)

where Lapp is the apparent allosteric constant in the presence of both
activators and inhibitors, [I] is the concentration of allosteric inhibitor, [A]
is the concentration of allosteric activator, kTI is the dissociation constant
for the TI complex, kRA is the dissociation constant for the RA complex,
and n is the number of protomers per enzyme. For this treatment, it is
assumed that activators bind exclusively to the R state of the protomers,
while inhibitors bind exclusively to the T state of the protomers. If only
activators or inhibitors are present, [I] or [A], correspondingly, would
be set to zero. This expression could be included into Eq. (8.23). This
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is, however, not recommended, due to the complexity of the resulting
equation and its effects on curve-fitting performance.

Simulations of v versus [S] behavior using Eq. (8.22) are shown in
Fig. 8.7. Surprisingly, neither n nor L affect the sigmoidicity of the curve.
It is only the steepness of the curve that is affected by these parameters.
As can be appreciated in Fig. 8.7(a), the curve is very sensitive to the
value of n. Small changes in n result in large changes in the observed
v versus [S] behavior. As for the Hill model, the greater the value of n,
the more pronounced the steepness of the curve. Increases in the value
of the allosteric constant L, on the other hand, lead to increases in the
steepness of the v versus [S] curve (Fig. 8.7b). Thus, from a topological
perspective, the shape of the sigmoidal curve can be described by these
two parameters. In the limit where the steepness of the curve is extreme,
the sigmoidicity of the curve will not be apparent.
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Figure 8.7. (a) Simulation of the effects of varying the effective number of active sites
in an enzyme (n) on the shape of the initial velocity versus substrate concentration curve
for a cooperative enzyme. (b) Simulation of the effects of varying the allosteric con-
stant (L) on the shape of the initial velocity versus substrate concentration curve for a
cooperative enzyme.
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8.3 APPLICATION

It is of interest to assess the ability of these two models to describe the
v versus [S] behavior of an enzyme. Figure 8.8a corresponds to a curve
fit using the Hill equation, while Fig. 8.8(b) corresponds to a curve fit
using the simplified CT model. The absolute sum of squares for the fit
of the Hill equation to the data set is 1.38× 10−17 M2 min−2, while for
the CT model is 1.88× 10−17 M2 min−2. In this case, there is no need
to carry out an F -test to decide which model fits the data best. Since the
Hill equation has fewer parameters and the absolute sum of squares for
the fit of the model to the data is lower, one can safely conclude that the
Hill equation fits the data statistically better than does the CT model.
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Figure 8.8. Analysis of the initial velocity versus substrate concentration data for a coop-
erative enzyme using (a) the Hill model and (b) the MWC model.
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An advantage of the CT model, however, is the fact that it is possible
to estimate the magnitude of the enzyme–substrate dissociation constant
of the enzyme. This is not possible with the Hill equation. As described
before, the Hill constant is a complex term that is related but is not
equivalent to, the enzyme–substrate dissociation constant. By using the
CT model, it is also possible to obtain estimates of the allosteric con-
stant, L. This may prove useful in the study of allosteric modulators of
enzyme activity.

8.4 REALITY CHECK

One of the major problems with the use of any of these models, and
particularly more complex models of cooperativity and allosterism, is the
inability independently to check the accuracy of the estimated catalytic
parameters. Even for the simple models discussed above, the experimental
determination of these catalytic parameters remains a daunting task. In the
absence of independent experimental confirmation, estimates of k′, n, kR,
and L are nothing more than parameters obtained from curve fits of an
equation to data.

In this simple treatment of cooperativity and allosterism, one should be
reluctant to entertain more complex models. It is our belief that an overre-
ductionist approach inevitably leads to the development of extremely
complex equations of limited analytical practicality. This is due primarily
to both the excessive number of parameters to be estimated simultaneously
and the inability ever to be able to check their accuracy independently.



CHAPTER 9

IMMOBILIZED ENZYMES

The catalytic properties of an immobilized enzyme can be characterized
using the Michaelis–Menten model. The exact form of the model
will depend on the type of enzyme reactor used. In general,
whenever non-steady-state conditions prevail, the integrated form of the
Michaelis–Menten model is used:

K ′m ln
[S0]

[S]
+ [S0 − S] = Vmaxt = kcat[ET ]t (9.1)

where K ′m is the apparent Michaelis constant for the enzyme, [ET ] cor-
responds to total enzyme concentration, [S0] and [S] are, respectively,
substrate concentration at time zero and time t , kcat is the zero-order rate
constant for the enzymatic reaction under conditions of substrate satura-
tion, and t is the reaction time.

The three main types of immobilized enzyme reactors used are batch
(Fig. 9.1), plug-flow (Fig. 9.2), and continuous-stirred (Fig. 9.3). In both
batch and plug-flow reactors, non-steady-state reaction conditions pre-
vail, while in continuous-stirred reactors, steady-state reaction conditions
are prevalent.

9.1 BATCH REACTORS

For the case of a batch reactor, Eq. (9.1) is modified to account
explicitly for the volume of the reactor (Vr ). To do this, the total
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Figure 9.1. Diagrammatic representation of a batch reactor.
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Figure 9.2. Diagrammatic representation of a plug-flow reactor.
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Figure 9.3. Diagrammatic representation of a continuous-stirred reactor.

enzyme concentration term ([ET ]) is substituted by ne/Vr , thus yielding
the expression

K ′m ln
[S0]

[S]
+ [S0 − S] = kcatnet

Vr

(9.2)

where ne corresponds to the moles of enzyme in the reactor (ne = [ET ]Vr ).
The proportion of substrate that has been converted to product (X) can
be defined as

X = 1− [S]

[S0]
(9.3)
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Thus, considering that X[S0] = [S0 − S], Eq. (9.2) can be expressed as

X[S0]−K ′m ln(1−X) = kcatnet

Vr

(9.4)

In this model, X is not an explicit function of time. This can represent a
problem since most commercially available curve-fitting programs cannot
fit implicit functions to experimental data. Thus, to be able to use this
implicit function in the determination of kcat and K ′m, it is necessary to
modify its form and transform the experimental data accordingly. Dividing
both sides by t and K ′m and rearranging results in the expression

ln(1−X)

t
= X[S0]

K ′mt
− kcatne

K ′mVr

(9.5)

A plot of ln(1−X)/t versus X/t yields a straight line with slope =
[S0]/K ′m, the x-intercept = kcatne/Vr [S0], and the y-intercept = −kcatne/

K ′mVr (Fig. 9.4a). The values of the slope and intercepts can readily be
obtained using linear regression. Thus, from a single progress curve (i.e.,
a single X– t data set) it is possible to obtain estimates of K ′m and kcat.

9.2 PLUG-FLOW REACTORS

For the case of a plug-flow reactor, the quantity Vr/t in Eq. (9.2) can
be substituted for by the flow rate (Q) through the packed bed, since
Q = Vr/t . Equation (9.2) then becomes

X[S0]−K ′m ln(1−X) = kcatne

Q
(9.6)

where ne corresponds to the moles of enzyme in the reactor, [S0] to
substrate concentration in the feed entering the column, and X to the pro-
portion of substrate converted to product in the stream exiting the column.

Dividing both sides by K ′m, multiplying by Q, and rearranging results
in the expression

Q ln(1−X) = XQ[S0]

K ′m
− kcatne

K ′m
(9.7)

A plot of Q ln(1−X) versus XQ yields a straight line with slope =
[S0]/K ′m, the x-intercept = kcatne/[S0], and the y-intercept = −kcatne/K

′
m
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Figure 9.4. Linear plots used in determination of the catalytic parameters of immobilized
enzymes for the case of (a) batch, (b) plug-flow, and (c) continuous-stirred reactors.

(Fig. 9.4b) Thus, by determining X as a function of different Q, it is
possible to obtain estimates of K ′m and kcat.

9.3 CONTINUOUS-STIRRED REACTORS

In a continuous-stirred reactor, steady-state reaction conditions prevail.
Therefore, the model used is different from the one used for batch and
plug-flow reactors. For the case of a continuous-stirred reactor, the reac-
tion velocity (v) equals the product of the flow rate (Q) through a reactor
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of volume Vr times the difference between inflowing and outflowing sub-
strate concentrations, which itself equals the Michaelis–Menten model
expression:

v = Q[S0 − S]

Vr

= Vmax[S]

K ′m + [S]
(9.8)

Substitution of Vmax with kcat[ET ], [ET ] with ne/Vr , and rearrangement
leads to the expression

K ′m
[S0 − S]

[S]
+ [S0 − S] = kcatne

Q
(9.9)

where ne corresponds to the number of moles of enzyme in the reactor.
Dividing numerator and denominator by [S0] yields

K ′m
1− ([S]/[S0])

[S]/[S0]
+ [S0 − S] = kcatne

Q
(9.10)

Considering that X = 1− [S]/[S0] and X[S0] = [S0 − S], Eq. (9.10) can
be expressed as

X[S0]+K ′m
X

1−X
= kcatne

Q
(9.11)

Dividing both sides by K ′m, multiplying by Q, and rearranging results in
the expression

Q
X

1−X
= −XQ[S0]

K ′m
+ kcatne

K ′m
(9.12)

A plot of QX/(1−X) versus XQ yields a straight line with slope =
−[S0]/K ′m, the x-intercept = kcatne/[S0], and the y-intercept = kcatne/K

′
m

(Fig. 9.4c). Thus, by determining X as a function of different Q, it is
possible to obtain estimates of K ′m and kcat.



CHAPTER 10

INTERFACIAL ENZYMES

Interfacial enzymes act on insoluble substrates. Phospholipases and lipases
are two important examples from this group of enzymes. Lipases, for
example, hydrolyze the ester bond of triacylglycerols, which are insol-
uble in aqueous media. During the digestion of lipids, triacylglycerols
are emulsified by surfactants such as bile salts, forming large emulsion
droplets. Thus, to hydrolyze triacylglycerols, lipases must first bind to
the oil droplets. The kinetics of this binding process are described by a
rate constant of adsorption and a rate constant of desorption (Fig. 10.1).
Upon binding to the interface, the enzyme will usually undergo a structural
change and adopt an interfacial conformation (Fig. 10.1). Once bound, the
enzyme is effectively sitting on the substrate that it must act on—at the
interface between oil and water. The concept of substrate concentration is
rather difficult to define in this case. More relevant to the case of interfacial
catalysis is the concept of concentration of interfacial area or the amount
of interfacial area per unit volume ([As]). As depicted in Fig. 10.2, for a
given amount of substrate, the smaller the substrate droplets, the greater
the amount of interfacial area per unit volume. Thus, for a given amount
of substrate, an interfacial enzyme would “see” a higher effective substrate
concentration in case 1 versus case 2. The use of volumetric substrate con-
centrations in the treatment of interfacial enzyme kinetics is therefore not
recommended. The amount of available interfacial area per unit volume
effectively becomes the substrate concentration in this treatment.

In determination of the catalytic parameters of an enzyme-catalyzed
interfacial reaction, increasing amounts of substrate are added to a solution
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Figure 10.1. Binding of an interfacial enzyme to a substrate interface. Upon binding, the
enzyme adopts an interfacial conformation. The kinetics of binding is described by the
rate constants of binding (kon) and dissociation (koff).
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Figure 10.2. Decreases in the amount of interfacial area per unit volume on increases in
the size of the globules at a fixed substrate concentration.

containing a fixed amount of enzyme. The velocity of the enzymatic
reaction is then determined at each substrate concentration. As before, this
velocity versus substrate concentration curve is used in the determination
of the apparent catalytic parameters. Increasing substrate concentration
refers to the increase in the number of substrate droplets present in the
system. This effectively results in an increase in the amount of interfacial
area per unit volume, which translates into a higher reaction velocity.

10.1 THE MODEL

10.1.1 Interfacial Binding

In this treatment we consider the binding of an interfacial enzyme to a
substrate interface to be accurately described by the Langmuir adsorption
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isotherm. Interfacial enzyme coverage is defined as

θ = (E∗)
(E∗max)

(10.1)

where (E∗) represents the amount of interfacial enzyme per unit area
(mol m−2), and (E∗max) represents the effective saturation surface concen-
tration of interfacial enzyme (mol m−2).

The change in interfacial enzyme coverage (θ ) as a function of time
can be expressed as

dθ

d t
= kon[E](E∗max − E∗)[As]− koff(E

∗)[As] (10.2)

where kon is the rate constant for the adsorption, or binding, of enzyme to
the interface, koff is the rate constant for the desorption, or dissociation,
of enzyme from the interface, [E] represents the concentration of free
enzyme in solution (mol L−1), and [As] corresponds to the amount of
surface area per unit volume in the system (m2 L−1).

At equilibrium, dθ/d t = 0, and Eq. (10.2) can be rearranged to

θ = (E∗)
(E∗max)

= [E]

K∗d + [E]
(10.3)

where K∗d is the dissociation constant of the interfacial enzyme:

K∗d =
koff

kon
= [E](E∗max − E∗)

(E∗)
= [E](1− θ)

θ
(10.4)

10.1.2 Interfacial Catalysis

In this treatment of interfacial catalysis we adopt the following model:

E
K∗

d−−⇀↽−− E∗ + S
Ks−−⇀↽−− E∗ S

kcat−−⇀↽−− E∗ + P (10.5)

where E corresponds to the free enzyme in solution, E* represents the
enzyme bound to the substrate interface, and E*S corresponds to the
interfacial enzyme–substrate complex.

In this model it is assumed that the rate-limiting (slow) step in the reac-
tion is still the breakdown of substrate to product. We also treat enzyme
interfacial binding as an equilibrium process that can be described by
an equilibrium dissociation constant (K∗d ). We also assume that once the
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enzyme has partitioned toward the interface, it will rapidly bind substrate.
Thus, interfacial binding and substrate binding are grouped as a single
step in this treatment. This assumption was made because of difficulties
in defining substrate concentration at the interface, since the enzyme is
bound to an interface composed of substrate. More appropriate perhaps
would be a treatment that considers the extraction of a substrate molecule
from the interface to the enzyme’s active site. This possibility, however,
was not explored further in this treatment. An important consideration
in enzyme interfacial catalysis is the loss of activity of the enzyme at
the interface. Enzyme inactivation will happen at the interface, both upon
initial binding and in time. In this treatment velocity measurements take
place in the initial region where time-dependent enzyme inactivation is
minimal. For the instantaneous (initial) component of enzyme inactiva-
tion, if a constant proportion of enzyme is inactive during measurements
of enzyme activity, this will translate into a decrease in the specific activ-
ity of the enzyme. This may lead to an underestimation of the values
of Vmax and kcat, without affecting estimates of K∗d . The effects of this
constant amount of inactive enzyme can be factored out by determining
(E∗max) properly, as described below.

As discussed previously, the rate equation for the formation of product,
the dissociation constants for enzyme–interface and enzyme–substrate
complexes, and the enzyme mass balance are, respectively,

v = kcat(E
∗)[As] (10.6)

K∗d =
[E](E∗max − E∗)

E∗
(10.7)

[ET ] = [E]+ (E∗)[As] (10.8)

Normalization of the rate equation by total enzyme concentration (v/[ET ])
and rearrangement results in the following expression for the velocity of
a reaction catalyzed by an interfacial enzyme:

v = Vmaxα

K∗d + α
(10.9)

where Vmax = kcat[ET ] and

α = (E∗max)(1− θ)[As] (10.10)

Thus, a velocity versus “substrate concentration” (α) plot is still a rectan-
gular hyperbola (Fig. 10.3). It is informative to explore the effects of the
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Figure 10.3. Initial velocity versus interfacial area per unit volume plot for an interfa-
cial enzyme.

various parameters in Eq. (10.9) on the velocity of a reaction catalyzed
by an interfacial enzyme. As the enzyme–interface dissociation constant
increases (i.e., the affinity of the enzyme for the interface decreases) so
does the velocity of the reaction (Fig. 10.4a). As the relative amount
of interfacial coverage increases, the velocity of the reaction decreases.
This is not surprising since if greater amounts of interface are covered
by the enzyme, less substrate interface will be available for binding and
catalysis (Fig. 10.4b). Finally, as the total number of interfacial binding
sites decreases, so does the velocity of the reaction (Fig. 10.4c). Obvi-
ously, as the concentration of interface increases, so does the velocity of
the reaction. It is important to keep in mind the units of these constants
and parameters, shown in Table 10.1.

10.2 DETERMINATION OF INTERFACIAL AREA
PER UNIT VOLUME

For kinetic studies of interfacial enzymes, it is necessary to determine
the interfacial area of substrate present in the reaction mixture. For this
purpose, light-scattering techniques are routinely used in measurement of
the radius of emulsion droplets (rd). Assuming droplet sphericity, it is
possible to calculate an equivalent volume from

Vd = 4
3πr3

d (10.11)

The total number of droplets in the system is obtained by dividing the
volume of substrate used in the experiment (Vs) by the volume of an
individual droplet:

Np = Vs

Vd

(10.12)
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Figure 10.4. Simulations of the effects of changing (a) the dissociation constant of the
interfacial enzyme (K∗d ), (b) interfacial enzyme coverage, and (c) effective saturation sur-
face concentration of interfacial enzyme (E∗m) on initial velocity versus interfacial area
per unit volume patterns.
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TABLE 10.1 Units for Variables Used in Analysis of
the Kinetics of Interfacial Enzymes

Variable Unit

[E] mol L−1

(E*) mol m−2

(E∗max) mol m−2

[As] m2 L−1

K∗d mol L−1

v mol L−1 s−1

Vmax mol L−1 s−1

The interfacial area of substrate per unit reaction volume ([As]) can then
be determined by dividing the surface area of substrate by the reaction
volume (Vr ):

[As] = 4πr2
dNp

Vr

(10.13)

10.3 DETERMINATION OF SATURATION INTERFACIAL
ENZYME COVERAGE

The amount of enzyme required to saturate the substrate interface can be
determined from a velocity versus [ET ] plot at a fixed value of [As]. As
the interface becomes saturated with enzyme, the amount of new enzyme
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Figure 10.5. Initial velocity versus total enzyme concentration plot used in determination
of the effective saturation surface concentration of interfacial enzyme (E∗m).
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able to partition to the interface will progressively decrease relative to
the total amount of enzyme present in the system. Since the enzyme
catalyzes an interfacial reaction, velocity profiles will follow the same
trend (Fig. 10.5). Thus, it is possible to obtain an estimate of Vmax by
fitting velocity versus [ET ] data to a Langmuir model,

θ = v

Vmax
= [ET ]

K + [ET ]
(10.14)

From the value of Vmax (M s−1) obtained and knowledge of the specific
activity (µ, mol s−1 kg−1) of the enzyme, its molecular weight (MWe,
kg mol−1), and the value of [As] (m2 L−1), it is possible to obtain an
estimate of (E∗max):

(E∗max) =
Vmax ·MWe

µ[As]
(10.15)



CHAPTER 11

TRANSIENT PHASES OF
ENZYMATIC REACTIONS

Consider a typical mechanism for an enzyme-catalyzed reaction:

E+ S
k1−−⇀↽−−

k−1

ES
k2−−→ E+ P (11.1)

Steady-state kinetic analysis provides estimates of Km and Vmax, where

Km = k−1 + k2

k1
(11.2)

and
Vmax = k2[ET ] (11.3)

To determine individual rate constants (i.e., k1 and k−1) for the mechanism
depicted above, it is necessary to monitor the progress of the reaction
before establishment of the steady state. This pre-steady-state region of an
enzymatic reaction is called the transient phase of an enzymatic reaction.
For this purpose, it is necessary to carry measurements of a single turnover
of substrate into product, usually using enzyme concentrations in the range
of those of substrate ([E] ≈ [S]).

Two methods exist for the determination of individual rate constants
of an enzymatic reaction: rapid-reaction techniques and relaxation tech-
niques. In rapid-reaction techniques, reaction rates are determined after
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very short times, as low as 2 to 3 ms, before the steady state is estab-
lished. In relaxation techniques, a system at equilibrium is perturbed and
the position of equilibrium changes. The movement of the system toward
the new equilibrium position is then followed.

11.1 RAPID REACTION TECHNIQUES

Measurement of changes in the concentration of enzyme, substrate, reac-
tion intermediates, and products before the establishment of the steady
state can be carried out using continuous-flow and stopped-flow tech-
niques. The experiments are carried out when the observed kinetics are
first order. This is usually achieved by making all reactant concentrations,
other than the one being monitored, high.

In continuous-flow techniques, enzyme and substrate solutions are
pumped into a mixing chamber. This mixture flows out of the mixing
chamber, into a reaction delay line, and past an observation tube,
where the reaction progress is monitored (Fig. 11.1). The time at which
measurements are taken is dictated by the volume of the line and the flow
rate relative to the position of the observation tube. This method is no
longer used since it requires large amounts of enzyme and substrate.

In stopped-flow techniques, enzyme and substrate solutions are loaded
into syringes. Small amounts of enzyme and substrate (∼40 µL) are

ES

E+S Mixing Chamber

Reaction Delay Line

Pump

Observation Chamber 

Figure 11.1. Typical continuous-flow setup.
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forced from syringes, past a mixing chamber, into an observation cham-
ber, where the reaction is monitored. The enzyme–substrate solution
stops at the observation chamber, due to the action of a third syringe.
The fluid in this syringe is continuous with the enzyme–substrate solu-
tion. The plunger from the third syringe is therefore pushed out as the
enzyme–substrate solution is pumped toward the observation chamber. A
stopping barrier will halt displacement of the third syringe, thus imped-
ing the flow of the reaction mixture. The system is calibrated in such
a fashion that the reaction mixture will stop at the observation cham-
ber. It is important that the mixing and delay times before reaching the
observation chamber be very short. The detector, usually a photomul-
tiplier tube connected to a cathode-ray oscilloscope, can measure the
intensity of light transmitted through the sample or the intensity of a
fluorescence signal from the sample (Fig. 11.2). Sophisticated computer-
controlled stepping-motor drives with high-helix-drive screws are used to
drive the syringe plungers accurately and precisely to deliver the solu-
tions as quickly as mechanically possible. In the past, compressed air
drive systems were used.

In quick-quench-flow techniques, enzyme, substrate and quench solu-
tions are loaded into three separate syringes. The reaction is started by
pumping enzyme and substrate solutions into a reaction delay line. While
traveling down this line, enzyme and substrate react for a defined period
of time dictated by the volume of the line and the flow rate. The reaction
is then stopped by addition of a quench solution (sodium dodecyl sulfate,
acid), pumped from the third syringe. The quenched mixture of enzyme,

ES

Stopping Barrier

Syringe

Drive

Syringes

E+S Mixing Chamber

Reaction Delay Line

Observation Chamber

Figure 11.2. Typical stopped-flow setup.
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Reaction Delay
Line

Quench

Drive

Syringes

Figure 11.3. Typical quick-quench-flow setup.

substrate, reaction intermediates, and reaction products is then collected
and analyzed off-line (Fig. 11.3).

An alternative to the purchase of sophisticated apparatuses for the study
of pre-steady-state kinetics of enzymatic reactions is the use of poor
substrates, or carrying out the reaction at low temperatures. By using
a poor substrate, the pre-steady-state region of the reaction is effectively
shifted from a range of milliseconds to one of seconds. Carrying out the
enzymatic reaction at low temperatures (e.g., −50 ◦C) will also slow down
the reaction considerably.

From the patterns obtained for changes in enzyme, substrate,
enzyme–substrate, and product concentrations in time, it is possible to
propose a mechanism by which substrate is converted to product and
obtain estimates of the individual rate constants of the reaction. Interest in
determining the mechanism by which an enzyme catalyzes the conversion
of substrate into product arises from the need for rational design of enzyme
inhibitors. Proposing and proving a mechanism is not an easy task. This
topic was covered extensively in Chapter 1.

11.2 REACTION MECHANISMS

In this section we consider only the typical enzyme mechanism:

E+ S
k1−−⇀↽−−

k−1

ES
k2−−→ E+ P (11.4)

The differential equation and mass balance that describe changes in ES
concentration as a function of time are
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d[ES]

d t
= k1[E][S]− k−1[ES]− k2[ES]

= k1[E][S]− (k−1 + k2)[ES] (11.5)

[ET ] = [E]+ [ES] (11.6)

Substituting [E] with [ET − ES], and for the condition [St ] ≈ [S0],
Eq. (11.5) can be rewritten as

d[ES]

d t
= k1[ET − ES][S]− (k−1 + k2)[ES]

= k1[ET ][S0]− (k1[S0]+ k−1 + k2)[ES] (11.7)

The rate of conversion of ES complex into product is given by

v = d[P]

d t
= k2[ES] (11.8)

Differentiation with respect to time yields

d2[P]

d t2
= k2

d[ES]

d t
(11.9)

Combining the differential Eqs. (11.8) and (11.9) and substituting d[P]/d t

for k2[ES] results in the second-order differential equation

d2[P]

d t2
+ d[P]

d t
(k1[S0]+ k−1 + k2)k2[ES]− k1k2[ET ][S0] = 0 (11.10)

This differential equation applies to both the pre-steady-state and steady-
state stages of the enzymatic reaction. The analytical solution for the case
where substrate concentration is essentially unchanged from its initial
value [S0] is

[Pt ] = [P0]+ k2[S0][ET ]t

[S0]+ (k−1 + k2)/k1

+ k1k2[S0][ET ]

(k1[S0]+ k−1 + k2)2
(e−(k1[S0]+k−1+k2)t − 1) (11.11)

where [P0] is the initial product concentration. A plot of ([Pt ]− [P0])
versus time is shown in Fig. 11.4. Equation (11.11) has the general form

y = y0 + A · x + B(e−C·x − 1) (11.12)
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Figure 11.4. Simulation of increases in product concentration as a function of time for a
typical enzyme reaction mechanism E+ S � ES→ E+ P. The parameter ϑ is obtained
by extrapolating the linearly increasing section of the curve to the time axis.

Thus, this function contains three terms: a constant, a linear term with
respect to x, and an exponential term with respect to x. The value of
y at t = 0 is given by y0. For small values of x, the exponential term
B(e−Cx − 1) predominates, thus leading to a gradual exponential increase
in y. For larger values of x, however, the magnitude of linear term Ax

becomes greater than that of the exponential term, and the shape of the
curve approaches that of a straight line. Valuable information can be
gained from analysis of the early and late stages of this reaction.

11.2.1 Early Stages of the Reaction

The exponential term in Eq. [11.11] can be expanded into a series using
Taylor’s theorem. The contribution from terms beyond the third term in
this series is negligible for small values of t and can therefore be neglected.
A simplified form of this equation is thus obtained:

[Pt ]− [P0] = α[ET ][S0]t2

2
(11.13)

where α = k1k2. Nonlinear curve fits of this model to product concentra-
tion–time data will yield estimates of α. It is not wise to float individual
parameters within α, since estimates of their values will be highly cor-
related. An estimate of k2 can be obtained from knowledge of Vmax and
[ET ], since k2 = Vmax/[ET ]. Thus, k1 can be determined from k1 = α/k2.
The value of k−1 can be obtained from knowledge of Km, k1, and k2:

k−1 = k1Km − k2 (11.14)
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11.2.2 Late Stages of the Reaction

As discussed above, the upward curvature during the early stages of the
reaction is given by the exponential term in Eq. (11.11). When time is
sufficiently long, the exponential term becomes negligibly small, and the
curve becomes essentially a straight line. For the case [S0] ≫ Km, as
t →∞, Eq. (11.11) reduces to:

[Pt ]− [P0] = k2[ET ]t − k2[ET ]

k1[S0]
(11.15)

A plot of [Pt − P0] versus time yields a straight line with

slope = k2[ET ] (11.16)

The x-axis intercept of this line, sometimes referred to as the relaxation
time (τ ) (Fig. 11.4), at [Pt − P0] = 0 corresponds to

τ = 1

k1[S0]
(11.17)

Thus, from knowledge of the values of the slope, x-intercept, and ini-
tial substrate concentration, estimates of k1 and k2 and be obtained. An
estimate of k−1 can be obtained from knowledge of Km, k1, and k2:

k−1 = k1Km − k2 (11.18)

This exercise is merely one example, among many, of pre-steady-state
kinetic analysis of enzyme-catalyzed reactions.

11.3 RELAXATION TECHNIQUES

The time resolution of rapid-flow methods is limited by the rate at which
two reactants are mixed, which is restricted to about 1 ms. To measure
faster reactions, alternative methods are required. A generally applicable
method is the measurement of system adjustment following a relatively
small perturbation. A system at equilibrium is perturbed by a sudden
temperature or pressure jump, applied as a single rapid change or as a
periodic oscillation. Changes in the concentration of reactants and products
are subsequently monitored. From the patterns observed, individual rate
constants can be obtained.
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Consider the opposing reaction:

A
k1−−⇀↽−−

k−1

B (11.19)

After a rapid perturbation that causes a small disturbance of the equilib-
rium state of a reaction, the change in concentration of either species fol-
lows a simple exponential pattern. As discussed in Chapter 1, Eq. (1.29)
describes changes in the concentration of B:

d[B]

d t
= k1[A]− k−1[B] = k1[A0 − B]− k−1[B] (11.20)

The deviation of [B] from its equilibrium concentration will be given by
�[B] = [Beq]− [B]. Changes in the concentration difference in species
B as it approaches the new equilibrium position, for a small perturbation
([�B0] ≪ [B]), is given by

−d[�B]

d t
= k1[A0]− (k1 + k−1)([Beq]− [�B]) (11.21)

At the new equilibrium after the perturbation, d[B]/d t = 0, and k1([A0]−
[Beq]) = k−1[Beq]. It follows that

d[�B]

d t
= −(k1 + k−1)[�B] (11.22)

Integration of this equation using the boundary conditions [�B] = [�B0]
at t = 0 yields

ln
[�B]

[�B0]
= −(k1 + k−1)t or [�B] = [�B0]e−(k1+k−1)t (11.23)

By monitoring the first-order decay of [�B] in time, it is possible to
determine k1 + k−1 (Fig. 11.5). From knowledge of Km and k2, it is pos-
sible to obtain estimates for the individual rate constants. By defining
α = k1 + k−1, it is possible to express k−1 = α − k1. Substitution of this
form of k−1 into Km (Km = (k−1 + k2)/k1) and rearrangement allows for
the calculation of k1:

k1 = α + k2

1+Km

(11.24)

Consider the substrate binding reaction of an enzyme:

E+ S
k1−−⇀↽−−
k−1

ES (11.25)
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Figure 11.5. (a) Decay in the difference between product concentration at time t and the
equilibrium product concentration �Bt , as the system relaxes to a new equilibrium after
a small perturbation. (b) Semilog arithmic plot used in the determination of individual
reaction rate constants for the reaction A � B.

The differential equation that describes changes in the concentration of
ES in time is

d[ES]

d t
= k1[E][S]− k−1[ES] (11.26)

Equations describing the difference in concentration between the initially
perturbed and new equilibrium states for enzyme, substrate, and
enzyme–substrate complex, respectively, are

[�E] = [Eeq]− [E] [�S] = [Seq]− [S]

[�ES] = [ESeq]− [ES] (11.27)

Substituting these expressions into Eq. (11.26) yields

d([ESeq]− [�ES])

d t
= k1([Eeq]− [�E])([Seq]− [�S])

− k−1([ESeq]− [�ES]) (11.28)
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At equilibrium, d[ES]/d t = 0 and k1[Eeq][Seq] = k−1[ESeq]. Substituting
k−1[ESeq] for k1[Eeq][Seq] in Eq. (11.28), ignoring the small term
[�E][�S], and substituting −[�ES] for both [�E] and [�S], since
[�E] ≈ [�S] ≈ −[�ES], results in the expression

d[�ES]

d t
= −k1([Eeq]+ [Seq])[�ES]− k−1[�ES] (11.29)

Integration of this equation yields

ln
[�ES0]

[�ES]
= −(k∗1 + k−1)t or [�B] = [�B0]e−(k∗1+k−1)t (11.30)

where k∗1 = k1([Eeq]+ [Seq]).
By monitoring the first-order decay of [�ES] in time, it is possible to

determine k∗1 + k−1. From knowledge of the equilibrium concentrations
of enzyme and substrate and the values for Km and k2 from steady-state
kinetic analysis, it is possible to obtain estimates of the individual rate con-
stants. By defining β = [Eeq]+ [Seq], and α = k1β + k−1, it is possible to
express k−1 = α − k1β. Substitution of this form of k−1 into Km [(Km =
(k−1 + k2)/k1] and rearrangement allows for the calculation of k1:

k1 = α + k2

β +Km

(11.31)

An estimate of k−1 can then be obtained from k−1 = α − k1β.

TABLE 11.1 Apparent First-Order Rate Constants for the Relaxation of a
Thermodynamic System to a New Equilibrium

Reaction
Apparent First-Order Rate Constant

(time−1)

A←−−−−−−→ B k1 + k−1

A+ C←−−−−−−→ B+ C (k1 + k−1[Ceq])

2A←−−−−−−→ A2 4k1[Aeq]+ k−1

A+ B←−−−−−−→ C k1([Aeq]+ [Beq])+ k−1

A+ B←−−−−−−→ C+ D k1([Aeq]+ [Beq])+ k−1([Ceq]+ [Deq])

A+ B+ C←−−−−−−→ D k1([Aeq][Beq]+ [Aeq][Ceq]+ [Beq][Ceq])+ k−1
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The treatment shown above applies to single-step reactions. The treat-
ment for more complex reaction pathways (e.g., multiple-step reactions) is
beyond the scope of this book. Expressions for the apparent rate constants
for a number of relaxation reactions are summarized in Table 11.1.



CHAPTER 12

CHARACTERIZATION OF
ENZYME STABILITY

In many enzyme-related studies, an index of enzyme stability is required.
Enzyme stability can be characterized kinetically or thermodynamically.

12.1 KINETIC TREATMENT

12.1.1 The Model

For the phenomenological kinetic characterization of enzyme stability,
the discussion will be restricted to the case where losses in activity, or
decreases in concentration of native enzyme, follow a first-order decay
pattern in time (Fig. 12.1a). This process can be modeled as

N
kD−−→ D (12.1)

where N represents the native enzyme, D represents the denatured, inactive
enzyme, and kD (time−1) represents the first-order activity decay constant
for the enzyme. The first-order ordinary differential equation and enzyme
mass balance that characterize this process are

d[N]

d t
= −kD[N− Nmin] (12.2)

[N0] = [N]+ [Nmin] (12.3)

140

Enzyme Kinetics: A Modern Approach. Alejandro G. Marangoni
Copyright 2003 John Wiley & Sons, Inc.

ISBN: 0-471-15985-9



KINETIC TREATMENT 141

Time

(a)

slope=−kD

C
on

ce
nt

ra
tio

n

Time

(b)

ln
([

N
−N

m
in

]/
[N

o−
N

m
in

])

No

Nmin

−6

−4

−2

0

Figure 12.1. (a) Decreases in native enzyme concentration, or activity, as a function of
time (N→ D) from an initial value of N0 to a minimum value of Nmin. (b) Semilogarithmic
plot used in determination of the rate constant of denaturation (kD).

where [Nmin] represents the enzyme activity, or native enzyme concen-
tration at t = ∞. Integration of this equation for the boundary conditions
N = N0 at t = 0,

∫ N

N0

d[N]

[N− Nmin]
= −kD

∫ t

0
d t (12.4)

results in a first-order exponential decay function which can be expressed
in linear or nonlinear forms:

ln
[N− Nmin]

[N0 − Nmin]
= −kD t (12.5)

or
[N] = [Nmin]+ [N0 − Nmin]e−kDt (12.6)

Estimates of the rate constant can be obtained by fitting either of the
models above to experimental data using standard linear [Eq. (12.5)] or
nonlinear [Eq. (12.6)] regression techniques (Fig. 12.1). A higher rate con-
stant of denaturation would imply a less stable enzyme.
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If the amount of denatured enzyme is being monitored as a function of
time instead, the first-order ordinary differential equation that character-
izes the increase in the concentration of denatured enzyme and enzyme
mass balance are

d[D]

d t
= kD[N− Nmin] = kD[Dmax − D] (12.7)

[Nmin + Dmax] = [N+ D] = [N0 + D0] (12.8)

where Dmax represents the concentration of denatured enzyme at t = ∞.
Integration for the boundary conditions D = D0 at t = 0,

∫ D

D0

d[D]

[Dmax − D]
= kD

∫ t

0
d t (12.9)

results in a first-order exponential growth function that can be expressed
in linear or nonlinear forms:

ln
[Dmax − D]

[Dmax − D0]
= −kDt (12.10)

or
[D] = [Dmax]− [Dmax − D0]e−kDt (12.11)

A more familiar form of a first-order exponential growth function can be
obtained by subtracting D0 from both sides of Eq. (12.11), resulting in
the expression

[D] = [D0]+ [Dmax − D0](1− e−kDt ) (12.12)

Estimates of the rate constant can be obtained by fitting either of the
models above to experimental data using standard linear [Eq. (12.10)] or
nonlinear [Eq. (12.12)] regression techniques (Fig. 12.2). A higher rate
constant of denaturation would imply a less stable enzyme.

12.1.2 Half-Life

A common parameter used in the characterization of enzyme stability is
the half-life (t1/2). As described in Chapter 1, the reaction half-life for a
first-order reaction can be calculated from the rate constant:

t1/2 = 0.693

kD

(12.13)



KINETIC TREATMENT 143

−12

−10

−8

−6

−4

−2

0

slope=−kD

Time

(b)

ln
([

D
m

ax
−D

]/[
D

m
ax

−D
o]

)

Do

Dmax

Time

(a)

C
on

ce
nt

ra
tio

n

Figure 12.2. (a) Increases in denatured enzyme concentration as a function of time
(N→ D) from an initial value of D0 to a maximum value of Dmax. (b) Semilogarithmic
plot used in the determination of the rate constant of denaturation (kD).

The half-life has units of time and corresponds to the time required for
the loss of half of the original enzyme concentration, or activity.

12.1.3 Decimal Reduction Time

A specialized parameter used by certain disciplines in the characterization
of enzyme stability is the decimal reduction time, or D value. The decimal
reduction time of a reaction is the time required for one log10 reduction in
the concentration, or activity, of the reacting species (i.e., a 90% reduc-
tion in the concentration, or activity, of a reactant). Decimal reduction
times can be determined from the slope of log10([Nt ]/[N0]) versus time
plots (Fig. 12.3). The modified first-order integrated rate equation has the
following form:

log10
[Nt ]

[N0]
= − t

D
(12.14)

or
[Nt ] = [N0] · 10−t/D (12.15)
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Figure 12.3. Semilogarithmic plot used in the determination of the decimal reduction
time (D value) of an enzyme.

The decimal reduction time (D) is related to the first-order rate constant
(kr ) in a straightforward fashion:

D = 2.303

kr

(12.16)

12.1.4 Energy of Activation

If rate constants are obtained at different temperatures, an estimate of
the energy of activation for denaturation can also be obtained. This is
achieved by fitting the linear or nonlinear forms of the Arrhenius model
to experimental data (Fig. 12.4):

ln kD = ln A− Ea

RT
(12.17)

or
kD = Ae−Ea/RT (12.18)

The frequency factor A (time−1) is a parameter related to the total number
of collisions that take place during a chemical reaction, Ea (kJ mol−1)
the energy of activation, R (kJ mol−1 K−1) the universal gas constant,
and T (K) the absolute temperature. From Eq. (12.17) we can deduce
that for a constant value of A, a higher Ea translates into a lower kD. As
discussed previously, at a constant A, the higher the value of kD, the more
thermostable the enzyme. Thus, the rate constant of denaturation, kD, and
the energy of activation of denaturation, Ea , are useful parameters in the
kinetic characterization of enzyme stability.
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Figure 12.4. (a) Simulation of increases in the reaction rate constant of denaturation (kD)
as a function of increasing temperature. (b) Arrhenius plot used in the determination of
the energy of activation of denaturation (Ea).

12.1.5 Z Value

A parameter closely related to the energy of activation is the Z value,
the temperature dependence of the decimal reduction time (D). The Z

value is the temperature increase required for a one-log10 reduction (90%
decrease) in the D value. The Z value can be determined from a plot
of log10 D versus temperature (Fig. 12.5). The temperature dependence
of the decimal reduction time can be expressed in linear and nonlinear
forms:

log10 D = log10 C − T

Z
(12.19)

or

D = C · 10−T /Z (12.20)
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Figure 12.5. Semilogarithmic plot used in determination of the Z value of an enzyme.

where C is a constant related to the frequency factor A in the Arrhenius
equation. Alternatively, if D values are known only at two temperatures,
the Z value can be determined using the following equation:

log10
D2

D1
= −T2 − T1

Z
(12.21)

It can be shown that the Z value is inversely related to the energy of
activation (Ea):

Z = 2.303RT1T2

Ea

(12.22)

where T1 and T2 are the two temperatures used in the determination of Ea .
This treatment of enzyme stability is strictly phenomenological in nature

and does not necessarily address the true mechanism of denaturation of
the enzyme. Any truly mechanistic characterization of a process would be
much more complex.

12.2 THERMODYNAMIC TREATMENT

For the thermodynamic characterization of enzyme stability, the denatu-
ration process is also considered a one-step, reversible transition between
the native and denatured states:

N
KD−−⇀↽−− D (12.23)

where KD is the equilibrium constant of denaturation,

KD = [D]

[N]
(12.24)
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For the thermodynamic characterization of enzyme stability, the most
critical step is the determination of the equilibrium constant of denat-
uration. The equilibrium constant can be calculated from knowledge of
the relative proportions of native and denatured enzymes at a particular
temperature. The equilibrium constant can thus be calculated as

KD = fD

fN
= fD

1− fD
(12.25)

where fD corresponds to the fraction of denatured enzyme and fN corre-
sponds to the fraction of native enzyme. The calculation of this fractional
quantity can be carried out in many ways. For example, consider the case
where enzyme activity is being monitored as a function of time at a tem-
perature that leads to activity losses (Fig. 12.6). The fraction of denatured
or native enzyme at a particular temperature can be calculated from

fD(T ) = N0 − Nmin(T )

N0 − Nlim
(12.26)

fN(T ) = Nmin(T )− Nlim

N0 − Nlim
(12.27)

where Nlim corresponds to the limiting, residual enzyme activity after the
enzyme has been completely denatured (i.e., the background activity of
the preparation). This background activity could be zero. A data set can
thus be created for the fraction of denatured enzyme as a function of tem-
perature (Fig. 12.7), from which equilibrium constants can be calculated.

Obviously, the larger the equilibrium constant of denaturation at a par-
ticular temperature, the less stable the enzyme. The enthalpy, entropy, and

Nlim
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Nmin(T1)

Time

C
on
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nt
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n

Nmin(T2)
Nmin(T3)

Figure 12.6. Decay in native enzyme concentration, or activity, from an initial value of
N0 to different values of Nmin. As reaction temperature increases, Nmin decreases, until
reaching a limiting value, Nlim.



148 CHARACTERIZATION OF ENZYME STABILITY

260 280 300 320 340 360 380
0.0

0.2

0.4

0.6

0.8

1.0

fDfN

Temperature (K)

Fr
ac

tio
n

Figure 12.7. Decrease in the fraction of native enzyme (fN) and increases in the fraction
of denatured enzyme (fD) as a function of increasing temperature.

free energy of denaturation can be calculated directly from the equilib-
rium constants. A standard-state free energy of denaturation (�G

◦
D) can

be calculated from the equilibrium constant (Fig. 12.8):

�G
◦
D = −RT ln KD (12.28)

The standard-state enthalpy of denaturation (�H
◦
D) can be calculated from

the slope of the natural logarithm of the equilibrium constant versus
inverse temperature plot (Fig. 12.9b) using the van’t Hoff equation:

ln KD = �S
◦
D

R
− �H

◦
D

RT
(12.29)

260 280 300 320 340 360 380
−20000

−10000

0

10000

20000

Tm

Temperature (K)

∆G
o D

 (k
J 

m
ol

−1
)

Figure 12.8. Simulation of decreases in the standard state free energy of denaturation
(�G
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D) as a function of increases in temperature. Tm denotes the denaturation midpoint

temperature.
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the standard-state enthalpy of denaturation (�H
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D).

where �S
◦
D corresponds to the standard-state entropy of denaturation.

Inspection of Eq. (12.29) reveals that the standard-state entropy of denat-
uration can easily be determined from the y-intercept of the van’t Hoff
plot (Fig. 12.9b).

The standard-state entropy of denaturation can also be determined easily
by realizing that at the transition midpoint temperature (Tm), where fD =
fN, KD = 1, and thus ln KD = 0, �G

◦
D is equal to zero (Fig. 12.8):

�G
◦
D(Tm) = �H

◦
D + Tm �S

◦
D = 0 (12.30)

The standard-state entropy of denaturation can therefore be calculated as

�S
◦
D =

�H
◦
D

Tm

(12.31)
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Alternatively, �S
◦
D could be calculated from knowledge of �G

◦
D at a

particular temperature and �H
◦
D:

�S
◦
D =

�H
◦
D −�G

◦
D(T )

T
(12.32)

The treatment above assumes that there are no differences in heat capac-
ity between native and denatured states of an enzyme and that the heat
capacity remains constant throughout the temperature range studied.

The enthalpy of denaturation (J mol−1) is the amount of heat required
to denature the enzyme. A large and positive enthalpic term could be
associated with a more stable enzyme, since greater amounts of energy
are required for the denaturation process to take place. The entropy of
denaturation is the amount of energy per degree (J mol−1 K−1) involved
in the transition from a native to a denatured state. A positive �S

◦
D term

is indicative of increases in the disorder, or randomness, of the system
(protein–solvent) upon denaturation. A negative �S

◦
D term, on the other

hand, is indicative of decreases in the disorder, or randomness, of the
system (protein–solvent) upon denaturation. Usually, an increase in the
randomness of the system (i.e., a positive �S

◦
D term) is associated with

denaturation. Thus, the larger the change in entropy of the system upon
denaturation, the less stable the enzyme. The free-energy term, on the
other hand, includes the contributions from both enthalpic and entropic
terms and is a more reliable indicator of enzyme stability. A smaller,
or more negative, standard-state free-energy change is associated with
a more spontaneous process. Thus the smaller, or more negative, �G

◦
D

term, the more readily the enzyme undergoes denaturation. This could be
interpreted as a less stable enzyme.

12.3 EXAMPLE

For the kinetic characterization of enzyme stability, enzyme solutions are
incubated at a particular temperature and aliquots removed at the appro-
priate times. Enzyme activity in these samples is then measured at the
enzyme’s temperature optimum. This activity is usually determined imme-
diately after the temperature treatment. These data will be used in the
kinetic characterization of enzyme activity.

For the thermodynamic characterization of enzyme stability, the mini-
mum enzyme activity has to be determined. Enzyme solutions are incu-
bated at a particular temperature and aliquots removed at the appropriate
times. Enzyme activity in these samples is then measured at the enzyme’s
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temperature optimum. This activity is usually determined immediately
after the temperature treatment. Enzyme activity will decrease in time,
approaching a minimum value. These minimum activities are then used
in the thermodynamic characterization of enzyme stability. An important
point to consider is that any thermodynamic treatment implies reversibil-
ity. A thermodynamic treatment of enzyme stability inherently implies
reversibility of the enzyme inactivation process. That is, enzyme activity
must be (fully) recovered in time after exposure to elevated temperatures.
This condition must not be met for the case of a kinetic treatment of
enzyme stability.

12.3.1 Thermodynamic Characterization of Stability

The activities of two enzymes as a function of temperature are shown in
Table 12.1 and Fig. 12.10. In the lower temperature range, increases in
temperature lead to increases in the activity of the enzymes, since the rate
of a reaction increases with temperature. However, since enzymes are pro-
teins, higher temperatures also lead to protein denaturation. A consequence
of these two competing processes is the existence of a temperature opti-
mum. At temperatures below the optimum, an activation of the reaction

TABLE 12.1 Relative Activity of Two Enzymes as a
Function of Temperature

Temperature
(◦C) Enzyme 1 Enzyme 2

10 25 10
15 37.5 15
20 50 20
25 75 25
30 100 30
35 100 50
40 95 75
45 85 100
50 70 100
55 50 95
60 30 90
65 15 80
70 10 65
75 5 50
80 5 35
90 5 20

100 5 10
105 5 5
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Figure 12.10. Changes in enzyme activity as a function of temperature for two enzymes
with differing temperature sensitivities.
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Figure 12.11. Decreases in the fraction of native enzyme as a function of increasing
temperature for two enzymes with differing temperature sensitivities.
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Figure 12.12. Increases in the equilibrium constant of denaturation (kD) as a function of
increases in temperature for two enzymes with differing temperature sensitivities.
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takes place, while at temperatures above the optimum, losses in activity
due to denaturation are predominant. Thus, a temperature optimum is the
point where reaction activation is balanced by the competing process of
protein denaturation.

The fractional activity of the native enzymes (fN) can be calculated
from activity data using Eq. (12.27) (Fig. 12.11). The denaturation mid-
point temperature (Tm) corresponds to the temperature at which half of
the enzyme has lost activity. As can be appreciated in Fig. 12.11, the Tm

of enzyme A is lower than that of enzyme B. This could be interpreted
as enzyme B being more thermostable than enzyme A.

The equilibrium constant of denaturation (KD) can easily be calcu-
lated from fractional activity data using Eq. (12.25). Changes in KD as
a function of temperature are shown in Fig. 12.12 and the corresponding
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Figure 12.13. van’t Hoff plot for two enzymes with differing temperature sensitivities.
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TABLE 12.2 Changes in the Relative Activity of an Enzyme as a Function of
Time at Various Temperatures

Temperature (◦C)
Time
(min) 5 15 25 35

0 1 1 1 1
1 0.88 0.77 0.60 0.36
2 0.77 0.60 0.36 0.13
3 0.68 0.47 0.22 0.05
4 0.60 0.36 0.13 1.80× 10−2

5 0.53 0.28 0.08 7.00× 10−3

6 0.47 0.22 0.05 2.50× 10−3

7 0.41 0.17 3.00× 10−2 9.00× 10−4

8 0.36 0.13 1.80× 10−2 3.30× 10−4

9 0.32 0.10 1.10× 10−2 1.23× 10−4

10 0.28 0.08 7.00× 10−3 4.50× 10−5
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Figure 12.15. (a) Decreases in enzyme activity as a function of time at four different
temperatures. (b) Semilogarithmic plot used in the determination of the rate constant of
denaturation of an enzyme at different temperatures.
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Figure 12.16. (a) Increases in the rate constant of denaturation (kD) of an enzyme as a
function of increasing temperature. (b) Arrhenius plot used in determination of the energy
of activation (Ea) of denaturation for the enzyme.

van’t Hoff plot in Fig. 12.13. The slope of the van’t Hoff plot corresponds
to—�H

◦
D/R, while the y-intercept corresponds to �S

◦
D/R. From this plot

we can calculate values for the standard state enthalpy and entropy of
denaturation: �H

◦
D(A) = 171 kJ mol−1, �H

◦
D(B) = 130 kJ mol−1, �S

◦
D

(A) = 522 J mol−1 K−1, and �S
◦
D(B) = 372 J mol−1 K−1. Interestingly,

based solely on enthalpic considerations, one would predict that enzyme
A is more thermostable than enzyme B, since higher �H

◦
D values suggest

that more energy is required for enzyme denaturation to take place. How-
ever, based on entropic considerations, one would predict that enzyme B
is more thermostable than enzyme A, since enzyme A has the highest
�S
◦
D. The free energy of denaturation (�G

◦
D) includes both enthalpic and

entropic contributions and is thus a more accurate and reliable predictor
of enzyme stability. Figure 12.14 shows the temperature dependence of
�G
◦
D for the two enzymes. At every temperature, the �G

◦
D of enzyme B
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is higher than that of enzyme A. As described previously, a higher �G
◦
D

value is associated with a more stable enzyme. Thus, based on free-energy
considerations, one would predict that enzyme B is more thermostable
than enzyme A.

12.3.2 Kinetic Characterization of Stability

Decreases in the activity of an enzyme as a function of time, at dif-
ferent temperatures, are shown in Table 12.2 and Fig. 12.15a. Assuming
that enzyme inactivation can be modeled as a first-order process, data
can be linearized using Eq. (12.5) (Fig. 12.15b). The slopes of the lines
in Fig. 12.14b correspond to the first-order rate constant of denaturation
(kD). As the temperature increases, so does the rate of inactivation, which
is mirrored in increases in kD (Fig. 12.16a). The Arrhenius model can
then be used to determine the energy of activation (Ea) of denaturation
and estimate the value of the frequency factor, Ea = 48, 9 kJ mol−1 and
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Figure 12.17. (a) Decreases in the decimal reduction time (D value) as a function of
increasing temperature. (b) Semilogarithmic plot used in determination of the Z value.
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A = 1.9× 108 min−1 (Fig. 12.16b). As discussed previously, the deci-
mal reduction time (D) is merely the inverse of the first-order reaction
rate constant. From knowledge of the temperature dependence of the D

value of an enzyme (Fig. 12.17a), the Z value can easily be determined:
Z = 33.5 ◦C (Fig. 12.17b).



CHAPTER 13

MECHANISM-BASED INHIBITION

LESLIE J. COPP∗

In this chapter, mechanism-based inhibition is discussed in its broadest
sense, where an inhibitor is converted by the enzyme catalytic mech-
anism to form an enzyme–inhibitor complex. Other terms used in the
literature for mechanism-based inhibitors include suicide inhibitors, sui-
cide substrate inhibitors, alternate substrates, substrate inhibitors, and
enzyme inactivators, as well as irreversible, catalytic, or kcat inhibitors.
The terms alternate substrate inhibition and suicide inhibition are used
here to describe the two major subclasses of mechanism-based inhibition.

Alternate substrates are processed by an enzyme’s normal catalytic
pathway to form a stable covalent enzyme–inhibitor intermediate, such
as an acyl-enzyme in the case of serine proteases, where the complex is
essentially trapped in a potential energy well. As such, the inhibition is
both time dependent and active-site directed. Theoretically, alternate sub-
strates are reversible inhibitors, since the enzyme is essentially unchanged;
rather, it is suspended at a point within the catalytic process. However, in
practical terms, the enzyme–inhibitor complex can be of such stability as
to render the inhibition virtually irreversible.

Suicide inhibitors are also processed by an enzyme’s catalytic mech-
anism, but in this case, enzyme catalysis of the relatively unreactive
inhibitor uncovers a latent reactive moiety. This intermediate then reacts
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to make a covalent linkage with the enzyme, such as an alkylation of an
active site residue, which is not part of normal catalysis. These inhibitors
are time dependent, active site specific, and irreversible in their action. It
is possible for suicide inhibitors to have an alternate substrate mode of
action as well.

The lure of mechanism-based inhibition for pharmaceutical, food and
other industries is the prospect of target specificity and long-lasting effects.
A simple competitive enzyme inhibitor would have to be maintained at
saturating conditions to provide adequate inhibition of a target enzyme. It
would need to be replaced as it was metabolized, consumed, or flushed
out of the system, be it a human body or an industrial process. In contrast,
once a mechanism-based inhibitor interacts with an enzyme, the enzyme
is essentially removed from the system. In this case more inhibitor isn’t
needed until the enzyme is resynthesized or replaced. Given enough time,
adequate stability and bioavailability, potent mechanism-based inhibitors
should be effective at low concentrations. In practice, of course, time
limitations, compound stability, and bioavailability are major hurdles to
overcome. In the case of drug development of an enzyme inhibitor, com-
pounds should be orally active, yet not susceptible to general protein bind-
ing, and potent enough in the presence of natural (often protein) substrates.
Compounds must be stable to metabolism, such as hydrolysis or loss of
chirality. A further challenge is providing sufficient selectivity or speci-
ficity for an enzyme. Often, whatever mechanism is invoked in suicide or
alternate substrate inhibition can work across an entire class of enzymes,
such as serine or cysteine proteases. While the inhibitor must act as a sub-
strate, presenting a scissile bond to the active-site residues, many inhibitors
featured in the literature show little resemblance to natural substrates.
However, known enzyme specificity can be used to enhance inhibitor
specificity. For example, different amino acid derivatives of an inhibitor
could be synthesized to take advantage of the primary subsite specificity of
related enzymes, such as valine and phenylalanine derivatives for the ser-
ine proteases human leukocyte elastase and α-chymotrypsin, respectively
(Groutas et al., 1998).

13.1 ALTERNATE SUBSTRATE INHIBITION

An alternate substrate inhibitor produces a stable intermediate during the
normal course of catalysis, tying up the enzyme in its E–I form. Although
there can be many steps during the process, and more than one product
may be formed, Scheme 13.1 shows the essential steps of the mecha-
nism of inhibition. To fully characterize alternate substrate inhibition, the
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E + I E − I E + X 
k2k1

k−1

Scheme 13.1

various kinetic constants should be determined, the reaction products iden-
tified, and the nature of the inhibition confirmed. If the inhibition is not
competitive in nature, it does not require the catalytic mechanism and
cannot be alternate substrate inhibition.

The on rate, kon, is equivalent to k1, and the off rate, koff, is equivalent
to the sum of all pathways of E–I breakdown, in this case, k−1 + k2.
It is possible that multiple products are formed, and the rates of forma-
tion of these should be included in the koff term. A progress curve or
continuous assay is the best way to determine the kon and Ki of an alter-
nate substrate. Addition of an alternate substrate inhibitor to an enzyme
assay results in an exponential decrease in rate to some final steady-
state turnover of substrate (Fig. 13.1). In an individual assay, both the
rate of inhibition (kobs) and the final steady-state rate (C) will depend
on the concentration of inhibitor. Care must be taken to have a suffi-
cient excess of inhibitor over enzyme concentration present, since the
inhibitor is consumed during the process. Where possible, working at
assay conditions well below the Km of the assay substrate simplifies
the kinetics, as the substrate will not interfere in the inhibition. If the
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Figure 13.1. Rate of product formation from an enzymatic reaction with substrate in
the presence of an alternate substrate inhibitor, showing an exponential decrease in
rate to some final steady-state inhibited rate, compared to a control rate in the absence
of inhibitor.
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rate of inhibition is too fast to be determined in this fashion, saturating
or near-saturating concentrations of assay substrate will act as compe-
tition for the inhibition reaction and slow the observed rates. The inhi-
bition data are fitted to the following equation for a series of inhibitor
concentrations:

Y = Ae−kobst + Ct + B or Y = A(1− e−kobst )+ Ct + B (13.1)

where Y is the assay product, A and B are constants, C is the final
steady-state rate, and kobs is the rate of inhibition.

The second-order rate constant kon is the slope of a plot of kobs versus
[I] for inhibitor at nonsaturating concentrations, where [S]� Km:

kobs = kon[I] (13.2)

where kobs is the rate of inhibition. The second-order rate constant kon is
equivalent to ki/Ki when inhibitor is present at saturating concentrations,
when the assay substrate is present at concentrations well below its Km.
Ki and the maximum rate of inhibition ki can also be determined using
the equation

kobs = ki[I]

Ki + [I]
(13.3)

where ki is the maximum rate of inhibition and Ki is the dissociation
constant for inhibition.

If the enzyme assays are run at substrate concentrations near or greater
than the Km, the on rate must be corrected for the effect of substrate:

kobs = kon[I]

1+ [S]/Km

(13.4)

where kobs is the rate of inhibition and Km is the dissociation constant
for the enzyme and substrate. If a time-point assay is used, with dilution
of a mixture of enzyme and alternate substrate inhibitor into the assay
mixture at various time points, the kobs for each assay can be determined
as the negative slope of a plot of ln(vt/v0) versus time. However, in
this type of assay, the off rate can interfere with the calculation, as the
enzyme–inhibitor complex will degrade to produce free enzyme in the
absence of more inhibitor.

The final steady-state rates C, from Eq. (13.1), are used for calcula-
tion of the alternate substrate’s Ki via the standard competitive inhibition
equation (Chapter 4). The Ki is also equivalent to the ratio of the rates
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of breakdown of the enzyme–intermediate complex to the rates of forma-
tion of the enzyme–intermediate complex, as seen below. The standard
steady-state assumption used in enzyme kinetics,

0 = ∂(EI)

∂t
= k1(E)(I)− k−1(EI)− k2(EI) (13.5)

can be rearranged to obtain the dissociation constant Ki :

Ki = (E)(I)

(EI)
= k−1 + k2

k1
= koff

kon
(13.6)

where Ki is the dissociation constant for inhibition, k−1 the rate of dis-
sociation, k1 the rate of acylation, and k2 the rate of product formation.

The off rate, koff, of the inhibition can be determined by calculation
using Eq. (13.6) or by direct measurement. Enzyme–inhibitor complex
can be isolated from excess inhibitor by size exclusion chromatography,
preferably with a shift in pH to a range where the enzyme is stable but
inactive, to stabilize the complex (Copp et al., 1987). It can then be added
back to an activity assay, to measure the return of enzyme activity over
time. The recovery of enzyme activity, koff, should be a first-order process,
independent of inhibitor, enzyme, or E–I concentrations. The final rate,
C, will depend on [E–I] (and any free E that might have been carried
through the chromatography).

Y = Ae−koff t + Ct (13.7)

where Y is the assay product, A is a constant, C is the final steady-state
rate, and koff is the rate of reactivation. Proof that the inhibition by alter-
nate substrates is active-site directed is provided by a decrease in the rate
of enzyme inhibition in the presence of a known competitive inhibitor
or substrate.

The process of identifying the products of the interaction between
the enzyme and alternate substrate depends a great deal on the inhibitor
itself. If the compound contains a chromophore or fluorophore, changes
in the absorbance or fluorescence spectra with the addition of enzyme
can be monitored and used to identify products (Krantz et al., 1990).
For multiple product reactions, single turnover experiments can be used
to determine relative product distribution. Stoichiometric quantities of
enzyme and inhibitor can be incubated for full inhibition, followed by
the addition of a rapid irreversible inhibitor of the enzyme, such as an
affinity label. This will act as a trap for enzyme as the enzyme–inhibitor
complex breaks down. Analysis of the products will determine relative
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rates of k−1, k2, and rates of formation of any other product (Krantz
et al., 1990).

13.2 SUICIDE INHIBITION

A suicide inhibitor is a relatively chemically stable molecule with latent
reactivity such that when it undergoes enzyme catalysis, a highly reactive,
generally electrophilic species is produced (I∗). As shown in Scheme 13.2,
this species then reacts with the enzyme/coenzyme in a second step that
is not part of normal catalysis, to form a covalent bond between I∗ and E,
to give the inactive E∧

∨X. For a compound to be an ideal suicide inhibitor,
it should be very specific for the target enzyme. The inhibitor should be
stable under biological conditions and in the presence of various biolog-
ically active compounds and proteins. The enzyme-generated species I∗
should be sufficiently reactive to be trapped by an amino acid side chain,
or coenzyme, at the active site of the enzyme and not be released from
the enzyme to solution. These characteristics minimize the “decorating”
of various nontarget biological compounds with the reactive I∗. These
nontargeted reactions result in a decrease of available inhibitor concen-
tration and can have deleterious effects on other biological reactions and
interactions within a system.

To identify a compound as a suicide inhibitor, the inhibition must be
established as time dependent, irreversible, active-site directed, requiring
catalytic conversion of inhibitor, and have 1 : 1 stoichiometry for E and
X in the E∧

∨X complex. To assess the potency and efficacy of a suicide
inhibitor, the kinetics of the inactivation and the partition ratio should be
determined. Identification of both X and the amino acid/cofactor labeled
in the E∧

∨X complex is useful in establishing the actual mechanism of
inactivation.

As with alternate substrate inhibitors, a progress curve or continuous
enzyme assay is the most useful to begin to characterize the kinetics of
inhibition. There can be immediate, or diffusion-limited inhibition of the

E + I E − I E − I*
k2k1

k−1

k4

k3

E + P

E X

Scheme 13.2
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enzyme, before the time-dependent phase of inhibition begins. This may
represent inhibition by the noncovalent Michaelis complex, which is then
followed by the time-dependent phase of the catalysis of the alternate sub-
strate. The initial rates of inhibition are analyzed as for any competitive
substrate (see Chapter 4). In general, addition of a suicide inhibitor to
an enzyme assay will result in a time-dependent, exponential decrease to
complete inactivation of the enzyme. The reactions do not always follow
first-order kinetics. If [I] decreases significantly throughout the progress
of the assay, due either to compound instability or enzyme consump-
tion, rates will deviate from first-order behavior and incomplete inhibition
may be observed. Also, biphasic kinetics have been observed when two
inactivation reactions occur simultaneously, as can happen with racemic
mixtures of inhibitors. However, using the more general case, the data
can be fit to a simple exponential equation:

Y = Ae−kobst + B (13.8)

where Y is the assay product, A and B are constants, and kobs is the rate
of inhibition.

Because continuous assays monitor only free enzyme, they do not dis-
tinguish between E·I, E–I, or the E∧

∨X complex. Therefore, kobs represents
the apparent inactivation rate, a combination of inhibition and inacti-
vation. As with alternate substrate inhibition, the second-order apparent
inactivation rate can be determined from one of the following equations,
depending on whether or not saturation kinetics are observed and the
concentration of substrate:

kobs = k
app
inact[I] (13.9)

where kobs is the rate of inhibition and k
app
inact is the apparent inactivation

rate when no saturation is observed and [S]� Km;

kobs = k
app
inact[I]

K
app
inact + [I]

(13.10)

where kobs is the rate of inhibition, k
app
inact is the apparent inactivation rate,

and K
app
inact is the apparent dissociation constant of inactivation when [S]�

Km; or

kobs = k
app
inact[I]

1+ [S]/Km

(13.11)

where kobs is the rate of inhibition, k
app
inact is the apparent inactivation rate,

and Km is the dissociation constant of the enzyme with substrate.
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Incubation/dilution assays or rescue assays can help distinguish
between the reversible and irreversible steps in the inactivation. In
incubation/dilution assays, enzyme and inhibitor are incubated in the
absence of substrate under assay conditions. At various time points, �t ,
an aliquot of this incubation is diluted into an assay mixture containing
substrate, and the activity monitored. A rescue assay is a standard progress
assay in which the inhibitor is removed in situ, at various time points, �t ,
by the addition of a chemical nucleophile, which consumes free inhibitor
(Fig. 13.2). In both cases, either by dilution or by chemical modification,
the free inhibitor is effectively removed from the reaction. Any time-
dependent recovery of activity should represent k3, as shown in Fig. 13.2
(although in the rescue assay, the rate of disappearance of the inhibitor will
also effect enzyme recovery). Any decrease in the final steady-state rate
of activity as compared to the initial enzyme activity is due to inactivated
enzyme, E∧

∨X.

vf

v0
∝ [E0]− [EX]

[E0]
(13.12)

By varying �t for each inhibitor concentration, kobs for each assay can be
determined as the negative slope of ln(vt/v0) versus �t . Repeating this
for a series of [I] and using Eq. (13.2), (13.3), or (13.4), depending on
whether or not the system is saturating in inhibitor or substrate, the actual

Time

P
ro

du
ct

 S
ig

na
l

Addition of nucleophile

Addition of inhibitor

Figure 13.2. Rescue assay. The initial straight line shows product formation by enzyme
in the absence of inhibitor. An exponential decrease in rate follows addition of the suicide
substrate. Upon addition of the nucleophile at time t , which consumes all excess inhibitor,
a partial recovery of enzyme activity is observed. The final enzymatic rate is dependent
on [I] and t .
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inactivation kinetics can be determined:

kobs = kinact[I] (13.13)

where kobs is the rate of inhibition and kinact is the inactivation rate;

kobs = kinact[I]

Kinact + [I]
(13.14)

where kobs is the rate of inhibition, kinact is the inactivation rate, and Kinact
is the dissociation constant of inactivation; or

kobs = kinact[I]

1+ [S]/Km

(13.15)

where kobs is the rate of inhibition, kinact is the inactivation rate, and Km is
the dissociation constant of the enzyme with substrate. If the inactivation
kinetics, as described above, are the same as the apparent inactivation
kinetics observed from the standard progress curves, it implies that k2
is the rate-limiting step (i.e., k2 � k4, and k3 is negligible; therefore,
kinact ∼ k2.

The partition ratio is an important parameter in assessing the efficacy of
a suicide inhibitor. The partition ratio, r , is defined as the ratio of turnover
to inactivation events; ideally, r would equal zero. That is, every catalytic
event between enzyme and the suicide inhibitor would result in inactivated
enzyme, with no release of reactive inhibitor product. The value for the
partition ratio can be determined in several ways. If the kinetic constants
can be determined individually, r is the ratio of the rate constants for
catalysis and inactivation.

r = k3

k4
(13.16)

where r is the partition ratio, k3 is the rate of reactivation, and k4 is the
rate of inactivation.

The partition ratio is also equal to the ratio of final product concentra-
tion following complete inactivation to initial enzyme concentration and
should be independent of the initial [I].

r = [Pf ]

[E0]
(13.17)

where r is the partition ratio, [Pf ] is the final concentration of inhibitor
product, and [E0] is the initial enzyme concentration. The partition ratio
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Figure 13.3. Titration curve to calculate the partition ratio r .

can also be determined by direct stoichiometric titration of the enzyme
with the suicide inhibitor. The horizontal intercept of a plot of [Ef ]/[E0]
versus [I]/[E0] is equivalent to r + 1 (Fig. 13.3).

Irreversibility of inhibition can be established in a number of ways.
Basically, excess inhibitor must be removed from the enzyme to iso-
late the possible reactivation process and enzyme activity monitored with
time to test for any reactivation. Methods include exhaustive dialysis of
inhibited enzyme with uninhibited enzyme as a control, removing all
excess inhibitor and allowing time for reactivation, followed by assay
for activity. An incubation of enzyme and inhibitor followed by dilu-
tion into assay solution will measure spontaneous recovery. The stability
of the enzyme adduct to exogenous nucleophiles can be determined by
diluting the incubation mixture into a solution containing an exogenous
nucleophile, such as β-mercaptoethanol or hydroxylamine. Gel filtration
or fast filtration columns also effectively remove inhibitor, and activ-
ity assays of the protein fraction can monitor any reactivation of the
enzyme–inhibitor complex.

The enzyme inactivation by suicide inhibitors should be active-site
directed. Not only must the inhibitor be processed by the enzyme’s cat-
alytic site, but the resulting reactive moiety should react at the active
site also and not inactivate the enzyme by covalently binding amino acid
residues outside the active site. Protection from inactivation by enzyme
substrate or a simple competitive inhibitor is evidence for active-site
directedness. Enzyme activity should also be monitored in the presence
of exogenous reactive inhibitor, produced noncatalytically, to ensure that
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inactivation does not result from modifications outside the active site.
Difference spectroscopy, fluorescence, or ultraviolet (UV) spectroscopy
can be used to monitor the physical structure of the suicide inhibitor dur-
ing catalysis to provide evidence for the formation of reactive complex
with enzyme (for examples see Copp et al., 1987; Vilain et al., 1991;
Eckstein et al., 1994). Product analysis by high-performance liquid chro-
matography, (HPLC), UV spectroscopy, nuclear magnetic resonance (for
examples see Smith et al., 1988; Blankenship et al., 1991; Kerrigan and
Shirley, 1996; Groutas et al., 1997), specialized electrodes (for an example
see Eckstein et al., 1994) can all help identify the reactive inhibitor moiety
and confirm that it is generated by enzyme catalysis.

Ideally, the actual enzyme–inhibitor complex can be identified, show-
ing the inhibitor bound to the active site. X-ray crystallography of the
enzyme inhibitor complex is the ultimate method of identifying the mech-
anism of enzyme inhibition (for examples see Cregge et al., 1998; Swarén
et al., 1999; Taylor et al., 1999; Ohmoto et al., 2000). Many other methods
have been detailed in the literature. Using known x-ray crystal struc-
tures of enzymes, molecular modeling can be used to predict possible
enzyme–inhibitor adducts (for examples see Hlasta et al., 1996; Groutas
et al., 1998; Macchia et al., 2000; Clemente et al., 2001). Amino acid
analysis of both native and inactivated enzyme can identify which amino
acid is modified (for examples see Pochet et al., 2000). A radiolabeled
suicide inhibitor and autoradiography can also be used to identify the
amino acid modified by the inhibitor (for examples see Eckstein et al.,
1994).

Certain inferences about the mechanism of inactivation can be made
from inactivation kinetics. Structure–activity relationships of a series of
compounds can lend support to various mechanisms with knowledge of
the active site of the target enzyme (for examples see Lynas and Walker,
1997). The effect of the inhibitor’s chirality can also provide information
regarding how the suicide inhibitor is reacting with the enzyme.

Full kinetic characterization for mechanism-based inhibition can be a
challenge. Not only are there multiple rates to determine, but the mech-
anism of inhibition is often a combination of several different steps. The
dividing line between alternate substrate inhibitors and the more com-
plex suicide inhibitors is often blurred, with some alternate substrates
being virtually irreversible and some suicide substrates with high parti-
tion ratios and a significant alternate substrate element of inhibition. The
following examples describe the characterization of an alternate substrate
inhibitor and a suicide inhibitor of the serine protease human leuko-
cyte elastase.
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13.3 EXAMPLES

13.3.1 Alternative Substrate Inhibition

4H -3,1-Benzoxazin-4-ones (structure 1) were identified and characterized
as inhibitors of serine proteases (Krantz et al., 1990 and references therein)
and continue to be pursued as possible pharmaceutical products (Gütschow
et al., 1999 and references therein). Krantz et al. (1990) synthesized a
large number of substituted benzoxazinones (175), and characterized their
inhibition of the enzyme human leukocyte elastase. The method used to
determine the rate constant kon and the inhibition constant Ki was the
continuous assay or progress curve method using a fluorescent substrate,
7-(methoxysuccinylalanylalanylprolylvalinamido)-4-methylcoumarin. The
fluorescent assay was very sensitive, allowing for analysis at [S]� Km (in
this case, [S]/Km = 0.017), thereby avoiding perturbation of the inhibition
rates due to competition from the substrate. Enzyme and substrate were
combined in assay buffer and an initial, uninhibited rate was obtained
before addition of an aliquot of inhibitor. The data were fit to Eq. (13.1).
Linear regression of the observed k versus [I] gave kon [Eq. (13.2)]. No
saturation of these rates was observed in the study. The inhibition constant
Ki was calculated from regression of the steady-state rates C versus [I] as
described in Chapter 4. The deacylation rate (koff) was either calculated
as kon∗Ki [Eq. (13.6)] or, in a few cases, determined directly by isolating
the acyl-enzyme using a size exclusion column at low pH. Deacylation
was monitored by the reappearance of enzyme activity upon dilution (1
in 40) of acyl-enzyme into assay buffer containing fluorogenic substrate.

The products of enzyme catalysis of a number of the inhibitors were
also determined. In some cases, products were determined by analysis
of the fluorescence spectrum after exhaustive incubation of enzyme with
inhibitor and compared with synthesized standards of possible products.
Catalytic products of other benzoxazinones were identified and relative
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rates of formation estimated by single-turnover experiments using UV
absorption spectra and HPLC analysis. Stoichiometric amounts of elastase
and inhibitor (12.5 µM of each) were placed in separate compartments
of split cuvettes and a baseline difference spectrum was obtained. The
sample cuvette was then mixed, and a difference spectrum and an HPLC
analysis of the mixture were obtained immediately. Following these deter-
minations immediately and before significant deacylation could occur,
4 equiv. of the protein soybean trypsin inhibitor were added to irreversibly
trap the enzyme into approximate single-turnover conditions. Difference
spectra and HPLC analyses were obtained after incubation to allow for
deacylation of the inhibitor from the enzyme. Catalytic products were
identified, and their relative quantities determined, by comparison to the
difference spectra and HPLC retention times of known base-hydrolysis
and rearrangement products. A third method used for catalytic product
identification utilized size exclusion chromatography of fully inhibited
enzyme at pH 4, to stabilize the acyl-enzyme but remove any excess
inhibitor. The protein fraction was then returned to assay conditions (pH
7.8) to allow deacylation to occur. A UV spectrum and HPLC analysis of
the solution allowed identification of the products.

Using the enzyme inhibition kinetics and product identification and
model studies of alkaline hydrolysis of the compounds, structure–activity
relationships of the enzyme inhibitor interactions could be understood and
predicted. With this knowledge the authors were able to design alternate
substrate inhibitors with reasonable chemical stability, inhibition constants
in the nanomolar range, and very slow deacylation rates (koff), resulting
in virtually irreversible inhibition.

13.3.2 Suicide Inhibition

A series of ynenol lactones (structure 2) were studied as inhibitors of
human leukocyte elastase (Tam et al., 1984; Spencer et al., 1986; Copp
et al., 1987). Some of the compounds were alternate substrate inhibitors,
being hydrolyzed by the enzyme to the reactive I∗ but then deacylat-
ing without an inactivation step. However, with the compound 3-benzyl
ynenol butyrolactone (structure 2, where R = benzyl, R′ = H), the acyl-
enzyme (E–I∗) was stable enough to allow the second alkylation step,
resulting in inactivated enzyme. All kinetic constants were determined.
Continuous assays gave biphasic kinetics, the second minor phase pos-
sibly due to the presence of isozymes or enantiomers of the inhibitor.
Immediate diffusion-limited inhibition was observed and gave a com-
petitive Ki value of 4.3± 0.7 µM . The first phase of inhibition was
saturable, and analysis of the rates gave k

app
inact = 0.090± 0.007 s−1, and
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inact = 4.1± 0.7 µM . These rates were also pH dependent, with pKa =

6.58, in reasonable agreement with the catalytic pKa value for a ser-
ine protease. The actual inactivation rate was determined from rescue
experiments. At various times t following addition of suicide substrate
inhibitor to enzyme, 10 mM of the nucleophile β-mercaptoethanol was
added. This nucleophile reacted rapidly with excess ynenol lactone, allow-
ing any enzyme not inactivated to deacylate to regenerate active enzyme,
as shown in Fig. 13.2. The inactivation rates were also saturable, giving
k4 or kinact = 0.0037± 0.0001 s−1 and Kinact = 0.63± 0.08 µM . Gel fil-
tration of the enzyme–inhibitor mixture before full inactivation could
occur, followed by dilution into assay conditions, allowed determination
of the deacylation rate, k3 = 0.0056 s−1. The pH dependence of this rate
was also determined and found to have a pKa value of 7.36. This value
was in excellent agreement with the catalytic pKa value, providing further
evidence for the role of enzyme catalysis in the mechanism of inactivation.

The inhibition of human leukocyte elastase by the ynenol lactone was
irreversible in the presence of the nucleophiles β-mercaptoethanol and
hydroxylamine and after size exclusion chromatography. The partition
ratio r was evaluated in two different ways. Titration of the enzyme by sui-
cide substrate using the plot shown in Fig. 13.3 gave r = 1.7± 0.5. The
partition ratio was also determined from the ratio of rates: k3/k4 = 1.5.

That the inactivation was active-site directed was also established in
several ways. As mentioned above, the pKa values of k2 and k3, were
consistent with the pKa value of catalytic activity for a serine protease.
Difference spectra of enzyme with inhibitor showed the reactive product
being formed in the presence of enzyme. Rates of inhibition decreased in
the presence of a known competitive inhibitor, elastatinal (Okura et al.,
1975). The reactive intermediate was generated by mild alkaline hydroly-
sis and added to assay buffer at a concentration 25 times higher than the
Ki of the ynenol lactone. Enzyme and substrate were added to the mix-
ture, and neither inhibition nor time-dependent inactivation was observed.
Therefore, inactivation was unlikely to occur by enzymatic release of
the reactive intermediate followed by nonspecific alkylation outside the
active site.
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CHAPTER 14

PUTTING KINETIC PRINCIPLES
INTO PRACTICE

KIRK L. PARKIN∗

The overall goal of efforts to characterize enzymes is to document their
molecular and kinetic properties. Regardless of the exact mechanism of an
enzyme reaction, a kinetic characterization often makes use of the simple
Michaelis–Menten model:

E+ S
k1−−⇀↽−−

k−1

ES
k2−−→ E+ P (14.1)

the ultimate objective being to provide estimates of the kinetic constants,
Km and Vmax, under a defined set of conditions:

Km = k−1 + k2

k1
(14.2)

Vmax = k2[ET ] (14.3)

Once these kinetic constants are determined, the specificity constant for
various substrates and under defined conditions can be obtained as

Vmax

Km

∝ kcat

Km

(14.4)
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Since significant meaning is placed on these measured constants
and parameters, it is important that they be determined accurately and
unambiguously. It is also important that the reader or practitioner in
the field of enzymology be able to assess if the measurement of these
parameters is reliable. Furthermore, since enzyme behavior is often
modeled as Michaelis–Menten (hyperbolic) kinetics, it seems reasonable
that interpretations of observations should be made in the context of the
Michaelis–Menten model. In some cases, alternative explanations for
enzyme kinetic behavior may be appropriate and one may be inclined
to select one interpretation over another (preferably based on a kinetic
analysis, although too often this is done on intuition).

The purpose of this chapter is to illustrate some simple approaches to
surveying the soundness of newly gathered or published information on
enzyme kinetic characterization. This is intended to orient the developing
enzymologist working in this field, as well guide those assessing literature
reports on enzyme kinetic characterization. Fictitious examples have been
constructed for this purpose, although they have been inspired by actual
reports in the scientific literature encountered by this author. These specific
examples will be used to illustrate putting simple kinetic principles to
practice in an effort to draw the appropriate conclusions from enzyme
kinetic data (and avoid reliance on one’s intuition). Each of the following
sections is titled in the form of a question, and these questions represent
the most basic types of issues that one should consider upon reviewing
enzyme kinetic data, whether it is one’s own or has been generated by
the studies of others.

14.1 WERE INITIAL VELOCITIES MEASURED?

Perhaps the most elementary consideration that should be satisfied is that
the measured rates of enzyme reactions under all conditions represent ini-
tial velocities (v0). The indication that initial rates or linear rates were
measured are other ways to convey that this standard of experimentation
has been met. One of the original stipulations of the general applica-
bility of the Michaelis–Menten model (as well as many others) is that
d[S0]/d t ≈ 0 during the time period over which the rate of product for-
mation is measured. Thus, the measured reaction rate is representative of
that taking place initially at the [S0] selected. This condition is especially
important at low [S0] values, where reaction rates are nearly first order
with respect to [S0]. In practice, up to 5 to 10% depletion of [S0] can
be tolerated over the time frame used to assay [P] for the purpose of
determining reaction rates, because error caused by normal experimental
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variance may exceed any systematic error brought about by this degree
of consumption of [S0] during the assay period.

Continuous assay procedures facilitate estimation of initial rates since
the opportunity exists to linearize the initial portion of the reaction progress
curve (Fig. 14.1). In contrast, the fixed-point assay, where the reaction or
assay is quenched at a preselected interval(s) to allow for product mea-
surement, requires greater care and vigilance to ensure that an estimation
of initial velocity was obtained (d[P]/d t must be linear during the entire
assay period). Using the data in Fig. 14.1 as an example, a fixed-point
assay interval of 10+ minutes would not provide for an estimate of initial
velocity, whereas intervals of 6 minutes or less would.

Occasionally, fixed-point assays on the order of hours are encountered
in published reports, and in these cases the reader should look very care-
fully and critically for assurances that measured reaction rates were linear.
This author has even encountered reports where it was stated to the effect
that “. . . reaction rates were linear and [S0] depletion was limited to 30%
in all cases.” Such a statement should be treated with great skepticism,
since in this scenario the greatest degree of [S0] depletion would almost
certainly occur at the low [S0] range tested, where the rates would most
quickly deviate from linearity. It would also defy kinetic principles that
reaction rates would be linear at [S0]� Km for the period of time in
which 30% depletion of [S0] occurred.

What could possibly go wrong if the measurement of linear rates was
not assured? Well, an example has been provided to illustrate that it could
mean the difference between falsely concluding that an enzyme reaction
is allosteric (cooperative) and not correctly concluding that it behaves
according to the simpler Michaelis–Menten model (Allison and Purich,
1979, Fig. 2). The reader is encouraged to peruse this reference for a
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Figure 14.1. Enzyme reaction progress curve and estimation of initial velocity.
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refresher on the considerations to be made in measuring initial velocities,
which in those authors’ words “. . . is of prime importance for achieving
a detailed and faithful analysis of any enzyme.”

14.2 DOES THE MICHAELIS–MENTEN MODEL FIT?

Perhaps the second most elementary (and very common) consideration
regarding the kinetic profiling of an enzyme reaction is to assess whether
or not it can be fitted to the Michaelis–Menten model. This assessment is
not always taken as seriously as it should. Rather than truly assess whether
or not the data conform to a Michaelis–Menten model, it is often simply
stated (or blindly assumed) that they do, and various linear transforma-
tions are conducted to arrive at estimations of the kinetic constants Km

and Vmax.
Consider the data presented in Fig. 14.2, where an accompanying com-

ment may very well be something like “. . . the response of enzyme activity
to increasing [S0] was hyperbolic.” The inset of Fig. 14.2 also illustrates
a common and almost reflexive practice to transform these original data
to a linear plot, often with quite “unconventional” methods for lineariz-
ing the transformed data. (The curvature to the data points in the inset
appears to have been ignored, and although there are proper data weight-
ing procedures for this specific linear plot, they appear seldom to have
been evoked.) The double-reciprocal (Lineweaver–Burke) plot is the most
often selected linear transform [despite repeated cautions that it is the least
trustworthy of the linear plots most often considered (Henderson, 1978;
Fukuwaka et al., 1985)].

Although the data in Fig. 14.2 may appear to be visually consistent with
a rectangular hyperbola pattern (Michaelis–Menten model), it is a rather
simple matter to test the observed data for fit to the Michaelis–Menten
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Figure 14.2. Enzyme rate data and transformation to double-reciprocal plot (inset).
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model (although this is not done often enough). Taking the same data in
Fig. 14.2 and imposing the rectangular hyperbola function on it,

y = ax

b + x
(14.5)

where y is the velocity, x represents [S0], a represents Vmax, and b rep-
resents Km, yields the boldface line in Fig. 14.3. It is clear that there is a
systematic deviation of the data from the model that is readily apparent at
the high- and medium-range [S0] tested. The significance of this analysis
is twofold:

1. The kinetics of the enzyme reaction are more complicated than
a Michaelis–Menten model can accommodate (further diagnostic
tests, such as the use of the Hill plot, may reveal allosteric behavior
or cooperativity as a kinetic characteristic).

2. The estimation and discussion of Km (the Michaelis constant) may
be irrelevant because Km is a constant defined by (and confined
within) use of the Michaelis–Menten model (hyperbolic kinetics) in
the first place.

Different kinetic models have different conventions, and in the case
of cooperative enzyme kinetic behavior, the term K0.5 is used in a sense
analogous to Km for hyperbolic enzymes. In fact, transforming the original
data in Fig. 14.2 to a Hill plot,

log
v

Vmax − v
= n log[S]− log K ′ (14.6)
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Figure 14.3. Enzyme rate data from Fig. 14.2, with predicted hyperbolic kinetics pattern
(bold curve) superimposed. Inset shows data appearing in linear plot in Fig. 14.2 inset
(ž, ©• ), as well as that not appearing in Fig. 14.2 inset (Ž).
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Figure 14.4. Transformation of the enzyme rate data in Fig. 14.2 to a Hill plot. Points
appearing as (Ž) were not included in the regression analysis.

where K ′ is a modified intrinsic dissociation constant and n is the appar-
ent number of enzyme subunits (and slope on the Hill plot), yields a
linear region (Fig. 14.4) for the most meaningful portion of the curve in
Fig. 14.2. This plot is indicative of a cooperative enzyme with two appar-
ent subunits and a K ′ (or K0.5) value of 1.8 mM (the deviation from the
linear plot at the high [S] value could be caused by a cofactor becoming
limiting in the assay, among other reasons).

For the discerning reader, a closer examination of the Fig. 14.2 inset,
and comparison of the axis values (1/[S]) with those ([S]) of the original
data set, reveals that only a subset of the original velocity versus [S0] data
set is used to construct the linear plot (both high and low [S0] points on
the linear plot are omitted). This appears to be a classic case of imposing a
model on a data set rather than using the data set to direct selection of the
appropriate model for enzyme kinetic behavior. Figure 14.3 (inset) shows
all of the original data transformed to the linear plot, and a systematic
departure from linearity is clearly evident.

14.3 WHAT DOES THE ORIGINAL [S] VERSUS
VELOCITY PLOT LOOK LIKE?

From the preceding discussion it should be evident that perhaps the most
important and insightful data set on enzyme kinetic behavior is the origi-
nal velocity versus [S0] plot. However, it seems more often than not that
this relationship is presented as a linear plot and not as original, non-
transformed data. This approach may serve to cloud one’s vision instead
of offering insight into enzyme kinetic behavior [see Klotz (1982) for an
example of diagnosing flawed receptor/binding analysis].

As an example, consider the findings reported in Fig. 14.5 regarding the
nature of inhibition of an enzyme reaction. At increasing concentrations
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Figure 14.5. Double-reciprocal plot of enzyme rate data for assays done in the absence
of inhibitor (ž), and at progressively increasing levels of an inhibitor (�, �, ◊).

of inhibitor [I], the transformed velocity versus [S0] plots for noninhibited
and inhibited reactions display the classical pattern of uncompetitive inhi-
bition, diagnosed as parallel plots on this linear plot for reactions inhibited
by increasing levels of [I]. This data set would be used to estimate both
Km and KI as a kinetic characterization of the inhibited enzyme reaction.

However, a closer inspection of the linear plot reveals that a very narrow
range of [S0] of only 2 to 7 mM was used for these studies. Reverting
the data back to the original coordinates of velocity versus [S0], it is also
evident that the range of [S0] used was ≥Km, creating a bias in the data
set where velocity is becoming independent of [S0] (Fig. 14.6). If the data
points encompassing the “missing” [S0] range are filled in, predicted by
nonlinear regression plots derived from the original data, it is clear that the
range of Km values calculated (0.56 to 1.49 mM) is rather narrow. This
limited data set that does little to define or resolve the curvature of these
plots, and consequently the study is not reliable or sufficiently conclusive.
Finally, and to put this particular data set into a broader context, the
conclusion that uncompetitive inhibition occurs should be immediately
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Figure 14.6. Transformation of enzyme rate data in Fig. 14.5 to a conventional velocity
versus [S] plot (symbols are the same as in Fig. 14.5).
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scrutinized because it is extremely rare (Segel, 1975; Cornish-Bowden,
1986). Certainly, a more compelling and persuasive data set than that in
Figs. 14.5 and 14.6 would be required to support the conclusion that a
rare kinetic property was discovered for a particular enzyme.

14.4 WAS THE APPROPRIATE [S] RANGE USED?

As an extension of some of the issues raised in Section 14.3, it is univer-
sally accepted that when using traditional approaches to kinetic analysis,
a range of [S0] must be used to obtain reliable estimates of Km and Vmax
(Segel, 1975; Whitaker, 1994). A range of [S0] of 0.3 to 3Km (or bet-
ter yet, 0.1 to 10Km, solubility permitting) for the purpose of estimating
Km and Vmax encompasses the transition of [S0] going from being most
limiting to being nonlimiting to the reaction. At [S0] exclusively <Km

or >Km, there is bias in the data set (Fig. 14.7) toward either of the two
linear portions of this plot, with few measurements corresponding to the
zone of curvature in (Fig. 14.7 inset).

Obtaining accurate measurements of Km is important because Km pro-
vides a quantitative measure of enzyme–substrate complementarity in
binding (when Km ≈ Ks), and such values can be used to compare relative
affinities of competing substrates. Second, the combined determination
of Vmax (∝ kcat) and Km for competing substrates provides for a quanti-
tative comparison of specificity (selectivity) of the enzyme among sub-
strates through the use of the specificity constant, or Vmax/Km [Eq. (14.4)]
(Fersht, 1985).
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Figure 14.7. Conventional velocity (as a fraction of Vmax) versus [S] (as a multiple of
Km) plot showing the two linear portions of a hyperbolic curve. Inset shows range of
[S]/Km (♦) conducive to providing reliable estimates of Vmax and Km.
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Studies that seek to compare specificity constants among different sub-
strates under a defined set of conditions are often focused on the nature
of enzyme–substrate interaction or structure–function relationships that
confer reaction selectivity. In other cases, the determination of specificity
constants for a single substrate under a variety of conditions is often an
attempt to infer something about factors that govern or modulate reaction
selectivity. In both cases, obtaining reliable data and estimates of kinetic
constants are of paramount importance. The collection of observations
in Table 14.1 provides an example of such a study, where different sub-
strates were assayed over different ranges of [S] at a known [E] to yield
estimates of kcat and Km.

The conclusions to be drawn for this type of study are likely to focus
on the relationship between systematic changes in structural features of
the substrates and the attendant changes in reaction selectivity (relative
kcat/Km values). This may allow certain inferences to be drawn about the
chemical nature of enzyme–substrate interactions that lead to productive
binding and/or transition-state stabilization.

For example, a possible conclusion to be reached from the data in
Table 14.1 is: “Reaction selectivity with substrate 7 was two orders of
magnitude greater than for substrates 5 or 6”. Based on structural dif-
ferences between substrate 7, and 5 and 6, conclusions may be further
delineated to suggest that specific functional groups of the substrate (and
enzyme) may participate in catalysis by facilitating substrate binding or
substrate transformation. Such conclusions would be valid or at least
firmly supported if measurements of kcat and Km are accurate and reli-
able (Table 14.1).

It is a rather simple task to judge the reliability of this data set by cal-
culating the Km value (from the fourth and fifth columns in Table 14.1)
and comparing it to the range of [S] values used (the second column in

TABLE 14.1 Selectivity Constants Determined for a Series of Substrates

Substrate (S)
Range of [S]
Tested (mM)

Number of [S]
Tested kcat (s−1)

kcat/Km

(s−1 M−1)

1 0.50–2.5 6 0.897 296
2 1.0–6.0 8 0.184 36.0
3 0.50–8.0 6 2.97 1830
4 0.50–2.5 7 0.407 152
5 2.5–12.0 10 0.183 23.8
6 0.50–2.5 5 0.138 29.1
7 1.5–5.0 7 1.68 2260
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TABLE 14.2 Assessment of Bias in [S] Range Used for Determining
Selectivity Constants

Substrate (S)
Range of [S]
Tested (mM)

Calculated Km

(mM)
Any Bias in

[S]/Km?

1 0.50–2.5 3.0 [S] < Km

2 1.0–6.0 5.1 [S] ≤ Km

3 0.50–8.0 1.6 None
4 0.50–2.5 2.7 [S] ≤ Km

5 2.5–12.0 7.7 None
6 0.50–2.5 4.7 [S] < Km

7 1.5–5.0 0.74 [S] > Km

Table 14.1) for each substrate evaluated. This analysis is quite revealing
in that the data set is biased for five of the seven substrates examined,
such that estimates of both Km and kcat (∝ Vmax) may be quite erro-
neous (Table 14.2).

The scenario described above pertains to the design of experiments and
collection of observations for the purpose of estimating Vmax/Km using
conventional linear or nonlinear transformations. It should be pointed out
that there is another approach to the measurement of Vmax/Km, based
on the principle that at low [S], the reaction velocity is proportional to
Vmax/Km (Fig. 14.7). Vmax/Km approximates an apparent second-order
rate constant (kcat/Km) describing the behavior of the free enzyme, but
this relationship also holds at any [S] (Fersht, 1985). The utility of this
relationship is founded on the fact that the relative velocities (v) of reac-
tions between competing substrates is described as

vA

vB
= (Vmax/Km)A[S]A

(Vmax/Km)B[S]B
(14.7)

From a practical point, each of several competing substrates may be
incorporated into a reaction mixture at a single [S0] value (they can
be the same or different [S0] values), and reactions may be allowed
to proceed beyond the period where linear rates exist. Linear (log-log)
transformations (Deleuze et al., 1987) are based on Eq. (14.7) and the
relationships of

vA

vB
= α

[S]A

[S]B
where α = (Vmax/Km)A

(Vmax/Km)B
(14.8)
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Figure 14.8. Log-log plots of enzyme reaction progress curves to provide estimates of
relative Vmax/Km values (specificity constants). Different symbols are different substrates.

and

log
([S0]i )

([Sx]i )
= α log

([S0]ref)

([Sx]ref)
(14.9)

where [S0] and [Sx] are the concentrations of substrate initially and at
any time (respectively) during the reaction for any substrate (i) relative
to a reference (ref) substrate. The log-log plots (Fig. 14.8) represent the
fractional conversion of each substrate relative to [S]ref at all time intervals
assayed. The ratios of the slopes of the linear plots are equivalent to the
α values for the multiple comparisons that can be made.

Data used to construct these plots are useful to the point where there is
a departure from linearity (usually, a downward deflection). The most
likely causes for this departure from linearity include product inhibi-
tion, approaching reaction equilibrium, and enzyme inactivation during
the course of reaction. These α values are relative quantities. However,
if the actual Vmax (or kcat) and Km values are determined accurately for
one substrate (probably the reference), reasonable quantitative estimates
of selectivity constants (Vmax/Km) may be calculated for all the substrates
in the series evaluated.

14.5 IS THERE CONSISTENCY WORKING WITHIN THE
CONTEXT OF A KINETIC MODEL?

In this final section we examine a set of observations that may be inter-
preted in alternative ways: the point being that interpretation should be
made within the context of any model that is evoked to represent enzyme
kinetic behavior. The simplest and most commonly applied model, the
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Michaelis–Menten or hyperbolic kinetics model, is used here to illustrate
how a model can be employed to guide interpretations and conclusions.

Substrate inhibition in studies on enzyme kinetics is a property observed
more often than perhaps one would anticipate. An example of an enzyme
reaction subject to substrate inhibition is illustrated in Fig. 14.9. A con-
clusion that may be reached upon the presentation of such data is “. . . the
enzyme reaction was subject to substrate inhibition at [S] of greater than
2 mM .” This would be a naı̈ve comment; a more a precise comment
would be that “. . . the enzyme reaction was subject to substrate inhibi-
tion and reaction rates started to decline at [S] of greater than 2 mM .”
The difference between these statements lies much deeper than sim-
ply semantics.

To make an appropriate assessment of the pattern of inhibition, one
need only compare the pattern of reaction velocity versus [S] observed
relative to the pattern predicted from an application of the hyperbolic
kinetics model. This requires making an estimate of Vmax and Km from
the data available. Transforming the original data to a Lineweaver–Burke
plot (despite the aforementioned limitations) indicates that only four data
points (at low [S]) can be used to estimate Vmax and Km (as 3.58 units and
0.48 mM , respectively, Fig. 14.10). The predicted (uninhibited) behavior
of the enzyme activity can now be calculated by applying the rectangular
hyperbola [Eq. (14.5)] (yielding the upper curve in Fig. 14.11), and it
becomes clear that inhibition was obvious at [S] ≤1 mM . The degree of
inhibition is expressed appropriately as the difference between observed
and predicted activity at any [S] value, if one makes interpretations within
the context of the Michaelis–Menten model.

Because of the leveling off of enzyme activity at 3 to 5 mM [S]
(Fig. 14.9), another conclusion that may be reached through intuition is
that “. . . this pattern of activity can be explained by the presence of two
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Figure 14.9. Rate data for an enzyme subject to substrate inhibition.
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Figure 14.10. Data from Fig. 14.9 transformed to a double-reciprocal plot. Only some
data (©• ) were used to construct the linear plot and allow estimates of Vmax and Km.
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Figure 14.11. Example rate data in Fig. 14.9 (Ž) contrasted with the predicted behav-
ior (upper curve) of an uninhibited enzyme with the Vmax and Km values derived from
Fig. 14.10.

enzymes that act on this substrate, one enzyme subject to substrate inhibi-
tion, and the other enzyme not subject to substrate inhibition.” To assess
this statement, one must attempt to account mechanistically for the nature
of enzyme inhibition by substrate. One can envision the nature of substrate
inhibition using a modified form of the model in Eq. (14.1):

E+ S
k1−−⇀↽−−

k−1

ES
k2−−→ E+ P

+2 S
||��|| KI

ESS

(14.10)

where the added feature is the process whereby two molecules of S bind at
the active site to form a deadend (nonproductive) complex, characterized
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by a dissociation constant (KI) for the inhibited enzyme species (ESS):

KI = [E][S]2

[ESS]
(14.11)

Conceptually, this mode of inhibition can be visualized as each of two
substrate molecules binding to different subsites of the enzyme active site,
resulting in nonalignment of reactive groups (designated as “∗”) on E and
S (Fig. 14.12). Using the conventional approach of deriving the reaction
velocity expressions yields

v = Vmax[S]

Km + [S]+ (Km[S]2)/KI
(14.12)

This relationship takes the form of the original rectangular hyperbola
[Eq. (14.5)] modified by the incorporation of the substrate inhibition step:

y = ax

b + x + bx2/c
(14.13)

Since a and b were determined earlier (Fig. 14.10), the equation only
needs to be solved for c (KI). There are at least two ways to solve for

active site

Low [S] favors formation of ES and alignment of
reactive groups (∗) of E and S 

∗

∗

High [S] favors formation of ESS
and nonproductive binding 

Enzyme

active site

∗

∗

Enzyme

∗

Figure 14.12. Visualization of model derived for substrate inhibition of enzyme in
Eq. (14.10).
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KI, one of which is through nonlinear regression fitting of the actual data
using the relationship just described [Eq. (14.13)], and this yields a value
for KI of 1.85 mM (r2 = 0.98). A second and nonconventional way is to
use Fig. 14.10 and consider the points corresponding to the four greatest
[S] as observations in the presence of competitive inhibitor (Fig. 14.13).
This provides four estimates of KI if the plot is interpreted as behaving
by classical competitive inhibition kinetics (the exception being that the
[S]2 and not [I] parameter [based on scheme (14.10)] is used in the term
corresponding to the x-intercept). The mean of these four estimates of KI
is 1.78 mM (with a narrow range of 1.2 to 2.2 mM), very close to the
1.85 mM value determined by nonlinear regression.

Based on the two analyses just described, a KI value of 1.8 mM

was used and the pattern of enzyme activity predicted using the model
[Eqs. (14.10) through (14.13)] is shown as the lower curve in Fig. 14.11.
It is apparent that although there is some systematic deviation of the actual
data from the curve modeling substrate inhibition, the approximation to
the data observed is nonetheless reasonable.

To further evaluate the alternative views of the presence of one versus
two enzymes, one could proceed with evaluating how well the data fit a
two-enzyme model. In this scenario one is forced to make certain assump-
tions about the relative kinetic properties and contribution of each enzyme
to the behavior observed in Fig. 14.9. For the sake of this analysis, the
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Figure 14.13. Same plot as Fig. 14.10 except for the addition of four plots at high [S]
value (©• ) modeled as competitive inhibition by substrate. Intersects at 1/Vmax were con-
structed to arrive at four separate estimates of inhibition constant (KI) based on the model
in Eqs. (14.10) and (14.11). Original estimates of Km and Vmax were based on the data
used to construct the broken line plot, as in Fig. 14.10.
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assumptions made here are that:

1. The Km values for the two enzymes are the same (primarily because
without any further information, it would be difficult to assume
a priori that one enzyme has a greater or lesser Km value than
the other).

2. The relative contribution of activity of each enzyme at [S] = 10 mM

is equal.

Based on these assumptions, the contribution of the second, noninhib-
ited enzyme to the data observed (Fig. 14.9) can be calculated. The data
observed can now be partitioned into the individual contributions of the
two enzymes (Fig. 14.14a). The lower curve represents the uninhibited
enzyme and the upper curve represents the inhibited enzyme, which is
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Figure 14.14. Modeling of a two-enzyme system, with one enzyme subject to substrate
inhibition (�) and the other not inhibited by substrate (ž) using the data in Fig. 14.9
(Ž). (a) Both enzymes are assumed to have the same Km and make equal contributions
to activity observed at 10 mM [S]. (b) Both enzymes are assumed to have the same
Km and the uninhibited enzyme contributes 90% of the activity observed at 10 mM [S].
Additional plots (+++) in (b) predict the behavior of an enzyme subject to substrate
inhibition by binding only one molecule to S to form an inactive E′S complex with a KI

value of 1.8 mM (upper curve) or 0.5 mM (lower curve).
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calculated as the difference between the data observed (open symbols)
and the contribution of the uninhibited enzyme.

One now needs to evaluate how well the inhibition constant (KI) can
afford a fit to the pattern predicted for the inhibited enzyme (upper curve in
Fig. 14.14a) of the two-enzyme model. One approach would be to apply
a nonlinear regression (which in this case did not allow for convergence
or a good fit). An alternative approach is a more pencil-and-paper type
of exercise to test the inhibited enzyme (of the two-enzyme model) for
fit by rearranging Eq. (14.12) to solve for KI by calculating KI for the
inhibited enzyme component for each datum point or observation made:

KI = Km/[S]

(Vmax/v)− (Km/[S])− 1
(14.14)

This was done first for the original data (Fig. 14.9) after estimating Km and
Vmax (Fig. 14.10) and omitting the first four observations at [S] ≤ 4 mM

because some “nonsense” or negative numbers were obtained (the extent
of inhibition at low [S] is negligible and may be difficult to decipher). The
single-enzyme system subject to substrate inhibition and modeled by the
lower curve in Fig. 14.11 had a calculated [using Eq. (14.14)] mean KI
value of 2.2 mM (range 1.3 to 3.2 mM , again very close to the 1.8 mM

value derived from the two other approaches employed). When these same
data are modeled as a two-enzyme system, the inhibited enzyme was
characterized by a calculated [using Eq. (14.14)] KI value of 1.5 mM

(range 0.79 to 2.6 mM). This analysis and the calculation of mean (and
range of) KI provide little as a basis to differentiate conclusively between
the ability of one model to fit the observations better than the other, and
in this case, the most conservative approach would be to conclude that
the simpler (one-enzyme) model is valid.

Furthermore, if one modifies the assumptions to have the noninhib-
ited enzyme in the two-enzyme model constitute a greater proportion
(e.g., about 90%) of the activity observed at the greatest [S] (10 mM)
(Fig. 14.14b), the calculation of KI [using Eq. (14.14)] is subject to less
precision (mean of 1.0 mM and range of 0.22 to 2.2 mM), and there is
a systematic decline in KI as one progresses toward greater [S]. Thus,
the more the two-enzyme system model is emphasized in the analysis, the
less it fits the observed data, whereas a single-enzyme system (Fig. 14.11)
appears to explain the observations sufficiently well.

Finally, a model for substrate inhibition alternative to Eqs. (14.10)
and (14.11) was evaluated by testing if a nonproductive E–S complex
could involve only one (and not two) molecules of bound substrate (E′S
as the inhibited species as opposed to ESS). This was done using the
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kinetic constants (Vmax and Km) derived earlier from Fig. 14.10 and KI
values of 1.8 and 0.5 mM . The resulting plot predicted by this alternative
model are the two curves indicated by plus signs (+) for these respective
KI values in Fig. 14.14(b). It is obvious that simple enzyme inhibition
by a single molecule of bound substrate does not predict the cooperative
inhibitory effect of high [S] (2 to 10 mM in Fig. 14.9) as well as does
the model depicted in Eq. (14.10).

14.6 CONCLUSIONS

The purpose of this chapter is to illustrate how the application of simple
kinetic principles and relationships are critical to analyzing and reach-
ing appropriate conclusions for experimental observations on enzyme
kinetic properties. Many misrepresentations or errors in interpretation of
experimental data can be avoided by working within (or verifying the
applicability of) a kinetic model and not relying on intuition. Resisting
the immediate temptation to linearize the original data and analyze the
transformed data without careful consideration would also help!
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CHAPTER 15

USE OF ENZYME KINETIC DATA IN THE
STUDY OF STRUCTURE–FUNCTION
RELATIONSHIPS OF PROTEINS

TAKUJI TANAKA∗ and RICKEY Y. YADA∗

The ability to change specific residues or regions of proteins through the
use of techniques in molecular biology (e.g., site-directed mutagenesis)
has allowed for rapid and sizable advances in an understanding of the
structure–function relationships in proteins. Integral to these studies is
the analysis of enzyme kinetic data. In this chapter we examine how
enzyme kinetic data, by posing various questions, can be used in protein
structure–function studies based on molecular biological techniques. The
questions relate to our work with aspartic proteinases.

15.1 ARE PROTEINS EXPRESSED USING VARIOUS
MICROBIAL SYSTEMS SIMILAR TO THE NATIVE PROTEINS?

In protein structure–function studies in which molecular biological tech-
niques are used, the protein in question is expressed in either a procaryotic
system (e.g., bacteria such as Escherichia. coli ) or a eucaryotic system
(e.g., yeast such as Pichia pastoris). Using such expression systems allows
for rapid production of a protein or enzyme that has been cloned from
its original source [e.g., porcine pepsin(ogen) expressed in E. coli ]. These
systems are, however, not without their problems. In addition, when using
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such systems, the question arises: Is the cloned protein similar to the native
or noncloned protein?

Except for the case of human immunodeficiency virus protease (Seel-
meier et al., 1988; Danley et al., 1989; Darke et al., 1989; McKeever
et al., 1989; Meek et al., 1989), most efforts have failed to express soluble
protein (Nishimori et al., 1982, 1984; Lin et al., 1989; Chen et al., 1992).
Researchers have therefore been forced to express recombinant aspartic
proteases as inclusion bodies. Proteins formed as inclusion bodies must
be unfolded and then refolded to obtain a “properly” folded protein. Many
research groups have reported that the folding step is protein dependent
and that a successful method for one protein does not always apply to
other proteins (Creighton, 1978; Kane and Hartley, 1988; Georgiou and
De Bernardez-Clark, 1991). Such results suggest that slight differences
between experiments may result in different forms of the protein (i.e.,
refolded and unfolded protein). In addition, refolding does not ensure that
the entire protein molecule is folded in the correct configuration.

Expression as a fusion protein (e.g., thioredoxin), has often been used to
obtain soluble proteins (Nilsson et al., 1985; LaVallie et al., 1993). In this
light, we were able to fuse porcine pepsinogen successfully to the thiore-
doxin gene and express this fusion protein in E. coli (Tanaka and Yada,
1996). We were able to generate r-pepsin from both r-pepsinogen and the
fused protein (i.e., thioredoxin+ pepsinogen). Amino terminal analyses
confirmed that the E. coli expression system was able to produce soluble
pepsin and pepsinogen molecules. Porcine pepsin A (c-pepsin, commer-
cial pepsin) was purified from its zymogen (c-pepsinogen) using the same
method as was used for recombinant pepsin (r-pepsin) and served as a
reference for our studies. Recombinant (r-) and c-pepsins showed sim-
ilar milk clotting and proteolytic activities. Kinetic analyses of r- and
c-pepsins are shown in Table 15.1. Michaelis and rate constants for both
pepsins were similar, as was pH dependency. From this study we con-
cluded that the fusion pepsinogen expression system could successfully
produce recombinant porcine pepsinogen as a soluble protein, which could
be activated into active pepsin.

Despite the benefits of fusion protein systems, there are limitations. The
biggest limitation is the requirement for enzymatic digestion to obtain the
zymogen. In addition, E. coli does not possess a posttranslational modifi-
cation system. Recently, the methylotrophic yeast P. pastoris has become
a dominant tool in molecular biology for the production of recombinant
proteins. As a eucaryote, it is capable of posttranslational modifications
during expression, such as proteolytic processing, folding, disulfide bond
formation, and glycosylation (Cregg et al., 2000). A further advantage of
the Pichia expression system is that it uses a signal peptide fused to target
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TABLE 15.1 Kinetic Analysis of Recombinant and Commercial Pepsina

Enzymeb

Milk Clotting
(units/mg)

Proteolysis
(units/mg)

Km

(mM)
kcat

(s−1)

r-pepsin∗ 27.9± 1.5 19.8± 0.3 0.033± 0.005 65.4± 3.1
r-pepsin† 27.7± 1.6 ND ND ND
c-pepsin 28.3± 0.8 21.1± 0.5 0.026± 0.004 79.5± 3.8

aSee Section 15.7 for abbreviations. ND, no data.
b, ∗ and † represent pepsin purified from r-pepsinogen and Trx-PG, respectively. One unit of milk
clotting activity was defined as the amount of protein that gave a 0.4 unit change in absorbance over
1 s. One unit of proteolytic activity was defined as the amount of protein that gave a change of 1
absorbance unit (due to soluble peptides) at 280 nm in 1 min. Each value represents the mean of
three determinations± standard deviation.

TABLE 15.2 Kinetic Analysis of Pichia Expressed and Commercial Pepsina

Enzyme pH Km (mM) kcat (s−1) kcat/Km (s−1 mM−1)

r-pepsin 1.0 0.091± 0.010 217.1± 10.1 2390± 174
2.0 0.062± 0.003 162.1± 5.9 2600± 47
3.0 0.048± 0.007 183.8± 8.6 3820± 397

c-pepsin 1.0 0.062± 0.010 115.8± 9.2 1900± 177
2.0 0.054± 0.010 105.7± 10.4 2010± 268
3.0 0.040± 0.010 105.6± 1.1 2640± 46

aSee Section 15.7 for abbreviations. Kinetic constants represent a minimum of three determinations±
standard deviation. No significant difference was found between r- and c-pepsin at the various pH
values using a Student’s t-test at the 0.05 level of significance.

the protein gene that is digested off during secretion. This secretion has an
advantage over intracellular expression systems since most of the protein
in the culture medium will be the desired protein, thus making purification
easier. We have developed a protein expression for pepsin(ogen) using P.
pastoris (Yoshimasu et al., 2002). The Km and kcat values for commer-
cial and recombinant pepsins were not significantly different (p > 0.05)
(Table 15.2). In addition, there were no differences in pH dependency
of the activity. In conclusion, two different expression systems can be
employed, depending on the objectives of the research.

15.2 WHAT IS THE MECHANISM OF CONVERSION OF A
ZYMOGEN TO AN ACTIVE ENZYME?

The mechanism by which the zymogen of the enzyme is converted to the
active form of the enzyme has been the focus of a number of researchers.
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For pepsin, activation from pepsinogen can occur via two different mech-
anisms. One is a bimolecular reaction (an intermolecular reaction), in
which a pepsin molecule converts pepsinogen into pepsin; the other is
an unimolecular reaction (self-activation; an intramolecular reaction), in
which a pepsinogen molecule cleaves itself to yield a pepsin molecule
(Herriott, 1939; Bustin and Conway-Jacobs, 1971; Al-Janabi et al., 1972;
McPhie, 1974).

In our E. coli expression system, fusion pepsinogen (Trx-PG) can
be activated (1) directly without generating pepsinogen, or (2) through
pepsinogen via pepsin (Tanaka and Yada, 1997). Analysis of the activa-
tion kinetics of these two possibilities revealed an interesting observation.
Activation kinetics of r-pepsinogen (r-PG) were plotted in Fig. 15.1(a).
r-PG exhibited an initial lag phase (closed triangles, Fig. 15.1a), after
which the rate of activation accelerated. This observation would indi-
cate that the pepsin molecule, which is initially activated from r-PG by a
unimolecular reaction, began to hydrolyze other r-PG molecules (bimolec-
ular activation) and that bimolecular activation, rather than self-activation,
became the dominant reaction (due to increasing amounts of pepsin being
released). When both bimolecular and unimolecular activation occur, first-
and second-order rate constants should be determined in order to obtain
the activation rate constants (Al-Janabi et al., 1972). The equation used
to fit the data is

−�[r-PG]

�t
= k1[r-PG]+ k2[r-PG][r-pepsin] (15.1)

Equation 15.1 describes a sigmoidal activation curve as long as k1 and k2
exist. However, no sigmoidal curve was observed at any of the pH values
examined for the Trx-PG’s. In addition, the fusion protein exhibited no
difference (within error) in activation in the absence or presence of a 1 : 1
molar ratio of pepsin molecules (Fig. 15.1b), whereas r-PG activation was
accelerated in the presence of exogenous pepsin (Fig. 15.1a). Again, if
activation of Trx-PG by pepsin is much faster than self-activation, as was
observed in r-PG, faster activation would be expected with exogenous
pepsin, but no such effect was observed. These results do not discount
the existence of bimolecular activation of Trx-PG, but would suggest that
bimolecular activation was extremely slow in comparison to unimolecular
activation. Based on the results above, the activation of Trx-PG followed

−�[Trx-PG]

�t
≈ k[Trx-PG] (15.2)

and can be analyzed by a conventional Guggenheim plot (Guggenheim,
1926) to calculate the rate constant for unimolecular activation for Trx-PG.
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Figure 15.1. Example of the activation time course of (a) recombinant pepsinogen (r-PG),
and (b) fusion pepsinogen (Trx-PG) at pH 2.0. The ratio of activated zymogens was cal-
culated from the activity measurements. Nonactivated samples are defined as 0% and the
plateau of the activation curves is defined as 100%. Open symbols represent pepsinogen
activated in the presence of exogenous pepsin, closed symbols represent pepsinogen in
the absence of exogenous pepsin. Each data point represents the mean of a minimum of
three determinations.

The rate constants for Trx-PG were 0.0276± 0.0004, 0.0120± 0.0010,
and 0.0099± 0.0001 s−1 at pH 1.1, 2.0, and 3.0, respectively. The results
showed that the unimolecular activation of the fusion protein was dom-
inant and different from that of r-PG. The difference in the activation
mechanism was definitely caused by thioredoxin. The presence of thiore-
doxin itself, however, did not alter r-PG activation mechanism since the
sigmoidal curve of r-PG activation indicated that the unimolecular activa-
tion was extremely slow even in the presence of thioredoxin molecules,
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which existed in r-PG solution as the cleaved prosegment . Only when
thioredoxin was covalently bonded to pepsinogen was unimolecular acti-
vation dominant. The thioredoxin portion is approximately one-fourth of
the entire fusion molecule (Fig. 15.2a). The bulky prosegment of the
fusion protein would stabilize the catalytic intermediate of unimolecu-
lar activation and could also retard bimolecular activation. The bulkiness
of the prosegment of the fusion protein could prevent pepsin molecules
from approaching the cleavage site, Leu44p-Ile1 (Fig. 15.2b).

15.3 WHAT ROLE DOES THE PROSEGMENT PLAY
IN THE ACTIVATION AND STRUCTURE–FUNCTION
OF THE ACTIVE ENZYME?

Some proteinases are synthesized as zymogens (inactive forms), which
allows them to exist in a stable form until the active form of the enzyme
is required. Under physiological conditions, porcine pepsin is secreted
in the stomach as a zymogen, pepsinogen. In pepsinogen, a 44-residue
peptide, referred to as a prosegment, blocks the entrance to the active
site. During the conversion from pepsinogen to pepsin, the prosegment is
removed. The prosegment in pepsinogen covers the active site, although
the actual cleavage site between the enzyme body and the prosegment
is not in the active site. The removal of the prosegment must occur in
conjunction with a conformational change in order to bring the digested
position into an active site (Richter et al., 1998).

In pepsinogen, Lys36p forms salt bridges with the catalytic aspartic
acid residues. These salt bridges seem to be a key factor governing the
stability of the prosegment. Therefore, it is possible that replacing Lys36p
with Glu, Arg, and Met will increase the rate of conformational change
required for activation by affecting the dissociation of the prosegment
(Richter et al., 1999). Therefore, three mutants were constructed in our
lab: Lys36pGlu, Lys36pMet, and Lys36pArg. Arg and Met mutations did
affect the pH range in which activation occurred, while the two muta-
tions did not alter the pH optimum for activation. In addition, relative to
wild-type Trx-PG, which exhibited no conversion to pepsin at pH ≥ 4,
Lys36pArg and Lys36pMet were capable of activation up to pH 5.0 and
pH 5.5, respectively. In the case of Lys36pGlu, the pH dependence of
the potential pepsin activity could not be determined accurately since
Lys36pGlu Trx-PG was not stable at neutral pH which was used to quench
the activation reaction.

The activation curves for wild-type, Lys36pArg, and Lys36pMet Trx-
PG at pH 1.1, 2.0, and 3.0 are shown in Fig. 15.3. Under these conditions,
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Figure 15.2. Three-dimensional structure of pepsinogen and thioredoxin, and schematic
scheme of activation of Trx-PG. (a) Three-dimensional structures of pepsinogen and
thioredoxin (Protein Data Bank 3PSG and 2TRX, respectively) are shown in the same
scale. The prosegment of pepsinogen is shown in ball-and-stick models. The N-terminal of
pepsinogen and C-terminal of thioredoxin are indicated with arrows. Thioredoxin consists
of 108 amino acid residues, and pepsinogen is 371 amino acid residues long. In Trx-PG,
both proteins are connected by a 20-amino acid residue linker. (b) Proposed scheme of
how thioredoxin prevents pepsin from cleaving the fusion protein. In both the fusion
protein (Trx-PG) and pepsinogen, two aspartic active sites (two D’s in the figure) are
covered with a prosegment (the thick lines in the figure). Pepsinogen can be activated
into pepsin through either self-activation or bimolecular activation. Trx-PG has a large
independent domain (i.e., thioredoxin portion) at the amino terminal of the prosegment.
This large domain would prevent pepsin from approaching the susceptible site on the
prosegment, and therefore the bimolecular reaction could not occur.
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Figure 15.3. Time course of activation of (a) wild-type, (b) Lys36pArg, and (c) Lys36p-
Met Trx-PG (0.067 mg/mL) at 14◦C. Each activation curve was measured at pH 1.1, 2.0,
and 3.0 by a synthetic substrate assay. Activation curves at pH 1.1, open circles; activation
curves at pH 2.0, closed squares; activation curves at pH 3.0, open triangles.

the activation curves were exponential in shape, suggesting that the rate-
limiting step in the conversion of pepsinogen to pepsin occurs by a first-
order reaction. First-order activation kinetics were confirmed by (1) linear
semilogarithmic plots of pepsinogen concentration versus time, and (2) by
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showing that the first-order rate constant calculated from a first-order rate
equation was similar to that obtained from a mixed first- and second-order
equation. These findings indicate that a negligible amount of pepsinogen
was converted to pepsin by a second-order pepsin-catalyzed reaction (k2
values were less than 1% of k1 values). Therefore, the rate-limiting step,
in the activation of wild-type, Lys36pArg, and Lys36pMet Trx-PGs, pro-
ceeds predominantly by a first-order reaction and thus an intramolecular
mechanism at pH ≤ 3 (Tanaka and Yada, 1997).

The first-order activation rate constants (k1) for wild-type, Lys36pMet,
and Lys36pArg Trx-PGs shown in Table 15.3 indicated that the rate of
intramolecular activation of Lys36pArg was 5.3-, 2.4-, and 1.7-fold higher
than that of the wild-type at pH 1.1, 2.0, and 3.0, respectively. In addition,
Western blots of the activation process showed that Lys36pArg Trx-PG
disappeared more rapidly than did wild-type Trx-PG at pH 1.1 and 2.0
(data not shown). The activation of Lys36pMet Trx-PG showed higher
k1 values than those of Lys36pArg. Activation of Lys36pMet at pH 1.1
and 2.0 was 9.4- and 12.6-fold faster than WT, respectively. At pH 3.0,
Lys36pMet had a k1 value 6.2 times higher than that of the wild-type
enzyme. This activation rate was even faster than WT at pH 2.0. Western
blots of the activation reaction at pH 1.1 and 2.0 clearly show more rapid
disappearance of Lys36pMet pepsinogen relative to the disappearance of
wild-type Trx-PG (data not shown). Therefore, mutating Lys36p to Arg
and Met appears to have increased the rate of the rate-limiting step in the
intramolecular activation of Trx-PG.

The kinetic constants for the pepsins derived from the acidification
of the wild-type and the three mutant Trx-PGs are shown in Table 15.4.
Although the Lys36p mutation had little or no effect on Km, the muta-
tions resulted in decreases in kcat. Although Lys36pGlu also had lower
kcat values, it was difficult to determine the catalytic rate of this mutant,

TABLE 15.3 First-Order Rate Constants (k1) for the Activation of Wild-Type,
Lys36pArg, and Lys36pMet Trx-PG at 14 ◦C determined with the Synthetic Peptide
Substrate Lysine–Proline–Alanine–Glutamic Acid–Phenylalanine–Phenylalanine
(NO2)–Alanine–Leucinea

First-Order Rate Constant (min−1) ± SD

pH 1.1 2.0 3.0

Wild-type 1.10± 0.10 0.519± 0.058 0.109± 0.011
Lys36pArg 5.80± 0.51 1.25± 0.13 0.185± 0.025
Lys36pMet 10.3± 1.2 6.56± 0.64 0.675± 0.012

aSee Section 15.7 for abbreviations. Rate constants represent the mean of three determinations ± stan-
dard deviation.
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TABLE 15.4 Kinetic Parameters for Pepsins Obtained from Activation
of Wild-Type Trx-PG and Lys36pArg and Lys36pMet Trx-PGa

Substrate

ss 1b ss 2c

Pepsin Km (mM) kcat (s−1) Km (mM) kcat (s−1)

Wild-type 0.084± 0.019 88.8± 10.4 0.023± 0.004 49.1± 3.8
Lys36pArg 0.050± 0.011 24.7± 2.4 0.023± 0.004 18.3± 1.4
Lys36pMet 0.077± 0.010 30.6± 2.0 0.014± 0.002 19.6± 0.9

aSee Section 15.7 for abbreviations. Each value represents the mean of three determinations ± stan-
dard deviation.
bss1, substrate consisting of the peptide lysine–proline–alanine–glutamic acid–phenylalanine–
phenylalanine (NO2)–alanine–leucine.
css2, substrate consisting of the peptide leucine–serine–phenylalanine (NO2)–norleucine–leucine–
methyl ester.

due to its instability; therefore, the results could not be confirmed. The
minimal effect of the mutations on Km suggests that overall conforma-
tion of the substrate-binding cleft was not altered by the mutations, while
the reductions in kcat suggest that the mutations produced local changes
in residues involved in the catalytic mechanism. One possibility is that
the mutations altered the orientation of the catalytically essential aspar-
tates, Asp32 and Asp215, which form ion pairs with the ε-amino group
of Lys36p. Changes in the position of these two Asp residues relative to
each other or relative to a water molecule, believed to be the nucleophile
in the catalytic mechanism, could compromise the ability of the active
site to hydrolyze substrate.

From the studies above, it was concluded that electrostatic interactions
between K36p and catalytic center residues were critical in stabilizing
the prosegment as well as contributing to the higher activity of acti-
vated pepsin.

15.4 WHAT ROLE DO SPECIFIC STRUCTURES AND/OR
RESIDUES PLAY IN THE STRUCTURE–FUNCTION OF
ENZYMES?

Loops are a class of secondary structure that reverse the direction of a
polypeptide chain and are usually situated at the protein surface. Unlike
α-helices and β-sheets, loop structures have no regular patterns of dihedral
angles and hydrogen bonds (Leszczynski and Rose, 1986; Fetrow, 1995).
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Loop residues that are involved in catalysis may be more highly conserved
than amino acids in surface loops, whose role is purely structural. This
sequence conservation can involve amino acids that interact directly with
a substrate as well as amino acids that help stabilize various conformations
that the loop may adopt during catalysis (Rose et al., 1985).

The crystal structures of pepsin in free and inhibited forms indicate
that three flap residues, tyrosine 75, glycine 76, and threonine 77, con-
tribute directly to a particular subsite specificity by hydrogen bonding to
substrate residues (Chen et al., 1992; Hartsuck et al., 1992). We therefore
undertook various mutations of the aforementioned residues to determine
their role(s) in the structure–function relationship of pepsin(ogen). Below
is a description of our study involving the mutation of glycine 76. The
reader is referred to Tanaka et al. (1998) and Okoniewska et al. (1999)
regarding our mutations to residues Tyr75 and Thr77, respectively.

In our glycine 76 study (Okoniewska et al., 2000), this position was
substituted with alanine, valine, and serine. These amino acids differ in
their van der Waals volumes, accessible surface areas, polarities, and
allowable energy levels on Ramachandran plots for individual amino
acids. Rate constants for the activation process were calculated for the
mutants and the wild-type enzymes at pH 1.1, 2.0, and 3.0. Samples
were taken at different activation times, quenched, and the amount of
pepsin formed was determined with synthetic substrate I. Activation rate
constants presented in Table 15.5 corresponded to first-order reaction con-
stants. All the mutants activated at rates slower than those for the wild-
type, regardless of amino acid size and polarity. At all pH conditions,
the activation reactions were slowest for valine and serine mutants, which
had comparable reaction rates. The alanine mutant activated more slowly
than did the wild-type but was faster than the other two mutants.

TABLE 15.5 First-Order Rate Constants for Activation of Thioredoxin–
Pepsinogen Fusion Proteinsa

kact (min−1)

Enzyme pH 1.1 pH 2.0 pH 3.0

Wild-type 4.449± 0.262 2.819± 0.152 1.043± 0.089
Gly76Ala 0.311± 0.076 0.332± 0.0014 0.104± 0.029
Gly76Val 0.132± 0.001 0.152± 0.013 0.054± 0.001
Gly76Ser 0.130± 0.014 0.166± 0.014 0.059± 0.003

aSee Section 15.7 for abbreviations. Rate constants represent the mean of a minimum of two deter-
minations ± standard deviation.
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TABLE 15.6 Kinetic Parameters for the Wild-Type Pepsin and G76 Mutantsa

Substrate Enzyme Km (mM) kcat (s−1) kcat/Km (mM−1 s−1)

ss1b Wild-type 0.043± 0.005 180.5± 10.3 4198± 544
Gly76Ala 0.098± 0.008 47.0± 9.9 395± 96
Gly76Val 0.071± 0.011 11.1± 1.1 160± 30
Gly76Ser 0.085± 0.005 2.5± 0.6 29± 7

ss2c Wild-type 0.011± 0.002 88.7± 4.6 8064± 1525
Gly76Ala 0.040± 0.009 43.4± 3.6 1085± 260
Gly76Val 0.044± 0.005 1.2± 0.1 28± 3
Gly76Ser 0.041± 0.008 2.9± 0.3 70± 16

aSee Section 15.7 for abbreviations. Each value represents the mean of a minimum of two determi-
nations ± standard deviation.
bss1, substrate consisting of the peptide lysine–proline–alanine–glutamic acid–phenylalanine–
phenylalanine (NO2)–alanine–leucine.
css2, substrate consisting of the peptide leucine–serine–phenylalanine (NO2)–norleucine–leucine–
methyl ester.

Kinetic properties of wild-type and mutant enzymes were determined
with two synthetic substrates, and the kinetic constants Km and kcat were
calculated using a nonlinear least-squares method (Sakoda and Hiromi,
1976). Different synthetic substrates and pH values are used in kinetic
analyses to differentiate between differences in substrate binding and cat-
alytic environment The kinetic parameters are presented in Table 15.6.

All the mutants, regardless of amino acid size and polarity, had lower
substrate affinity and turnover numbers than those for the wild-type. The
differences in the catalytic parameters were similar for the two synthetic
substrates, indicating that the changes were not substrate specific and
the results could therefore be attributed to differences in the catalytic
environments of the mutants. The kinetic experiments were performed at
two different pH values, pH 2.1 for synthetic substrate I and pH 3.95 for
synthetic substrate II. The kinetic constants showed the same tendencies
at the two different pH conditions. Therefore, it was concluded that the
mutations did not change pH dependencies of mature enzymes.

The results above indicated that the mutations had a minimal effect on
substrate binding and influenced primarily the properties of enzyme-bound
species in the reaction pathway. Additionally, stereochemical analysis of
peptide bond hydrolysis (James and Sielecki, 1985) and pepsin crystal
structure (Sielecki et al., 1990) indicated that glycine 76 is in a position
most favorable for interactions with reaction intermediates. A possible
involvement of glycine 76 in stabilizing the transition state was suggested
as a hypothetical catalytic mechanism for pepsin (Pearl, 1987). As indi-
cated above, all the mutants had altered kinetic constants compared to
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the wild-type; however, the degree of a change was different for indi-
vidual enzymes. The alanine mutant was affected less than either valine
and serine mutants, which had comparable catalytic constants. Compared
to valine and serine, alanine has the smallest van der Waals volume and
accessible surface area. Therefore, it introduces a relatively smaller restric-
tion to a polypeptide conformational flexibility and has relatively fewer
contacts with surrounding atoms. Valine and serine mutants have larger
volumes, and their presence in a polypeptide chain results in greater con-
formational restrictions, due to an atom-crowding effect. Consequently,
the results suggested that all the mutations reduced polypeptide confor-
mational freedom in the flap region. This is in agreement with molecular
dynamics calculations and structural analyses of the mutants, where the
greatest local perturbations were observed for Gly76Val mutant. Alanine,
which has the smallest side chain of the three substituted amino acids, had
the smallest effect on enzyme catalysis and local conformation. Introduc-
tion of bulkier amino acids, serine and valine, resulted in greater decreases
in catalytic parameters and activation rate constants. Our results, com-
bined with observations made in other loop structures, demonstrate that
glycine 76 in pepsin contributes to flap flexibility and that this flexibility
is essential for efficient catalysis.

15.5 CAN MUTATIONS BE MADE TO STABILIZE THE
STRUCTURE OF AN ENZYME TO ENVIRONMENTAL
CONDITIONS?

Most proteins are synthesized in a neutral-pH environment; thus their nat-
ural conformation state and functionality are adapted to this environment.
However, most aspartic proteinases are stable under acidic conditions and
become irreversibly denatured at neutral pH conditions (Bohak, 1969; Fru-
ton, 1971). In the case of pepsin, its zymogen, pepsinogen, is stable under
neutral-pH conditions. Since pepsin and pepsinogen are almost identical
in structure, minor differences may be responsible for pepsin’s instability
at neutral pHs. Why is pepsin so unstable, despite being similar in confor-
mation to pepsinogen? In a recent study, we undertook various mutations
in attempts to stabilize the structure of pepsin.

15.5.1 Charge Distribution

The most obvious differences between pepsin and pepsinogen are found
in the prosegment portion. Not only does the prosegment cover the active-
site cleft, but it contains a large number of positively charged residues [i.e.,
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13 (nine lysine, two arginine, two histidine) out of the 44 residues in the
prosegment of pepsinogen are positively charged] (James and Sielecki,
1986; Lin et al., 1989). Pepsin, on the other hand, contains only four
positive residues (two arginine, one lysine, one histidine). Therefore, the
number and distribution of these positively charged residues contribute to
the difference in pH stability between pepsin and pepsinogen. In contrast,
unlike most aspartic proteinases, chicken pepsin is relatively stable at neu-
tral pHs (Bohak, 1969). A homology search between porcine and chicken
pepsin shows a 74% similarity. Major differences between chicken and
porcine pepsins are in charge distribution and in the N-terminal amino acid
sequences. In chicken pepsin, there are 21 aspartic acid, 13 glutamic acid,
9 lysine, 5 arginine, and 4 histidine charged residues, whereas in porcine
pepsin, 28, 13, 1, 2, and 1 are charged, respectively. For both porcine and
chicken pepsin, most of these charged residues are distributed on the sur-
face. In the resultant chicken-like mutant, N+ C, 7 positive residues were
added and 3 negative residues were removed. Kinetic measurements of this
mutant were determined at pH 2.1 and 3.95 and shown to have comparable
kinetic constants to the wild-type. Therefore, mutations on the surface had
little effect on kinetic parameters (Table 15.7). Although the N+ C mutant
had activity similar to that of the wild-type, the stability at neutral pH
changed (Table 15.8 and Fig. 15.4). The mutant was inactivated at about
half the rate of the wild-type. The inactivation rates of the mutants that had
mutations on only the N- or C-terminal domains (N-DOM and C-DOM,

TABLE 15.7 Kinetic Constants of Mutant and Wild-Type Pepsinsa

ss1b ss2c

Enzyme Km (mM) kcat (s−1) Km (mM) kcat (s−1)

Wild-type 0.034± 0.005 65.4± 3.1 0.019± 0.006 190.5± 18.9
N+ C 0.057± 0.005 77.5± 2.9 0.031± 0.013 50.7± 9.4
Del 0.070± 0.006 60.9± 2.6 0.015± 0.002 25.7± 1.0
N-frag 0.083± 0.015 68.9± 6.6 0.028± 0.007 80.7± 10.2
N-frag (A) 0.075± 0.008 186.0± 9.8 0.028± 0.007 122.0± 15.6
N-frag (B) 0.065± 0.009 187.1± 12.8 0.041± 0.005 315.3± 16.8
Gly2Cys/Leu167Cys 0.080± 0.007 41.6± 2.0 0.018± 0.001 13.0± 0.22

aSee Sections 15.7 for abbreviations. Each value represents the mean of a minimum of two deter-
minations ± standard deviation.
bss1, substrate consisting of the peptide lysine–proline–alanine–glutamic acid–phenylalanine–
phenylalanine (NO2)–alanine–leucine.
css2, substrate consisting of the peptide leucine–serine–phenylalanine (NO2)–norleucine–leucine–
methyl ester.
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TABLE 15.8 Rate Constants of Inactivation for
Mutant Pepsins at pH 7.0a

Enzyme kd(min−1)b

N-frag 0.0169± 0.0014
N-frag (glycerol, sucrose) 0.00229± 0.00031
N-frag (pH 7.5) 0.268± 0.008
N-frag (A) 0.0680± 0.0038
N-frag (B) 0.0646± 0.0015
Gly2Cys/Leu167Cys 0.0536± 0.0051
N+ C 0.0421± 0.0071
N-DOM 0.0905± 0.0173
C-DOM 0.0852± 0.0237
Wild-type 0.0991± 0.0075
Wild-type (glycerol) 0.0365± 0.0026
Wild-type (sucrose) 0.0203± 0.0009
Wild-type (glycerol, sucrose) 0.00743± 0.00216
Wild-type (pH 7.5) ND

aSee Section 15.7 for abbreviations.
bKd values represent the mean of three determinations ± stan-
dard deviation. ND, not determined, inactivation was too rapid
(completed within 5 min) under the experimental conditions to
determine the inactivation rate.
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Figure 15.4. Inactivation of wild-type and mutant pepsin. Pepsin was inactivated under
the conditions described in the text, and residual activities were plotted; ž, wild-type; �,
N + C; Ž, Del; �, N-frag(A); �, N-frag(B). Each data point represents the mean of three
determinations.
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respectively) were comparable to that of the wild-type. Since Lin et al.
(1993) had shown that the initial denaturation occurred in the N-terminal
domain, the mutations on the N-terminal domain were expected to have
a dominant effect. The negatively charged residues on the N-terminal
domain themselves, however, only had a minor effect on the stability.
Thus, these results demonstrated that the distribution of negatively charged
residues on the surface of the porcine pepsin helped stabilize the enzyme;
however, the degree of stabilization was not substantial.

15.5.2 N-Frag Mutant

Another difference between pepsin and pepsinogen is the location of
the N-terminal fragment. In the zymogenic form and during activation,
the N-terminal fragment is in the active-site cleft. After activation, this
N-terminal fragment is placed in the β-sheet at the bottom of the protein.
This relocation results in about a 40-Å movement (James and Sielecki,
1986). Since this portion relocates from one side of the protein to the
other side, it is suggested that this fragment could readily be moved
from its position and could be important for the stabilization of pepsin
under neutral-pH conditions. Therefore, it is suggested that stabilizing
this fragment in its original position, which was a strand of a β-sheet
at the bottom of pepsin molecule, will prevent denaturation in the event
of neutralization. To examine this possibility, mutations were introduced
into the N-terminal portion to keep it in the fixed position at the bottom
of the pepsin molecule. The comparison of the amino acid sequence of
the pepsins from porcine and chicken (chicken pepsin is relatively stable
at neutral conditions) revealed major differences in the N-terminal por-
tion. We chose five amino acid residues to be replaced. The mutation of
the N-terminal portion was done with two sets of mutations, N-frag(A)
and N-frag(B). These two mutants and a third mutant which combined
both mutations (N-frag) exhibited similar kinetic constants to the wild-
type and had comparable catalytic activities for both synthetic substrates
(Table 15.7). Stability tests of the N-frag mutant showed that it was 5.8
times more stable than the wild-type (Table 15.8 and Fig. 15.5a). Whereas
the wild-type was inactivated in 60 minutes, this mutant retained 30%
of its activity after 60 minutes. Even after 4 hours, 18% of the original
activity was observed with this mutant. When the pH was raised to 7.5
(Fig. 15.5b), the wild-type showed no activity after 5 minutes. Even the
addition of glycerol and sucrose, which have been shown to stabilize the
enzyme, had no effect. When the N-frag mutant was exposed to pH 7.5, it
retained 5% activity after 15 minutes. The rate constant of inactivation for
N-frag at pH 7.5 was 0.268 per minute. Moreover, in the presence of both
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Figure 15.5. Inactivation of amino terminal fragment mutant. Inactivation test of N-frag-
ment, N-frag(A), and N-frag(B) mutants showed that individual mutations in N-fragment
mutant were not critical for the stabilization of pepsin. Both N-frag (A) and (B) mutants
showed slight stabilization effects (b) and were similar in stability (a) to the wild-type,
while N-frag mutant showed drastic stabilization. (a) The inactivation reactions were
carried out at pH 7.0; (b) the inactivation reactions were carried out at pH 7.5. Symbols
are wild-type (Ž), N-frag(A) (�), N-frag(B) (�), N-fragment (�), wild-type with glycerol
and sucrose (ž), N-frag(A) with glycerol and sucrose (�), N-frag(B) with glycerol and
sucrose (�), and N-fragment with glycerol and sucrose (�) Each data point represents
the mean of three determinations.

glycerol and sucrose at pH 7.5, the enzyme retained 25% activity after
30 minutes. Since the N-frag mutant had five amino acid replacements,
some of the mutations could be more critical than others. The N-frag(A)
and N-frag(B) mutants, however, were less stable than the N-frag mutant
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(Fig. 15.5). Both mutants showed an inactivation rate about 1.5 times
slower than that of the wild-type, while the N-frag mutant was 5.8 times
slower. Also, at pH 7.5, the activities of both N-frag(A) and N-frag(B)
mutants were quenched more slowly than the wild-type, but faster than
the N-frag mutant. After 5 minutes, N-frag(A), N-frag(B), N-frag, and
wild-type had 0, 3, 27, and 0% of the original activity in the absence of
glycerol and sucrose, while 45, 46, 0 and 72% of the original activities
remained in the presence of glycerol and sucrose, respectively. Molecu-
lar minimization using molecular modeling showed that these mutations
did not contribute to the internal interactions (Fig. 15.6). The only major
difference between the wild-type and N-frag mutant was the addition of a
hydrogen bond between serine 2-glycine oxygen and leucine-167 nitrogen
in the glycine 2 serine mutation. The kinetics of the N-frag(A) mutant,
however, showed that this addition was insufficient to stabilize the protein
entirely. It was thus concluded that each of the five replacements by them-
selves were not critical, but helped to stabilize the enzyme synergistically.
Since each of the mutations above in itself was not critical to stabilization,
the mechanism of stability was still in question. We, therefore, suggested
two possibilities of how the mutations stabilized pepsin: (1) the release
of N-terminus portion is prevented with these mutations, or (2) these
mutation sites are responsible for the stability of the N-terminal portion
released. The crystal structure of inactive cathepsin D at pH 7.5 showed
that the N-terminal portion is relocated into the active-site cleft and is sta-
bilized by an interaction to the catalytic site (Lee et al., 1998). From this
crystal structure data, we suspect the second possibility to be more likely.

15.5.3 Disulfide Linkages

Disulpfide links are known to connect distal regions of the polypeptide
chain and therefore have often been associated with increased stability
against denaturation. If the mobility of the N-terminal portion initiates
denaturation, it would be logical to think that fixing this portion to
the enzyme body would prevent denaturation. To fix the N-terminus
portion to the enzyme body, a potential disulpfide bond was introduced.
This mutant, Gly2Cys/Leu167Cys, had a cysteine residue at the second
residue of the N-terminal portion and another cysteine on the opposite
side of the enzyme body (Fig. 15.7). Kinetic studies of this mutant
showed a lower, albeit a substantial amount of activity compared to
the wild-type enzyme (Table 15.7). The rate constant of inactivation of
Gly2Cys/Leu167Cys at pH 7.0 was about half that of the wild-type but
was not as low as that for the N-frag mutant. However, inactivation
slowed down after 30 minutes, and had lower but noticeable activity
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Asp3Tyr

Gly2Ser

Glu13Ser

Thr12Ala

Leu10Met

Figure 15.6. Molecular model comparison of wild-type and amino terminal fragment
mutant pepsin. Superposition of the bottom β-sheet and N-terminal fragment of wild-type
and N-frag mutant models. There were no major differences. Root-mean-square deviation
between backbone atoms of wild-type and N-frag was 0.28 Å. The numbers show the
mutation sites in N-frag.

2

167

Figure 15.7. Molecular model of the introduced disulfide bond in Gly2Cys/Leu167Cys
mutant pepsin. A molecular model around the mutation site of Gly2Cys/Leu167Cys. The
introduced disulfide bond, shown by the arrow, is well accommodated in this position.

(3.2%) over 24 hours, whereas the N-frag, N-frag(A), and N-frag(B)
mutants were completely inactive after 24 hours. These results would
imply that formation of the disulpfide bond prevented denaturation by
preventing movement of the N-terminal portion. However, the slower
disulfide bond formation seemed to compete with the faster inactivation
since substantial activity was lost before reaching the plateau. To increase
the rate of disulfide bond formation, oxidizing reagents were used
[i.e., FeCl3, K3Fe(CN)6, o-iodothobenzoate, dithionitrobenzoate, and 3,3′-
dithiopyridine]. These reagents had comparable effects. After 24 hours
of oxidization with 2 mM FeCl3, the oxidized Gly2Cys/Leu167Cys was
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Figure 15.8. Inactivation of Gly2Cys/Leu167Cys mutant pepsin. Inactivation of
Gly2Cys/Leu167Cys mutant and the effect of the oxidizing reagent. At pH 7.5, the
oxidization did not stabilize the wild-type (� without oxidization and � with oxidization),
while oxidization of Gly2Cys/Leu167Cys stabilized the enzyme (Ž without oxidization
and ž with oxidization). Each data point represents the mean of three determinations.

tested for stability at pH 7.5 (Fig. 15.8). Gly2Cys/Leu167Cys, without
oxidizers, showed slower inactivation than did wild-type; however, most
of the activity was lost after 480 minutes. In the presence of FeCl3,
inactivation slowed down and reached a plateau at 20% of its initial
activity. Further inactivation studies showed that activities were retained:
11% at 24 hours and 5% at 74 hours. These results indicated that disulfide
bond formation kept the N-terminal fragment close to its native position,
thereby stabilizing the enzyme. Formation of disulfide bonds was faster
at pH 7.5 than at pH 7.0; thus greater stabilizing effects were observed
at the higher pH. From these studies, we concluded that the instability of
pepsin at neutral pHs resulted from relocation of the prosegment.

15.6 CONCLUSIONS

Critical to the elucidation of structure–function relationships of enzymes
is the determination and analysis of kinetic data used in conjunction
with structural information. The more supportive these two data sets
(i.e., kinetic and structural information) become, the better will be our
ability not only to understand enzyme catalytic mechanisms at a molec-
ular level but also to design enzymes knowledgeably for specific end
uses.
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15.7 ABBREVIATIONS USED FOR THE MUTATION RESEARCH

Asp 32 Aspartic acid (Asp) at position 32 of the amino acid
sequence of pepsin; one of the catalytic active-site
residues.

Asp 215 Aspartic acid (Asp) at position 215 of the amino
acid sequence of pepsin; one of the catalytic active-
site residues.

C-DOM Mutations that occurred in the carboxyl (C) termi-
nal domain (DOM) of pepsin: serine at position 196
of pepsin mutated to arginine, aspartic acid at posi-
tion 200 mutated to glycine, and glutamic acid at
position 202 mutated to lysine.

c-pepsin Commercial pepsin.
Del Mutation involving the deletion of amino acid resi-

dues 240 to 246 from the amino acid sequence
of pepsin and replacement of this sequence with
glycine and aspartic acid to remove the putative
mobile portion in the carboxyl-terminal domain.

Gly 76 Glycine (Gly) at position 76 of the amino acid seq-
uence of pepsin.

Gly76Ala Glycine (Gly) at position 76 in pepsin mutated to
alamine (Ala).

Gly76Ser Glycine (Gly) at position 76 in pepsin mutated to
sermine (Ser).

Gly76Val Glycine (Gly) at position 76 in pepsin mutated to
valine (Val).

Gly2Cys/Leu167Cys Mutations intended to cause the formation of a disul-
pfide linkage in pepsin; glycine (Gly) at position 2
mutated to cysteine (Cys), leucine (Leu) at posi-
tion 167 mutated to cysteine.

Leu44p–Ile1 Bond between leucine (Leu) at residue 44 of the
sequence of the prosegment of pepsinogen and the
first residue of the amino acid sequence of pepsin,
isoleucine (Ile).

Lys36p Lysine (Lys) residue at position 36 of the proseg-
ment (p) of pepsinogen.

Lys36pArg Lysine residue at position 36 of the prosegment (p)
of pepsinogen mutated to arginine (Arg).

Lys36pGlu Lysine (Lys) residue at position 36 of the proseg-
ment (p) of pepsinogen mutated to glutamic acid
(Glu).
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Lys36pMet Lysine residue at position 36 of the prosegment (p)
of pepsinogen mutated to methionine (Met).

N+ C Mutations made in both the amino terminal (N) and
carboxyl terminal (C) domains of pepsin; a combi-
nation of the C- and N-DOM mutations.

N-DOM Mutations that occurred in the amino terminal (N)
domain (DOM) of pepsin: serine at position 46 to
lysine, aspartic acid at position 52 to asparagine,
asparagine at position 54 to lysine, and glutamine at
position 55 to arginine and aspartic acid of pepsin
to lysine.

N-frag Mutations in the amino terminal (N) domain or frag-
ment (frag) of pepsin; a combination of the N-frag
(A) and N-frag (B) mutations.

N-frag (A) Mutations in the amino terminal (N) domain or
fragment (frag) of pepsin involving the following:
glycine at position 2 mutated to serine and aspartic
acid at position 3 mutated to tyrosine.

N-frag (B) Mutations in the amino terminal (N) domain or frag-
ment (frag) of pepsin that involved the following:
leucine at position 10 mutated to methionine, threo-
nine at position 12 mutated to alanine, and glutamic
acid at position 13 mutated to serine.

r-pepsin Recombinant pepsin.
r-PG Recombinant pepsinogen.
Thr 77 Threonine (Thr) at position 77 of the amino acid

sequence of pepsin.
Trx-PG Fusion pepsinogen (thioredoxin protein plus pep-

sinogen).
Tyr 75 Tyrosine (Tyr) at position 75 of the amino acid seq-

uence of pepsin.
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zymogens and, 195–198
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irreversible enzyme inhibition and, 70–78
progress curves and, 45–46
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Enzyme inhibition
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irreversible, 70–78, 158, 167
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of mechanism-based inhibition, 158–171
of multisite and cooperative enzymes,

102–115
pH and, 79–89
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Least-squares fit, with Michaelis–Menten

model, 56
Least-squares minimization, in numerical

integration, 29–39
Le Chatelier’s principle, 15
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Linear mixed inhibition, 63–64
Linear models, in numerical integration, 30–32
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enzyme activity and, 202–205

Macroscopic equilibrium dissociation constant.
See Equilibrium dissociation constant (Ks)
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Mass action, law of, 1
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of irreversible enzyme inhibition, 70–71
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179
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of interfacial enzymes, 124–125, 127
model consistency and, 185–188, 190, 191
with multisite and cooperative enzymes,

104–109, 109–113
pH dependence of, 82–83
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Mean residual analysis, 53–58
Mean residuals, 53–56
Mechanism-based enzyme inhibition, 158–171
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in alternate substrate inhibition, 160, 161
apparent, 91, 93–94, 96–97, 99–100,
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in enzyme activity studies, 201–202, 204
in enzyme characterization, 174, 177, 178,

180
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reaction velocity and, 51–52
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in suicide inhibition, 164
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Michaelis–Menten model, 48–49, 52, 53, 103
applicability of, 175, 177–179
appropriate [S] ranges for, 181–184
consistency within, 184–191
enzyme catalytic parameters in, 58–60
in enzyme characterization, 174–175
for fumarase inhibition, 66–67
Hill equation and, 108
for immobilized enzymes, 116
nonlinear regression of, 56–58
for pancreatic carboxypeptidase A inhibition,

67–69
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interaction factors and, 105–106
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with multisite and cooperative enzymes,
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regression, 33–34
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Multivariate response modeling, numerical

integration and, 30
Mutations (mutants)

in enzyme activity studies, 198–202,
203–205

in enzyme stabilization, 205–212
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Nonlinear regression

of Michaelis–Menten model, 56–58
in numerical integration, 33–36
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zymogen of, 198

pH, 22–23
dependence of enzyme-catalyzed reactions
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progress curves and, 45–46
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