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Introduction 1 

1 Introduction 

There is no permanent place in the world for ugly mathematics [Hardy,1 ]. 

This book deals with the shape of cells and cell organelles in plants and 
animals, and changes of shape associated with various life processes. The 
cell membranes and cytoskeleton proteins build these shapes based on 
physical forces. A mathematical/geometrical description of cellular and 
molecular shapes is presented in this book, and the biological relevance is 
discussed in the epilogue. We demonstrate here new mathematics for 
cellular and molecular structures and dynamic processes. 

Life began in water, and every single function of life takes place in an 
aqueous environment. A profound way of classification in chemistry is the 
relation and interaction between molecules, or groups within molecules, and 
water. Molecules (or parts of molecules) can attract water in which case 
they are called hydrophilic. As the opposite extreme they can strive to 
avoid water; these molecules or molecular parts are termed hydrophobic. 
Most biomolecules possess both these properties; they are amphiphilic. 
This is a fundamental principle which determines the organisation of 
biomolecules- from the folding of peptide chains into native structures of 
proteins, to self-assembly of lipid and protein molecules into membranes. 
One consequence of the existence of these two media is that the interface 
between them define surfaces that tend to be closed. The lipid bilayer of 
membranes, for example, always form closed surfaces; the hydrocarbon 
chain core is never exposed to water. The curvature of these surfaces is an 
important concept in order to understand structural features above the 
molecular level. Surface and colloid science deals with forces involved in 
formation of such organisations. The behaviour of the colloidal state of 
matter involves van der Waals interaction, electrostatic forces, so-called 
hydration forces and hydrophobic forces. The colloidal level of structure 
extended towards curvature of surfaces and finite periodicity is a main 
theme in our book. These concepts are seldom considered in molecular 
biology. 

Our present understanding of the cell membrane dates back to Luzzati's 
classical work from 1960 [2], where the liquid character of the hydrocarbon 
chains in liquid-crystalline lipid-water phases with the combination of long- 
range order with short-range disorder first were revealed. Another 
important aspect was introduced by Helfrich [3]; the curvature elastic 
energy. Long time ago, two of us [4] proposed the idea that a bilayer 



2 Chapter 1 

conformation analogous to that of cubic phases might occur in cell 
membranes. Phase transitions in three dimensions, obtained by exposure of 
membrane lipids to general anaesthetic agents, for example, were 
interpreted as experimental evidence [5]. These aspects were summarised in 
a monograph - The Language of Shape [6] - focusing on the role of 
curvature in membranes. Cubic lipid-water phases and cubic cell membrane 
assemblies were described as infinite periodic minimal surfaces (IPMS). 
Some thousand examples where the membrane is folded into a three- 
dimensional aggregate were shown to be cubic structures consistent with the 
three fundamental IPMS (the P-, D- and G-surface). Here we propose that 
the occurrence of perfect cubic symmetry of membrane assemblies reflects 
a vegetative state with lack of concentration gradients, resulting in an 
equilibrium-like situation. We conclude that active states of membrane 
systems, such as the endoplasmatic reticulum, are far from a compositional 
equilibrium, and therefore exhibit systematic variations of curvature. Such 
active states of membrane organisations are characterised based on the new 
mathematics introduced here. 

The IPMS description reflects a static structure and might be regarded as a 
time-averaged conformation of the bilayer. Recently we introduced a 
description of the lipid bilayer of membranes based on nodal surfaces of 
standing wave conformations [7,8]. We consider this description to be 
significant to cellular phenomena, providing a true description of the 
dynamic character of cell membranes. The mathematical basis of the wave 
dynamics is extended in this book. We consider this feature to be of utmost 
importance in cell membrane physiology, providing space-time relations. 

Cell membranes exhibit lipid bilayer states on the border towards a 
transition into a reverse type of structure (in three dimensions 
corresponding to phase transitions from lamellar to cubic or reverse 
hexagonal lipid-water phases). This tendency results in a high inner packing 
pressure of the bilayer, and therefore increases the elastic rigidity of the 
lipid bilayer. The wave motions of the bilayer are related to this elastic 
rigidity. Membrane-embedded enzymes responsible for lipid 
synthesis/modification can utilise the inner packing pressure as an on/off 
switch to control membrane lipid composition. This is an example of shape 
control via physical properties. The mathematical wave description 
reflects the dynamics of shape. 

Another important feature of the cell membranes is their control of 
topology in the cell - separation of the inside and the outside. Considering 
any cell in our body and moving backwards in time via the embryo and 
through earlier generations down the evolution, the DNA has never been 
exposed to the outside world. There is always a membrane enveloping DNA 
in all forms of life, as we know them. A closed membrane providing shape 
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and topology is thus a necessity for life. Its implicit expression in DNA is a 
challenging question, which we will consider in the epilogue. 

There are hundreds of joumals in molecular biology today dealing with 
structure and function. In our interdisciplinary approach we can only deal 
with some basic principles behind shape and shape changes. In our 
description of vesicle traffic between cellular compartments, for example, 
we apply only mathematics of lipid bilayers with varying curvature. We are 
aware of the numerous studies which have demonstrated involvement of for 
example kinesin in the endoplasmatic reticulum and of dynein in the Golgi 
structure. Our model of cell membrane dynamics and morphology, although 
ignoring the role of microtubuli, still gives a description consistent with 
reality. This might be due to the redundancy in biology; systems working in 
parallel to guarantee functional safety. Evidence is also given for the 
occurrence of mechanical waves at the axon membrane, with a 
conformational transition accompanying the electrical pulse. Finally by 
applying these new mathematics it has been possible to derive the structure 
of the surface film lining the lung alveoli. 

We describe the lipid bilayer of cell membranes by surfaces located at the 
middle of the bilayer. The liquid-like hydrocarbon chains extend about 15 - 
20 A from this surface, and they might be compared with the delocalised 
electrons forming molecular surfaces. It is in this context tempting to go 
further in this analogy, perhaps to speculate on the possibility of quantum 
phenomena with phonons involved in the lipid bilayer motions. 

In order to derive the various cell structures discussed in this book the 
following new tools/concepts have been used: 

The exponential scale [9], which was developed to describe shapes of bodies 
like polyhedra, crystals, or anything that may be described with faces. 
Structures, crystal structures, symmetries, rod structures and molecules are 
also conveniently described. 

The symmetry and structure of lipid membranes in confined space, like a 
cubosome, follow the electron densities of smaller molecules, like B4H4 and 
BlzH12. We propose such lipid structures also have a standing wave 
behaviour - quantized or not. We describe this analogy of the quantized 
space and the lipid space with the exponential scale. We find great parts of 
these mathematics to be closely related to shapes in biology. 

The Gaussian distribution function (GD) - a special case of the exponential 
scale - which is also known as the error function. It is used to describe 
diffusion, and it is also the ground state solution for the Schr6dinger 
harmonic oscillator. We use the GD function to generate finite periodicity 
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to describe structures like the cubosomes. We use the GD function to 
describe biological motion and we use the related Hermite operator to 
describe periodic biological motion. Examples are the flagella motion, the 
motor proteins and cell division. The fractal growth of a tree and the 
formation of icosahedral symmetry of virus are other examples. 

We describe transportation with exponential functions. We describe 
budding and docking of vesicles, the endoplasmatic reticulum and the Golgi 
machine, holes in double membranes, the nuclear pore complex, and much 
more. 

The GD-function is used here to define surfaces of the condensed state of 
cellular biomolecules. To illustrate this approach let us again consider a 
lipid bilayer with water on each side. Most of the lipid constituents have 
very low solubility (down to 10 12 M), which varies with environmental 
factors, such as pH and present ions. We are dealing with non-equilibrium 
conditions, with lipid molecules either moving inwards to condensate at the 
surface, or moving out into the water phase from the surface. The 
molecular distribution at the surface follows the GD function. Such 
concentration changes may even result in transient shape changes of cell 
membranes. 

The standing wave dynamic conformation of membranes is a third new 
concept we apply in order to describe membrane shape. As mentioned 
earlier the membrane assemblies exhibiting cubic symmetry can be described 
as IPMS when the conformation is averaged over time but the wave 
character provides information on dynamic membrane processes. 

Readers who directly want to see the biological relevance of this approach 
can start with chapters 8, 13 and 14 and later read the earlier chapters 
focusing on the mathematics. For readers who lack a mathematical 
background, the basic concepts we are using are introduced in the 
appendices. The use of Mathematica in the calculations is shown with 
examples in appendix 9. 
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2 Counting, Algebra and Periodicity 
Mathematics are the Roots of Life 

All things are numbers [Pythagoras, l]. 

the Roots of 

Using simple counting, or algebra, we show the principles of periodicity, 
which is just using roots, number, or planes in space. We also show you 
what sine is. 
With counting we make saddles move in bilateral or screw repetition. We 
continue in that way and show that fundamental mathematics is built of 
planes, and go from a molecule to a cubosome, which is an example of how 
symmetry shows up in a 3D space of just numbers. 
We show how cubic surfaces nucleate from the simplest of saddles and 
planes. 
We show how to move a surface or a cubosome in space. 
We show how to derive the nodal surface geometry from algebra- or just 
by counting. 

2.1 Counting and Sine 

We assume mathematics used by Nature may be described in simple terms. 

We start from the beginning; 

x=l is a plane in space, and so is x=2. With such planes we formulate our 
first equation, which also is an example of the fundamental theorem of 
algebra. 

( x -  1)(x-  2 ) ( x -  3 ) ( x -  4) = 0 2.1.1 

This operation we call counting and we want to see what it means in 3D. 
The roots are 1, 2, 3 and 4. We see in figure 2.1.1 the planes, and we 
discover that count ing-  put together in form of multiplication into a 
product - is a beautiful way to get periodicity. Which so far is finite. 

We presume Nature may be described by counting positive numbers. 
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For reasons of convenience we shall sometimes in the description below use 
zero and negative numbers, but in every case it is possible to make a 
parallel transformation to the positive part of space as shown below with 
examples. 

Figure 2.1.1 Periodicity from the 
fundamental theorem of algebra. 

Equation 2.1.1 is the fundamental theorem of algebra, and Euler realised 
that this is really the same as sine - using an infinite product. 1, 2, 3 and 4 
are the roots of the equation, and also the origin to periodicity. For 
comparison we give sin~x=0 in figure 2.1.2. 

Figure 2.1.2 Periodicity fi'om sine. 
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Below we give the formula in equation 2.1.2, from Euler for the infinite 
products, which he showed was identical with the power expansion of sin(x) 
(an alternative definition). This definition of the circular functions which 
uses infinite products is attractive since it brings in the translation. 

sin x - x(1 - x2. )(1 x2 x2 
rc 2 - 2 2----~)(1 - 3 2 rc 2 )... 2.1.2 

Rearranging formula 2.1.2 into 2.1.3 it becomes clear that sine is identical 
to the fundamental theorem of algebra of an infinite number of terms [2]. 
The roots of algebra are the nodes of periodicity - or the wave functions. 

71; 
sin rex = ~ x(x 2 - 1)(x 2 - 4)(x 2 - 9)...(x 2 - n 2) 2.1.3 

(nl) 2 

2.2 Three  Dimens ions ;  Planes  and Surfaces ,  and Surface  G r o w t h  

From equation 2.1.3 we take two of the roots and extend them to three 
dimensions in the following equations. 

x 2 - 1 = 0  2.2.1 

y2 - 1  = 0  2.2.2 

z 2 - 1 = 0 2.2.3 

The planes are found in the corresponding figures 2.2.1-3. 

If  we, in equation 2.2.4 add two of the equations, the planes collaborate to 
form a cylinder, see figure 2.2.4. 

x 2 + y2 _ 1 = 0 2.2.4 

And if we add all three equations, six planes collaborate to form the sphere 
in figure 2.2.5. 
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Figure 2.2.1 The 
simplest roots of x in 
space. 

Figure 2.2.2 The 
simplest roots of y in 
space. 

Figure 2.2.3 The simplest 
roots of z in space. 

Figure 2.2.4 Four planes form a 

cylinder. 
Figure 2.2.5 Six planes form a 
sphere. 

Going up in exponent, still using the algebra, brings out the planes as in 
equations 2. 2. 5-6 and figures 2.2.5-7. 

x 4 + y4 _ 1 2.2.5 

x 4 + y4 + z 4 _ 1 2.2.6 
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Figure 2.2.6 Four planes form 
a square cylinder. 

Figure 2.2.7 Six planes form a 
"cube". 

Above was shown simple examples of elliptic geometry, which has positive 
gaussian curvature. We now move on to hyperbolic geometry with 
negative gaussian curvature. For a definition of curvature see appendix 8. 

The function xy=0 is two intersecting planes, and in equation 2.2.7 a z- 
plane is added. 

x y - z = 0  2.2.7 

This simple product - so important in a lgebra-  gives the famous saddle as 
shown in figures 2.2.8-9, the last one in projection with huge boundaries to 
show that it is built of  planes. 

We bring in roots in one dimension and start the counting, or translation of  
z-planes, which are finite periodic in that direction. Corresponding figures 
are 2.2.10-13. 

xy + z(z - 0 .5)= 0 2.2.8 

xy + z(z - 0.5)(z - 1)= 0 2.2.9 

xy + z(z - 0.5)(z - 1)(z - 1.5)= 0 2.2.10 

xy + z(z - 0.5)(z - 1)(z - 1.5)(z - 2)(z - 2.5)(z - 3 )=  0 2.2.11 
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Figure 2.2.8 A saddle. Figure 2.2.9 Increased boundaries show 
that the saddle is built of planes. 

Figure 2.2.10 One more z-plane and 
the saddle. 

Figure 2.2.11 Two more z-planes 
and the saddle. 
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Figure 2.2.12 Three more z-planes 
and the saddle. 

Figure 2.2.13 Six more z-planes and the saddle 
give a tower surface. 

The original saddle is repeated and makes the surface grow to form a so 
called tower surface, topologically the same as Scherk's fifth minimal 
surface [see appendix 5]. This is shown in figure 2.2.13 with proper 
boundaries. Planes meet and go through each other in space without 
intersections, which is the simplest possible periodic saddle surface. 

The double products give the intersecting planes as shown in figure 2.2.14. 

x z + y z = 0  2.2.12 

Doing a translation, or starting the counting as in equation 2.2.13, makes 
the planes join via a saddle in figure 2.2.15. 

xz + y(z  - 0 .5)= 0 2.2.13 

By adding z-planes, as in equations 2.2.14-15, 
grow, as shown in figures 2.2.16-17. 

a screw surface starts to 

xz(z - 1) + y (z - 0.5)= 0 2.2.14 

xz(z - 1)+ y(z  - 0.5)(z - 1.5)= 0 2.2.15 
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Figure 2.2.14 Intersecting planes. 

Figure 2.2.15 Translation in z, 
and the intersecting planes 
become a saddle. 

Figure 2.2.16 Two translations 
inz. 

Figure 2.2.17 Three 
translations in z and a 
screw surface is growing. 
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We continue counting after equation 2.2.16 and obtain the famous helicoid 
in figures 2.2.18-19, as grown from planes. 

These two surfaces, the tower surface and helicoid, are the building block 
units of  many biological structures. They are formed by the 3D periodic 
nodal surfaces that will discussed extensively in this book. 

xz(z - 1)(z - 2)(z - 3)(z - 4)(z - 5)(z - 6)(z - 7) 

+y(z  - . 5 ) ( z  - 1.5)(z - 2.5)(z - 3.5)(z - 4.5)(z - 5.5)(z - 6.5) - 0 
2.2.16 

Figure 2.2.18 The helicoid surface as 
obtained from pure counting, or algebra. 

Figure 2.2.19 Different projection of 
the helicoid. 

We will now show how to move a surface with this algebra, doing a 
translation operation of  the helicoid as shown in equations 2.2.17 and 
2.2.18, and figures 2.2.20 and 21. 
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( x -  2)(z - 1)(z - 2)(z - 3)(z - 4)(z - 5)(z - 6) 

+(y - 2)(z - 0.5)(z - 1.5)(z - 2.5)(z - 3.5)(z - 4.5)(z - 5.5)= 0 

( x -  4 ) ( z -  5 ) ( z -  6 ) ( z -  7 ) ( z -  8 ) ( z -  9 ) ( z -  10) 

+(y - 4)(z - 4.5)(z - 5.5)(z - 6.5)(z - 7.5)(z - 8.5)(z - 9.5) = 0 

2.2.17 

2.2.18 

Figure 2.2.20 Translation of the 
helicoid. 

Figure 2.2.21 Further translation of 
the helicoid. 

2.3 The Growth of Nodal  Surfaces - Molecules  and Cubosomes  

Periodical nodal surfaces, or the topologically identical minimal surfaces, 
are used to describe such phenomena in Nature as membranes and 
cubosomes in biology, crystal structures and reactivity like catalysis in 
chemistry, and membrane wave mechanics and the Fermi surfaces in 
physics. We will show below that in the mathematical description of such 
surfaces there is no need for circular functions or their power expansions. 
All needed is counting. 

So we do the counting and add polynomina from the fundamental theorem 
of algebra in three directions, and show first the planes as in figures 2.3.1-3. 
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x ( x -  1 ) ( x -  2 ) ( x -  3) = 0 

y ( y -  1 ) ( y - 2 ) ( y -  3) = 0 

z(z - 1)(z - 2) (z  - 3) = 0 

2.3.1 

Figure 2.3.1 Four planes 
and counting in x. 

Figure 2.3.2 Four planes 
and counting in y. 

Figure 2.3.3 Four planes 
and counting in z. 

We add the three systems into one equation, 2.3.2, 
collaborate in space to give figure 2.3.4. 

and the planes 

x(x- 1)(x- 2)(x- 3) 
+y(y - 1)(y - 2)(y - 3) 

+z(z - 1)(z - 2)(z - 3) - -1 

2.3.2 

We can do the counting elsewhere in space, which means translating the 
structure as in figure 2.3.5, after equation 2.3.3. 

( x -  6 ) ( x -  7 ) ( x -  8 ) ( x -  9) 

+ ( y -  6 ) ( y -  7 ) ( y -  8 ) ( y -  9) 

+(z - 6)(z - 7)(z - 8)(z - 9) = -1 

2.3.3 

The structure is a piece of the symmetry created by this way of counting. It 
can be considered as a piece of a primitive cubic structure, the ELF 
structure (Electron Localisation Function) of the B6H6 molecule [3], the 
smallest possible closed piece of the P-surface, or the smallest possible 
cubosome. Cubosomes are important structures of biomembranes, which we 
focus on in chapter 8. We shall below make bigger parts and it is then easier 
to explain these concepts. Here we just mention the boron octahedron in 
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figure 2.3.6, which is calculated from zero constant in equation 2.3.4. The 
electrons are distributed to the cubic structure in figure 2.3.5, which is the 
dual of the octahedron. 

x ( x -  1) (x-  2 ) ( x -  3) 

+y(y  - 1)(y - 2)(y - 3) 

+ z ( z -  1) (z-  2 ) ( z -  3 ) :  0 

2.3.4 

Figure 2.3.4 Counting to four in 
3D gives a hollow cube, which can 
be considered as a small part of the 
P-surface. 

Figure 2.3.5 The structure from 
figure 2.3.4 translated in space. 

We add more planes as in figure 2.3.7 after equation 2.3.5, and now have a 
bigger part of the P-surface. The periodicity is finite, so this is a cubosome. 

x ( x -  1)(x + 1) (x-  2)(x + 2 ) ( x -  3)(x + 3) 

�9 ( x -  4 ) (x  + 4 ) ( x -  5)(x + 5 ) ( x - 6 )  

+y(y  - 1)(y + 1)(y - 2)(y + 2)(y - 3)(y + 3) 

�9 (y - 4 ) (y  + 4) (y  - 5)(y + 5)(y - 6 )  

+z(z - 1)(z + l ) ( z -  2)(z + 2)(z - 3)(z + 3) 

�9 (z - 4)(z + 4)(z - 5)(z + 5)(z - 6) = 20000 

2.3.5 

For an infinite product this becomes cosx+cosy+cosz=0, which is the nodal 
P-surface equation as described in appendix 2. 
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Figure 2.3.6 The hollow cube and its dual. 

Figure 2.3.7 More counting gives bigger part of the P- 
surface. 
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The 3D function in 2.3.6 gives a 'three dimensional saddle'- a catenoid - 
with its axes along the cube diagonal as in figures 2.3.8-9. 

xy + xz + yz + 1 =0  2.3.6 

Figure 2.3.8 Three dimensional 
saddle. 

Figure 2.3.9 Different projection. 

The complete multiplication xyz gives three planes intersecting after 
equation 2.3.7, and is shown in 2.3.10. Adding a constant gives four cube 
comers that meet after tetrahedral symmetry, as in figure 2.3.11. This is 
the commencement of periodicity and symmetry - the three planes 
collaborate in space to form four identical units. We continue with one 
more plane after equation 2.3.9, which is shown in figure 2.3.12. 

xyz =0  2.3.7 

x y z -  1 2.3.8 

x y z ( x -  0.5)(y - 0.5)(z - 0.5)= 0 2.3.9 

Using this simple algebra we derive some more very fundamental surfaces, 
which also appear with different and more familiar derivations in appendix 
2. 
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Figure 2.3.10 Three intersecting planes. Figure 2.3.11 Four cube comers in space. 

Figure 2.3.12 Counting gives more periodicity. 
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We do the experiment by continuing with periodicity, adding an identical 
unit by translation after equation 2.3.10. 

xyz + ( x -  0.5)(y - 0.5)(z - 0.5)= 0 2.3.10 

The result is a monkey saddle as in figure 2.2.13 - the arch symbol for 
symmetry and periodicity! 

We make the surface grow according to equation 2.3.11 and get figure 
2.3.14. The continuation after 2.3.12 gives a piece of the D surface as 
shown in figure 2.3.15. Figure 2.3.16 shows the same thing, but with larger 
boundaries. 

x y z ( x -  1)(y - 1)(z - 1) + ( x -  0.5)(y - 0.5)(z - 0.5)= 0 2.3.11 

x y z ( x -  1)(y - 1)(z - 1)+ ( x -  0.5)(y - 0.5) 

�9 (z - 0.5)(x - 1.5)(y - 1.5)(z - 1.5) = 0 
2.3.12 

Alternatively we could continue with the complete permutation of 
variables in space as above, when the P-surface was obtained to give the 
other cubic symmetries. We have done that elsewhere [2] and here we just 
say that this is the way to obtain the other fundamental surfaces called G 
and IWP, by using simple counting. 

Figure 2.3.13 Translation and counting 
gives a monkey saddle. 

Figure 2.3.14 More counting and a surface 
starts to form. 
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Figure 2.3.15 A piece of the D surface. Figure 2.3.16 The same structure as in 
figure 2.3.15, but with larger boundaries. 

The translation above corresponds to a phase shift from sine to cosine in 
the circular functions. We do the simplest, and most important, of the 
surfaces here. Instead of the infinite products in the algebra we use circular 
functions and go cosine with equation 2.3.10 in equation 2.3.13 below, 
which is identical to equation 2.3.14. 

cosrrx costly coszrz + c o s n ( x -  0.5)coszr(y - 0.5)cosrr(z - 0 .5)= 0 2.3.13 

cos rex cos roy cos rrz + sin zrx sin zry sin zrz = 0 2.3.14 

This gives the famous D surface, which is just the periodic repetition of the 
monkey saddle from equation 2.3.10, shown figure 2.3.17. 

We do the same with the saddle from equation 2.3.6, and the equations 
2.3.15 and 2.3.16 give the surfaces of IWP and G in figures 2.3.18 and 19. 

cos 7zx cos z~j + cos rgxcos ~;z + cos ~;y cos ffz = 0 2.3.15 

sin zrxcos zry + cos zrx sin 7zz + sin try cos zrz = 0 2.3.16 
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Figure 2.3.17 D surface from circular functions. 

Figure 2.3.18 The IWP surface. Figure 2.3.19 The gyroid surface. 
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The complete multiplication and addition is done in equation 2.3.17. 

xyz+ x + y  + z =0  2.3.17 

The result is a monkey saddle in figure 2.3.20, which build the periodic 
Neovius surface [4]. We show how it consists of planes using much larger 
boundaries in 2.3.21. We see that this is really four cube comers that meet 
in a non-intersecting figure. Going to infinite products we obtain equation 
2.3.18 which gives the classic Neovius surface in figure 2.3.22. 

2 cos rex cos roy cos rcz + cos rex + cos ny + cos rcz = 0 2.3.18 

Figure 2.3.20 Simple multiplication 
and addition of variables gives a 
saddle. 

Figure 2.3.21 Same surface as in figure 2.3.21 
but with larger boundaries. 

Equation 2.3.18 adds the planes of the D surface with those of the surface 
of P. These trigonometric equations are the same as those originally 
derived by von Schnering and Nesper [4]. 
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Figure 2.3.22 Going circular with the monkey saddle gives the 
Neoviussurface. 
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3 Nodal Surfaces 
Symmetry, and Rods 

of Tetragonal and 

There are many ways to skin a cat. 

Hexagonal 

We have shown that the circular functions, or periodicity, is obtained by 
counting positive numbers from the algebra. 
We use the saddle mathematics from chapter 2 and describe hexagonal and 
tetragonal surfaces, and how they are formed from their rod packings. 
We can do it all by counting, but as a short-cut we use the trigonometry for 
the circular functions. 
For a description of symmetries we refer to appendix 6. 

3.1 Non Cubic Surfaces 

In biology it is important 
common. 

to realise that cubic symmetry is by no means 

The DNA structure is one case, the apatite structure that is the inorganic 
part of bones and teeth is another. The filaments do also represent very 
important examples. Motion is to its nature anisotropic. The structure of 
the sacromere is hexagonal. 

A saddle is by itself non-cubic and a good starting point. We will describe a 
way to derive tetragonal and hexagonal surfaces. 

3.2 Tetragonal Nodal Surfaces and their Rod Structures 

We have shown before that there is no obvious link or path between 3D 
non-intersecting rod systems and the fundamental surfaces [2]. However 
there is a link between one parallel rod system and the surfaces, and we 
shall in the next chapter show simple transformations. Here we show how 
such rod systems may be used in the derivation of surfaces of lower 
symmetry. 
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An obvious path to derive surfaces of lower symmetry than cubic is via the 
saddles. 

We start with the saddle equation 2.2. 7 from chapter 2, 

x y - z = 0  

and go periodic in equation 3.2.1. 

cos rtx cos rty = C 3.2.1 

This gives intersecting planes in figure 3.2.1 for zero constant. 
constant of 0.2 we get the parallel rods shown in figure 3.2.2. 

For a 

Figure 3.2.1 Intersecting planes. Figure 3.2.2 Tetragonal rod packing. 

With a z-term and constant as in equation 3.2.2, the rods are joined by 
catenoids to form a beautiful tetragonal structure in figure 3.2.3. 

1 
cos rrx cos rty - ~ c o s  2rcz - 0.05 3.2.2 

10 

In equation 3.2.3 the surface is calculated with different constants, and 
shown in figure 3.2.4. This surface is topologically right between the P- 
surface and the hexagonal H-surface (shown below). A projection is shown 
in figure 3.2.5, and the surface calculated after equation 3.2.4 is shown in 
figure 3.2.6. 
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Figure 3.2.3 Simple tetragonal surface. 

Figure 3.2.4 The simple tetragonal surface chosen to 
show relationships with the P- surface. 
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Figure 3.2.5 Different projection of 
the tetragonal surface. 

Figure 3.2.6 The simple tetragonal 
surface for zero constant. 

Figure 3.2.7 CLP saddle. Figure 3.2.8 Different projection of 
the CLP saddle. 
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1 
cos ztx cos rty - ~ cos 2~z - 0 3.2.3 

2 

cos rtx cos rty - cos 2nz = 0 3.2.4 

A saddle that gives a surface of  the same topology as the important 
tetragonal CLP minimal surface is found in equation 3.2.5. The Weierstrass 
parametrisation of  this minimal surface was first derived by Lidin and Hyde 
[4]. 

x -  y + xz = 0 3.2.5 

The saddle is shown in figure 3.2.7, 
tetragonal axes is added in figure 3.2.8. 

a projection along one of  the 

Going circular everywhere we have the 
corresponding surface is shown in figure 3.2.9. 

equation 3.2.6, and the 

cos ~x - cos ~y + cos ~x cos 71:z = 0 3.2.6 

Figure 3.2.9 Surface with the topology of the tetragonal CLP 
minimal surface. 
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Equation 3.2.7 brings out the planar character of  this surface as seen in 
figure 3.2.10. 

1 
cos rex - cos ny  + ~ c o s  rcxcos rcz - 0 3.2. 7 

10 

Figure 3.2.10 Planar character of the CLP type surface. 

The rods come out with a constant of  0.5 in 3.2.8, which is shown in figure 
3.2.11. 

1 1 
cos z rx-  cos try + ~ c o s  7rxcos rcz + -  = 0 3.2.8 

10 2 

These two seem to be the most fundamental tetragonal surfaces, and we 
shall return to a more general derivation of  the CLP nodal surface later on. 
The CLP-surface is the physiological basis for the lung function, as treated 
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in chapter 14. But we shall do just one more tetragonal and use the saddle 
concept again. 

Instead of two, there are four intersecting planes in equation 3.2.9 and 
figure 3.2.12. 

x y ( x -  y) (x+ y) = 0 3.2.9 

Figure 3.2.11 The rods of CLP. 

Figure 3.2.12 Four intersecting planes. Figure 3.2.13 Periodicity also gives two 
intersecting planes. 



34 Chapter 3 

The periodicity is given in equation 3.2.10 and shown in figure 3.2.13. 

sinrcxsin~y s inn (x -  y)sin n(x + y) = 0 3.2.10 

The four fold saddle is found in equation 3.2.11 and figure 3.2.14. 

x y ( x -  y)(x + y) = z 3.2.11 

Figure 3.2.14 The saddle from four 
intersecting planes. 

Figure 3.2.15 Periodicity shows the rod structure. 

The rods are liberated with a constant, as before, and we continue to make 
them connect by catenoids with a z term as in equation. 3.2.12. This is 
shown in figure 3.2.15. 

1 
6 sin rcx sin rpy sin n ( x -  y)sin n(x + y) + ~ sin 2rcz - 0 

10 
3.2.12 

Careful inspection of this surface reveals that it is really composed of units 
of the first tetragonal surface, twinned in a cyclic way. The twin operation 
creates the four-saddle. 

The surface after equation 3.2.13 is shown in figure 3.2.16, 
projection along the tetragonal axes in 3.2.17. 

and in 

6 sin nxsin ~ sin n ( x -  y)sin n(x + y) + sin2nz = 0 3.2.13 
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Figure 3.2.16 Periodic surface from four 
planes. 

Figure 3.2.17 Different projection reveals 
the twin character of the structure. 
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3.3 Hexagonal Nodal Surfaces and their Rod Structures 

The hexagonal symmetry is common in life as the building principle for 
apatite, in rod systems, and in the arrangements of giant molecules. It is 
also essential for the description of muscle contraction which we will show 
below. The best packing for rods is the hexagonal and we derive this again 
from parallel planes. For the simplest forms of cubic or tetragonal 
structures we had three intersecting planes after the Cartesian coordinate 
system. A corresponding hexagonal coordinate system would need four 
planes. In crystallography such a system is used for this type of symmetry. 

Since we here have the Cartesian, we bring in the ~f3 and start again from 
the saddle mathematics in equations 3.3.1-2 which give the intersecting 
planes in figure 3.3.1, and the monkey saddle in 3.3.2. Figures 3.3.3 and 4 
show the same monkey saddle but with larger boundaries. 

 ix+ y ]0 

x+ y lz0 

Figure 3.3.1 Three intersecting planes. Figure 3.3.2 Monkey saddle. 



Nodal Surfaces of Tetragonal and Hexagonal Symmetry, and Rods 37 

Figure 3.3.3 The monkey saddle with 
larger boundaries. 

Figure 3.3.4 Different projection of the 
monkey saddle. 

Figure 3.3.5 Periodic hexagonal planes with cosine. 
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We introduce periodicity by using cosine in equation 3.3.3 and get the 
intersecting planes in figure 3.3.5. 

/ - +  y c o s 2 r t - - +  y - 0  
2 2 2 2 

3.3.3 

Subtracting or adding a constant give the two kinds of hexagonal cylinder 
packings after equations 3.3.4 and 3.3.5 and shown in figures 3.3.6 and 
3.3.7, where the latter is the honeycomb packing. 

cos2 xcos2 /X / x - +  y c o s 2 r t - - +  y - 0 . 1 - 0  
2 2 2 2 

3.3.4 

cos2 xcos2 /x / x - +  y c o s 2 z t - - +  y + 0 . 0 3 - 0  
2 2 2 2 

3.3.5 

Figure 3.3.6 Cosine and subtracting a 
constant gives hexagonal packing of 
cylinders. 

Figure 3.3.7 Cosine and adding a 
constant gives honeycomb packing 
of cylinders. 

The addition of a z-term as in equation 3.3.6 makes catenoids contact 
between the rods as in figure 3.3.8. Finally equation 3.3.7 gives the 
beautiful honey comb surface in figure 3.3.9. 
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cos2 xcos2 (x / (x - -+  y c o s 2 7 t - - - +  
2 2 2 

2 y + 0.02cos 4rcz - 0 3.3.6 

cos2gxcos2 x ~f3 x - -+  y c o s 2 r t - - +  
2 2 2 

2 y +0 .1cos4rcz-  0 3.3.7 

Figure 3.3.8 Addition of a z-term 
gives catenoids between rods. 

Figure 3.3.9 The honeycomb surface. 

With the same saddle, and sine, the intersecting planes are shown after 
equation 3.3.8 in figure 3.3.10. 

sin2 xsin2 (x (x - +  y s i n 2 r t - - +  y - 0  
2 2 2 2 

3.3.8 

Adding a constant after equation 3.3.9 liberates the rods as in figure 3.3.11. 

sin2, xsin2, (x (x - +  y s i n 2 r t - - +  y - 0 . 1 - 0  
2 2 2 2 

3.3.9 
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Figure 3.3.10 Hexagonal sine gives intersecting planes. 

Figure 3.3.11 Sine and the rods. 
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With equation 3.3.10 we get catenoids between the rods as seen in figure 
3.3.12a. 

sin2 xsin2 /x / x 
- + y sin2~ - -  + y + 0.025 sin 4~tz - 0 
2 2 2 2 

3.3.10 

Figure 3.3.12a With a z-term there are catenoids between rods. 

This surface, and the next one shown below, are of interest in consideration 
of hexagonal structures of membrane lipids and cell membranes. The 
common liquid-crystalline phase is termed reverse hexagonal (HII). It is 
two-dimensional and the lipid bilayer centre has a honeycomb structure. 
However, the possibility of the occurrence of hexagonal structures free 
from self-intersections, so that one bilayer can form the whole phase, 
should be kept in mind. A projection of this structure as in figure 3.3.12b 
will show (hk0) reflections as if it were two-dimensional, but it is uncertain 
whether (hkl)-reflections will be observed experimentally. The projection 
of this structure along the c-axis will contain two water cylinders in the unit 
cell. 
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Figure 3.3.12b Projection along the hexagonal axis. 

With equation 3.3.11 we get the famous H-surface, as shown in figure 
3.3.13. The Weierstrass representation of this surface was found by Lidin 
[5]. The H-surface is projected along the c-axis in figure 3.3.14. 

4sin2 sin2 /x / x - +  y s i n 2 n - - +  y +sin4rcz-O 
2 2 2 2 

3.3.11 

The H structure, as well as the hexagonal honey comb structure, can be 
turned into an elongated structure with the property of a rod structure by 
changing the periodicity along z. This is in crystallography called change of 
c/a, and shown in figure 3.3.15 after equation 3.3.12. The H-surface 
character is maintained as obvious from the projection along c in figure 
3.3.16. 

6sin2 xsin2 /x / x - +  y s i n 2 r c - - +  y + s i n n z - O  
2 2 2 2 

3.3.12 
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Figure 3.3.13 The H surface. 

Figure 3.3.14 Projection of the H surface along c. 
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Figure 3.3.15 The H surface at different of c/a. 
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Figure 3.3.16 Projection along c of figure 3.3.15. 
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4 Nodal Surfaces, Planes, Rods and Transformations 

In the actual three-dimensional case we have nodal surfaces, nodal planes 
and spheres, instead of nodal lines [Bom,1]. 

We show how the cubic nodal surfaces are derived from the permutation of 
variables in space. 
We study how parallel planes transform into surfaces. 
We study how parallel cylinders transform into surfaces. We notice that 
the tetragonal CLP shows up as an important intermediate in 
transformations. 
We also describe the transformation between the D, G and P surfaces as an 
alternative to the isometric Bonnet transformation. 
All transformations have catenoid opening or closing as a mechanism. 

4.1 Cubic Nodal Surfaces 

In chapter 2 we used counting and finite products to derive the circular 
functions, and in the simplest case in 3D the P surface. The same can be 
done for the permutations cos(x+y) and cos(x+y+z) in space, and below we 
give the complete equations for the nodal surfaces created. 

The P surface 

cos ~x + cos xy + cos 7~z = 0 4.1.1 

The gyroid surface 

sinn(x + y) + sinTt(x- y) + sinr~(x + z) 

+ sin rc(z - x) + sin n(y + z) + sin ~(y - z) = 0 
4.1.2 

The 1WP surfaces 

cos rt(x + y) + cos r t (x -  y) + cos rt(x + z) 

+cos re(z- x) + cos rt(y + z) + cos ~ ( y -  z) = 0 
4.1.3 
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cos rffx + y)  + cos n ( x -  y)  + cos ~:(x + z) 

+cos  r t ( z -  x) + c o s n ( y  + z) + cos r t ( y -  z )+  1 = 0 

The D surface 

cos x (x  + y + z) + cos r t ( x -  y - z) + cos r t ( - x -  y + z) 

+ cos ~:(-x + y - z) + sin rc(x + y + z) + sin rt(x - y - z) 

+ sin r t ( - x -  y + z )+  sin r t ( -x  + y - z) = 0 

4.1.4 

4.1.5 

Figure 4.1.1 The P surface. Figure 4.1.2 The gyroid surface. 

Figure 4.1.3 The IWP surface. Figure 4.1.4 The D surface. 
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These equations are mathematically the same as the equations given in 
chapter 2, which are identical with those originally, but differently, derived 
by von Schnering and Nesper [2]. The names of the surfaces come from 
the corresponding minimal surfaces as given in appendix 2. 

In figures 4.1.1-10 we show representative parts of each surface. 

Figure 4.1.5 Projection of the 
gyroid along the a-axis. 

Figure 4.1.6 Projection of the 
gyroid along a space diagonal. 

Figure 4.1.7 Projection of D along a 
cubic space diagonal. 

Figure 4.1.8 Projection of D along a 
cubic face diagonal. 
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Figure 4.1.9 IWP from equation 
4.1.4. 

Figure 4.1.10 IWP as in 4.1.9 but with 
larger boundaries. 

4.2 Nodal Surfaces and Planes 

The way we describe the nodal surfaces is particularly useful to study some 
of  their properties. 

We assume that in an expression for a surface 

cos A + cos B + cos C + cos E + cos D... = 0, 4.2.1 

one term, cosA, is an infinite number of  parallel planes. 

We want  to study how such planes are transformed into the surface and 
formulate the equation 4.2.2. 

cos A + N(cos  B + cos C + cos E + cos D...) = 0 4.2.2 

Similarly the terms cosA+cosB, or cosA+cosB+cosC, are two sets of  
intersecting planes that via the addition of  a constant become parallel rod 
systems. 

We want  to study how such rods are transformed 
formulate the equations 

into a surface and 

cos A + cos B + N(cos C + cos E + cos D...) = 0 4.2.3 
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o r  

cos A + cos B + cos C + N(cos E + cos D...) = 0. 4.2.4 

To transform a plane or rod system into a surface, N starts as a small 
number. 

We illustrate this with examples, and start with the P-surface. The function 
cosx is implicitly an infinite number of planes, and we derive a 
transformation of these planes into the P-surface by weighted addition 
after equation 4.2.5. 

Figure 4.2.1 A=0 in equation 4.2.5. Figure 4.2.2 A=0.1 in equation 4.2.5. 

Figure 4.2.3 A=0.2 in equation 4.2.5 Figure 4.2.4 A=0.5 in equation 4.2.5. 
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Figure 4.2.5 A=0.8 in equation 4.2.5. Figure 4.2.6 A=I in equation 4.2.5. 

cos 7tx + A[cos ~ + cos rcz] = 0 4.2.5 

In figures 4.2.1-6, A takes the values 0, 0.1, 0.2, 0.5, 0.8, and 1. A=I is of 
course the P-surface. For lower A:s, curvature is given to the plane and 
gradually, as A increases, the planes are joined via catenoids and the 
transformation to the P-surface is obvious. 

Next, we do a similar sequential transformation with the gyroid, where the 
plane system is sin(x+y), and let A take the values 0, 0.1, 0.3, and 0.8 in 
figures 4.2.7-10 and equation 4.2.6. 

sin rt(x + y )+  A[sin n ( x -  y )+  sin n(x + z) 

+ sin rt(z - x) + sin n(y + z) + sin rt(y - z)] = 0 
4.2.6 

With equation 4.2. 7 we demonstrate that it is possible to use a plane that 
does not belong to the surface. These mathematics are used to describe the 
structural changes in the Endoplasmic Reticulum in chapter 8. 

sin rtx + A[sinn(x + y )+  sin r f fx-  y )+  sin rt(x + z) 

+ sin n(z - x) + sin rt(y + z) + sin n(y - z)] = 0 
4.2.7 

The figures 4.2.11-14 below are calculated with A equal to 0.1, 0.3, 0.37, 
and 0.6. 
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Figure 4.2.7 A=0 in equation 4.2.6. Figure 4.2.8 A=0.1 in equation 4.2.6. 

Figure 4.2.9 A=0.3 in equation 4.2.6. Figure 4.2.10 A=0.8 in equation 4.2.6. 
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Figure 4.2.11 A=0.1 in equation 4.2.7. Figure 4.2.12 A=0.3 in equation 4.2.7. 

Figure 4.2.13 A=0.37 in equation 4.2.7. Figure 4.2.14 A=0.6 in equation 4.2.7. 

We redo the calculations with the D-surface and the plane, cos(x+y+z). We 
let A vary between 0.2 equation 4.2.8, and get figures 4.2.15-19. 

cos ~:(x + y + z) + A[cos ~:(x-  y - z) + cos 7z ( -x -  y + z) 

+ cos ~ ( - x  + y - z) + sin ~:(x + y + z) 

+ sin ~ ( x -  y - z) + sin n ( - x -  y + z) + sin 7t(-x + y - z)] = 0 

4.2.8 
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Figure 4.2.15 A=0 in equation 
4.2.8. 

Figure 4.2.16 A=0.2 in equation 
4.2.8. 

Figure 4.2.17 A=0.3 in equation 
4.2.8. 

Figure 4.12.18 A=0.5 in equation 
4.2.8. 
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Figure 4.12.19 A=I in equation 4.2.8. 

4.3 Cubic Nodal Surfaces and Parallel Rods 

For symmetry reasons we start with hexagonally parallel rods for an 
orientation of the cubic space diagonal, which is a three fold axis. The 
equation for such rods is given in 4.3.1. This is illustrated in figure 4.3.1, 
with the rods projected in 4.3.2. 

Figure 4.3.1 Hexagonally parallel 
rods along a cubic space diagonal. 

Figure 4.3.2 Projection along the 
cubic space diagonal. 
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cos rt(x - y) + cos r f f -x  + z) + cos ~(y - z) = 0 4.3.1 

cos r f f x -  y) + cos n ( - x  + z) + cos rffy - z) 

+A[cos 7zx + cos 7zy + cos Izz] = 0 
4.3.2 

The equation for the transformation to a P-surface is formulated in 4.3.2, 
and in figures 4.3.3-6 we let A be 0.8, 1.2, 1.8, and 2.4. The rod structure 
becomes a P-surface via the opening of catenoids. 

Figure 4.3.3 A=0.8 in equation 4.3.2. Figure 4.3.4 A=l.2 in equation 4.3.2. 

Figure 4.3.5 A=l.8 in equation 4.3.2 Figure 4.3.6 A=2.4 in equation 4.3.2. 
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The formation of the gyroid from hexagonal rods is very simple, and we 
show this in equation 4.3.3. 

sin r t (x -  y) + sin zr(z - x) + sin zr(y - z) 

+A[sin zr(x + y) + sin zr(x + z) + sin zr(y + z)] - 0.5 = 0 
4.3.3 

For figures 4.3.7-14 A takes the values 0, 0.15, 0.2, 0.3, and 0.6. Figures 
4.3.11 and 12 show how three catenoids meet to form a monkey saddle. As 
indicated in the figure texts, some of the figures are just different 
projections of others. 

Figure 4.3.7 Hexagonally parallel 
rods along a cubic space diagonal. 

Figure 4.3.8 Projection along the 
cubic space diagonal. 

Figure 4.3.9 A=0.15 in equation 4.3.3. Figure 4.3.10 A=0.15 in equation 
4. 3.3, projection of 4.3.9. 
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Figure 4.3.11 A=0.2 in equation 4.3.3. Figure 4.3.12 A=0.3 in equation 4.3.3. 

Figure 4.3.13 A=0.3 in equation 
4.3.3, different projection of 4.3.12. 

Figure 4.3.14 A=0.6 in equation 4.3.3. 

The D-surface can also be easily obtained with a similar mechanism. The 
equation is in 4.3.4. 
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sin 7z(x- y)  + sin 7z(-x + z) + sin rt(y - z) + 

+A[cos x ( x  + y + z) + cos ~ : (x -  y - z) + cos 7z - x -  y + z) 

+ cos ~z(-x + y - z ) +  sin ~:(x + y + z ) +  sin z t ( x -  y - z) 

+ sin r c ( - x -  y + z) + sin rc(-x  + y - z)] - 0.5 = 0 

4.3.4 

Figure 4.3.15 A=0.2 in equation 4.3.4. Figure 4.3.16 A=0.2 in equation 4.3.4. 

Figure 4.3.17 A-0.6 in equation 4.3.4. Figure 4.3.18 A=0.6 in equation 4.3.4. 



Nodal Surfaces, Planes, Rods and Transformations 61 

The A takes the values 0.2, 0.6, and 2 for the figures 4.3.15-20. The 
figures to the right are projected along the three fold axes in the figures to 
the left. 

Again we see that the catenoids coming out from a rod meet to form a 
monkey saddle. 

Figure 4.3.19 A=2 in equation 4.3.4. Figure 4.3.20 A=2 in equation 4.3.4. 

Figure 4.3.21 Simple tetragonal rods, 
from equation 4.3.5. 

Figure 4.3.22 Simple tetragonal rods, 
from equation 4.3.6. 
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Just as the hexagonal, the parallel tetragonal cylinders make a simple rod 
system. We have produced it in two different orientations in equations 
4.3.5 and 4.3.6, which is illustrated in figures 4.3.21-22. We shall make 
them form surfaces via catenoids. 

cos rtx + cos rye = 0 4. 3.5 

cos x(x + y ) + cos rt(x - y) : 0 4.3.6 

Figure 4.3.23 A=0.2 in equation 4.3.7. Figure 4.3.24 A=0.4 in equation 4.3.7. 

Figure 4.3.25 A=0.6 in equation 4.3.7. Figure 4.3.26 A=0.8 in equation 4.3.7. 
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Using equation 4.3.7 we start to make the P-surface from the rods of figure 
4.3.21. 

cos 2ztx + cos 2rty + A cos 2~z + 0.5 = 0 4.3.7 

A varies between 0.2, 0.4, 0.6 and 0.8 in figures 4.3.23-26. 

Figure 4.3.27 A=0 in equation 4.3.8. Figure 4.3.28 A=0.1 in equation 4. 3.8. 

Figure 4.3.29 A=0.2 in equation 4. 3.8. Figure 4.3.30 A=0.4 in equation 4. 3.8. 
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With this tetragonal rod system we can make a transformation to the 
gyroid with the very simple equation 4.3.8. A takes the values 0, 0.1, 0.2, 
and 0.4 in figures 4.3.27-30. 

sin n(x + y) + sin rc(x - y) 

+A[sin 7z(x + z) + sin ~ ( - x  + z) + sin n(y + z) + sin n(y - z)] - 0.2 = 0 
4.3.8 

Using the same rod system but with the first orientation from 4.3.5, we 
formulate equation 4. 3.9. 

cos rcx+ cos rpy 

+A[sin x(x + y) + sin r t (x -  y) + sin rc(x + z) 

+ sin ~ ( - x  + z) + sin rc(y + z) + sin x(y - z)] = 0 

4.3.9 

A has been given the values 0.02, 0.08, 0.4, 0.8, and 2 for the figures 
4.3.31-36. 

The gyroid is not formed directly from this simple tetragonal rod system - 
first the fundamental tetragonal CLP surface is formed, which is clear for 
A=0.08 in figure 4.3.32. The CLP surface is of great biological relevance, 
and we have recently shown that this surface forms a separate phase at the 
air/water interface in the lung alveoli, which we retum to in chapter 14. Via 
catenoid formation between parts of the distorted CLP surface at an A of 
0.5, there is a continuos transformation of the CLP to the gyroid. 

Figure 4.3.31 A=0.02 in equation 4.3.9. Figure 4.3.32 A=0.08 in equation 
4.3.9 (CLP). 
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Figure 4.3.33 A=0.4 in equation 4. 3.9. Figure 4.3.34 A=0.8 in equation 4.3.9. 

Figure 4.3.35 A=2 in equation 4.3.9. Figure 4.3.36 Different projection of 4.3.35. 

Using the same rod system, but with the first orientation and the D surface, 
we formulate equation 4.3.10. We show only two figures here, for A=0.02 
and 0.2 respectively for figures. 4.3.37 and 4.3.38. 

Again the tetragonal CLP shows up, and at higher A there are heavy 
intersections before going to the D surface. 

cos ~:(x + y) + cos ~:(x- y) 
+A[cos ~:(x + y + z) + cos n(x - y - z) + cos ~ ( - x -  y + z) + cos ~:(-x + y - z) 

+ sin ~t(x + y + z) + sin n ( x -  y - z) + sin ~ ( - x -  y + z) + sin ~ ( - x  + y - z)] = 0 

4.3.10 
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Figure 4.3.37 A=0.02 in equation 4.3.10. 

Figure 4.3.38 A=0.2 in equation 4.3.10. 
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From the equation for the D-surface we can extract a rod system, which is 
tetragonally distorted. We show it with the equation we use to study how 
such rods are transformed into the D-surface (4.3.11). 

Figure 4.3.39 A=0 in equation 
4.3.11. 

Figure 4.3.40 A=0.1 in equation 4.3.11. 

Figure 4.3.41 A=0.3 in equation 
4.3.11. 

Figure 4.3.42 A=0.8 in equation 4.3.11. 
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cos~:(x + y + z ) +  sin ~:(x-  y - z) 

+ A [ c o s x ( x -  y - z) + c o s l z ( - x -  y + z) + cosn ( -x  + y - z) 

+ sin ~z(x + y + z) + sin n ( - x  - y + z) + sin n ( - x  + y - z)] + 0.2 = 0 

Here A takes the values 0, 0.1, 0.3 and 0.8 in figures 4.3.39-42. 

4.3.11 

4.4 Transformations of Nodal Surfaces 

Transformation of one surface into another is of great importance in 
membrane science. We have earlier proposed the isometric Bonnet 
transformation as a guide for a mechanism for such a transformation [3]. 
The advantage is that the curvature at each point is constant during the 
action - it costs no energy. The disadvantage is the heavy intersecting that 
occurs during the transformation. We will now propose a mechanism that 
means no intersection, instead there is closing or openings of catenoids, a 
phenomenon common in biology. There are local changes in curvature, but 
the start and end products must be very close to being isometric, so there is 
no or very little energy exchange with the surroundings. 

The celebrated transformation path in Bonnet [4] is 

D---~ G ---~ P, 

and we shall here have this as the simplest path. Our mathematics involves 
only the weighted addition of the corresponding nodal equations as in 4.4.1. 
We show this first with G--->D. The mechanism is opening of catenoids as is 
obvious from figures 4.4.3-4. 

A and B take the pairwise values 0, 1; 0.5, 1; 1, 1; 1, 0.75; 1, 0.5; and 1, 
0.25 for figures 4.4.1-6 respectively. 

A[cos x(x + y + z) + cos n:(x-  y - z) + cos n ( - x -  y + z) 

+ cos rc(-x + y - z) + sin rc(x + y + z) + sin x(x - y - z) 

+ sin n;(-x - y + z) + sin zt(-x + y - z)] 

+B[sin zr(x + y )+  sin n;(x-  y )+  sin ~(x + z) 

+ s inr r (z -  x )+  sin rt(y + z)+ sinrr(y - z)] = 0 

4.4.1 

We show below in equation 4.4.2 the transformation of G into P, and start 
with a picture of G and its projection along its cubic axes. The mechanism 
is closing of catenoids as is obvious from the figures. A takes the values 0, 
0, 1, 1.7, 2.2 and 3 for the figures 4.4.7-12. 
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sin ~(x + y ) +  s inrc(x-  y ) +  sin zt(x + z )+  s inzt (z-  x) 

+ sin rr(y + z) + sin 7z(y - z) + A[cos ztx + cos roy + cos rtz] = 0 
4.4.2 

Figure 4.4.1 Transformation G--->D. A=0, 
B = 1 in equation 4. 4.1. 

Figure 4.4.2 A=0.5, B = 1 in equation 4. 4.1. 

Figure 4.4.3 A=I, B=I in equation 4.4.1. Figure 4.4.4 A=I, B=0.75 in equation 4.4.1. 
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Figure 4.4.5 A=I, B=0.5 in equation 
4.4.1. 

Figure 4.4.6 A=I, B=0.25 in equation 
4.4.1. 

Figure 4.4.7 Transformation G---~P. A=0 in 
equation 4. 4.2. 

Figure 4.4.8 A=0 in equation 4. 4.2. 
Projection. 
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Figure 4.4.9 A =1 in equation 4. 4.2. Figure 4.4.10 A=l.7 in equation 4.4.2 

Figure 4.4.11 A-2.2 in equation 4.4.2. Figure 4.4.12 A-3 in equation 4.4.2 
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5 Motion in Biology 

What harm a wind too strong at sea might do [Shakespeare, l]. 

We describe dynamics in biology as change of site, shape, and size. 
We describe how to control the shape of bodies using the exponential 
shape. 
We propose here that the GD function is used to describe biological bodies 
such as vesicles or cells, how they move, and how they interact with other 
bodies (attraction or repulsion). 
We describe how bodies of different shapes move through planes, catenoids, 
or lenses shaped like rings. 

5.1 Background and Essential Functions 

We shall not review the history of dynamics, we shall just give a pure 
mathematical description of motion and interactions, and apply it to 
biology. 

Examples of classic motion, very well described in reference [2], are free 
particle motion, particle motion under central forces, the standing wave 
motion, the travelling wave motion, and solitary wave motion. References 
[3] and [4] are also excellent reading for the motion of electrons. 

The picture of motion we shall develop is not based on speed, acceleration, 
momentum, quantisation or minimisation. We shall use special functions 
for the mathematical motion of a molecule or particle. For the interactions 
with surroundings, the shape, size and site of the molecule or particle will be 
important. Interactions in biology occur with other particles, small or 
large, with cell membranes of various shapes. Interactions may also occur 
with different concentrations of the solutes in the aqueous medium, or 
gradients of concentrations. A biological molecule or particle is moving in 
a surrounding of interactions. 

We shall develop two new concepts, finite motion and finite periodicity, 
which are particularly important for the description of motion of biological 
molecules or particles. 
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It must be said that the mathematical 
shape, size, and motion are solutions 
equations. We deal with this first. 

functions we shall use to describe 
to some very basic differential 

Many physical phenomena are described with second order partial 
differential equations, and we give three important ones below in 5.1.1-3. 

Wave equation." 

02u 02u 

Ox 2 Ot 2 
=0  5.1.1 

Diffusion equation." 

~)2u ~)u 

~9x 2 Ot 
=0  5.1.2 

Laplace equation." 

~)2u ~)2u 

~)x 2 0y 2 
=0  5.1.3 

We see below first two simple equations as variations of the wave equation, 
in equations 5.1.4-5. A solution to the first one is cosh, a function that can 
be used to describe the outer shapes of solids like polyhedra, crystals, 
houses, or virtually anything [5]. A solution to the second is cos, and stands 
for infinite periodicity, which is useful for describing inner structures of a 
solid or membrane. These two simple and almost identical differential 
equations have entirely different solutions, each one giving raise to two 
completely different branches of mathematics. Both with great 
applications in life, as we shall see in this book. Why are the differential 
equations so similar? Just a mathematical accident, or of course a property 
of the derivatives. 

d2y 

dx 2 
~ - y  - 0  5.1.4 

Solution: e x + e -x  - 2coshx 
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d2y + y = 0  

dx 2 
5.1.5 

Solution: cosx 

The initial solution to the diffusion equation in 5.1.2 is the error function, 
or the Gauss distribution function (GD) in equation 5.1.6. 

_x 2 
y - e  5.1.6 

The mathematics that this simple function offers will also be of great use in 
this book. 

We also say here that the square of sechx is an initial solution to a more 
complicated differential equation - the Korteweg-de Vries (KdV) equation 
for travelling waves in equation 5.1.7. 

c)u 0u 03u 
~ = 6 u  
/)t ~)x /)x 3 

5.1.7 

The function sech is defined by the relation in 5.1.8. 

sechx = 1/coshx 5.1.8 

The sech function is very similar to the GD function, 
useful in our description of solitons in chapter 12. 

and as such also 

So we shall describe biological dynamics as the change of size, site and, 
when needed, shape. 

We need a collective description of forces, and shall use curvature for this. 

Motion, we start with two dimensions, can be described with the two 
position parameters x and y, and with the two dependent parameters, time, 
t, and speed, v, as in equation 5.1.6. 

y=f(x-vt) 5.1.6 

We shall use the kind of mathematics that allows us to move a particle as 
we like. 

Speed v is meters per second, and with t in seconds we can write equation 
5.1.6 as in 5.1.7. 
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y=f(x-Ax) 5.1.7 

x-Ax is now the site which is changed with Ax. 

If we add, or multiply, a constant to equation 5.1.7, we frequently find that 
the function in its graphical representation changes size. So the equations 
we shall use to describe biological dynamics will be of the type: 

y=f(x-Ax) + constant 5.1.8 

By changing size via the constant we have seen spheres via catenoids form 
3D surfaces. We have also seen planes or rods turn into surfaces via 
catenoids. This means change of curvature, and bonding. 

Examples of this biological motion 
5.3.6. 

start below with equations 5.3.4 and 

5.2 The Control  of Shape - the Natural  Exponential  or cosh in 3D 

The change of site describes the motion itself and will be dealt with in 
figure 5.3. For the description of shape, which is important for interactions 
and curvature, we have developed the method of the exponential scale 
[5,6], which we shortly describe below. 

The function 

y - e  x 5.2.1 

is y=e-e.e.., multiplied x times. This is called the natural exponential, which 
will be of great use in this book. 

The natural number e was invented by Euler who realised it to be so 
important that he named it after himself. Some properties of the natural 
number is found below. 

e=2.7 1828 1828 4590 45... 

lne = 1 5.2.2 

y -  e x, if x = In y 
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We start again the counting, and find that 

e x = 100 5.2.3 

is a plane in space, as shown in figure 5.2.1. And we find that 

e x +e  -x  = 100, 5.2.4 

which is the famous coshx, has two planes as shown in figure 5.2.2. Cosh is 
the solution to one of the fundamental differential equations above. 

Figure 5.2.1 An "exponential" plane. Figure 5.2.2 Two exponential planes. 

Now we come to a very important property of the Euler function in the 
equations 5.2.5 and 5.2.6, as shown in figures 5.2.3 and 5.2.4. It is obvious 
from figure 5.2.3 and equation 5.2.5, that when y becomes very small, e y 

approaches one and x becomes In 99, which is 4.6 and is the limit for x as 
shown in the figure. And vice versa for e x. If x and y simultaneously take 
the same value we may write 2eX=100, and x becomes In 50, which is 3.9. 
Or for equation 5.2.6 x becomes In 500, which is 6.2. This is located right 
in the bend. The size of the surface for the function, or x+y, is controlled 
by the constant, and the two variables x and y cannot simultaneously grow 
unlimited, they cannot intersect, they must go continuously over into each 
other. The curvature of the outer tip of the bend is constant and 
independent of its size [5]. In figure 5.2.4 the bend is sharper, which is only 
due to the larger size. 
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We can now make the natural exponential in 3D, which is a cube comer,  in 
equation 5.2. 7 and figure 5.2.5, and the cube in 5.2.6 and equation 5.2.8. 

e x + e y - 100 5.2.5 

e x + e  y - 1000 5.2.6 

e x + e  y + e  z -  100 5.2.7 

e x + e  y + e  z + e  - x  + e  - y  + e  - z -  100 5.2.8 

Figure 5.2.3 Two exponential 
planes that meet. 

Figure 5.2.4 Larger size after 
equation 5.2.6. 

Figure 5.2.5 The Euler function, 
the natural exponential, in 3D. 

Figure 5.2.6 The exponential cube. 
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The cube may be shifted to positive numbers as with equation 5.2.9, which 
is shown in figure 5.2.7. 

We can make the cube grow and become sharper with a constant of 1000, 
as shown in figure 5.2.8. 

e x-6 +e  y +e  z +e  - (x-6)  +e  -y  +e  - z  - 100 5.2.9 

Figure 5.2.7 The cube is translated. 
Figure 5.2.8 The cube is made 
bigger with higher constant. 

Figure 5.2.9 Higher exponentials 
give sharper cube. 

Figure 5.2.10 Still higher exponentials 
give still higher curvature on the 
comers and edges. 
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e x2 + e y2 + e z2 - 1000 5.2.10 

x 6 e +e y6 +e z6 - 1000 5.2.11 

For polyhedra with parallel faces it is good to use higher exponentials, as 
shown in equations 5.2.10 and 5.2.11, and figures 5.2.9 and 5.2.10. 

The tetrahedron and the octahedron have the same sets of planes, eight 
pairwise parallel in the octahedron and four in the tetrahedron, so we use 
the equations 5.2.12 and 5.2.13 which are plotted in figures 5.2.11-12. The 
sets of planes are the same as the ones used to make the D-surface in 
chapter 4. 

e(X+y+z)3 3 3 e(_X+y_z)3 +e (x-y-z)  +e ( -x-y+z)  + = 4.104 5.2.12 

e(X+y+z)4 e(_X_y+z)4 4 04 +e (x-y-z)4 + +e ( -x+y-z)  = 4.1 5.2.13 

Other polyhedra will be constructed when needed later. 

Figure 5.2.11 Exponential tetrahedron. Figure 5.2.12 Exponential octahedron. 
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5.3 The Gauss Distribution (GD) Function and Simple Motion 

When functions are very similar, concentric or parallel, we use the negative 
scale. We have plotted the two functions in equations 5.3.0a and b below in 
figures 5.3.0a and b, and the difference is dramatic. 

eX2 +y2 +z 2 + eX2 +y2 +(z_2)2 = 20 
5.3.0a 

e_(X 2 +y2 +z 2) + e_(X 2 +y2 +(z_2)2 = 0.8 
5.3.0b 

The exponential equation with negative terms have the two spheres 
resolved, which we discuss to some length below. 

Figure 5.3.0a Two spheres after 
ordinary exponentials. 

Figure 5.3.0b The same 
spheres after the GD function. 

Next we tum to the Gauss distribution function, or the GD function, which 
_x 2 

in one dimension is e . 

We plot first the equation 

_x 2 
e = C ,  5.3.1 



82 Chapter 5 

which has two planes in 3D that go apart for smaller C=0.1 in figure 5.3.1, 
and come together for increasing C=0.9 in figure 5.3.2, to one plane x=0 
for C=I. 

The fundamental solution to the 
distribution as in equation 5.3.2. 

Figure 5.3.2 Two planes after GD 

function e -x2 = 0.9. 

_x 2 
u = e  

1.5 

diffusion equation at t=-0 is the GD 

5.3.2 

0.5 

J 

Figure 5.3.1 Two planes after GD 

_ X  2 
function e = 0.1. 

-2 -i 0 1 2 

Figure 5.3.3 The GD function y = e -x2 . 
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Changing to Cartesian, the concentration u can be expressed as in equation 
5.3.3. 

_x 2 
y - e  5.3.3 

This is also called a GD profile, or a GD function of a concentration 
gradient, or the error function, and shown in figure 5.3.3. 

We have found that this function can be moved and made bigger given 
proper coordinates, as in the explicit equation 5.3.4 and figure 5.3.4. 

Y = e_(X )2 2e_(X_8)2 + 5.3.4 

3 
2.5 

2 
1.5 

1 
0.5 

0 
. . . . . .  , I | , , , I , , , , I , , , i I , , | , i | , , , I 

-2 0 2 4 6 8 i0 

Figure 5.3.4 Two GD exponentials in one function. 

For x=0, y is very close to 1, and for x=8, y is close to 2. For x-values 
around 4, y is close to e "16, which is a very small number. This is the nature 
of the GD function, and it is used to describe finite periodicity below. 
Functions with very similar behaviour are the square of seth (solitary wave 

function), the seth itself and a Hermite function like xe -x2 . 

We multiply the GD functions in 3D, 

e-X2e-y2e-Z2 - C  

which is 

e -(x2 +y2 +z2) =C.  5.3.5 

Plotted, this is a sphere, and the size of it may be changed using one of the 
constants in equation 5.3.6. 
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Ae_B(x2 +y2 +z 2 +r) = C 5.3.6 

This sphere can be moved as an ordinary sphere, but we can also put two 
spheres next to each other by giving them different coordinates as in 
equation 5.3. 7, which is shown in figure 5.3.5. Similar was done in the 
explicit example above in equation 5.3.4, and in equations 5.3.0a and 
5.3.0b. The two spheres are described by one mathematical function, which 
causes a geometrical distortion appearing as if there was a physical 
attraction between the two. They can be moved to meet each other and we 
give an example of that below. Here they come closer by growing, from the 
change of constant. 

e -(x2+ Y2+Z2) + e -(x2+ Y2+(z-3)2) = 0.3 5.3.7 

Figure 5.3.5 Two GD spheres 
after equation 5.3. 7. 

Figure 5.3.6 Different 
projection of figure 5.3.5. 

We can precast when the two bodies meet, a catenoid starts to form which 

is at a constant of 2e -1"52 --0.2108. This is when the function exist for a 
value of z=l.5, x=0 and y=0, which is right between the two bodies, and 
shown after equation 5.3.8 in figure 5.3.7. 

e_(X 2 +y2 +z 2) + e_(X 2 +y2 +(z_3)2) = 0.2108 5.3.8 
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For a higher constant the two bodies are isolated, and for a smaller constant 
the catenoid has developed, which is shown in figure 5.3.8, calculated with a 
constant of 0.18. 

Figure 5.3.7 Two GD spheres 
meet after equation 5.3.8. 

Figure 5.3.8 The two GD 
spheres meet after equation 5.3.8. 

Figure 5.3.9 Small sphere/vesicle 
moves after equation 5.3.9. Az=0. 

Figure 5.3.10 Az=0.2. 
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Figure 5.3.11 Az=0.22. 

We also wish to model how a very small vesicle interacts with a much 
larger one. We formulate equation 5.3.9, and with a small weight on one of 
the spheres/vesicles, its size is reduced as shown in figure 5.3.9. Now we 
move the small one by changing the distance from 2.6 to 2.4, and also to 
2.36 via Az in figures 5.3.10 and 5.3.11. 

1 e_(X 2 e_(X 2 +y2 +z 2) + _  

5 
+y2 +(z_(2.6_Az))2) = 0.18 5.3.9 

The mathematical picture of attraction is an overlap of two functions, and 
we shall do an experiment to enlighten this description. 

In figure 5.3.7 a very thin catenoid had formed at a constant of 0.2108. An 
extra particle, weighted to be very small, is added in equation 5.3.10. The 
effect is dramatic, the small particle/vesicle is fused into a well developed 
catenoid as shown in figure 5.3.12. 

We may also subtract the same particle in the neighbourhood, and this is 
done in equation 5.3.11, and shown in figure 5.3.13, as a projection. The 
distortion of the spheres indicates repulsion. 

We have seen typical pictures of physical attraction and repulsion with the 
origin in simple variations of one mathematical function. Attraction is due 
to the addition of a particle, and the repulsion is due to the loss of one. 
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e_(X 2 +y2 +z 2) + e_(X 2 +y2 +(z_3)2) 

1 -(x 2+y2+(z-l.5)2) _ 0.2108 q---e  
10 

5.3.10 

2 e-(X2+y2+z 2) +e-(X +y2+(z-3)2) 

1 -(x 2+y2+(z-l.5)2) _ 0.2108 - ~ e  
10 

5.3.11 

Figure 5.3.12 A very small particle/vesicle 
is added to two spheres/vesicles just in 
contact as in figure 5.3.7, and transforms to a 
well developed catenoid. 

Figure 5.3.13 A very small 
sphere/vesicle is subtracted. 

This is also shown in two dimensions. Equation 5.3.12 expresses attraction 
as a particle is added. 

e_(X 2 +(y_1.7)2) + 0.4e_((x_Ax)2 +y2) + e_(X 2 +(y+1.7)2) = 0.4 5.3.12 

Ax takes the values of 2, 1.5, 1, 0, -1.5 in figures 5.3.14 a-e. The Ax 
corresponds to the motion of the small particle. 
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0 

-i 

-2 

-3 
-i 0 I 

a Ax=2. 

o 0 

-i 

-2 

-2 

0 

2 -I 0 1 2 

b Ax = 1.5. 

-i 

-2 

-3 
-i 0 1 2 

eAx =1. 

-i 

-2 

-3 
-2 -i 0 1 2 

2 

1 

o �9 

-1  

-2  

m 3 . . . . . . . . . . . .  , . . . . . . . . . . . .  

-2 -i 0 1 2 

d Ax =0. e Ax =-1.5. 

Figure 5.3.14 A small particle/vesicle is passing between two bigger under interactions. 
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Equations 5.3.13-14 demonstrate 
subtracted in figures 5.3.15 a-b. 

the repulsion as a particle/vesicle is 

e -(x2 +(Y-1"25)2) + e -(x2 +(Y+1"25)2) = 0.4 5.3.13 

e-(X 2 +(y-1.25) 2) _ 0.4e-((x) 2 +y2) + e_(X 2 +(y+1.25)2) = 0.4 5.3.14 

-i 

-2 

-3 -3 

2 

1 

0 

-i 

-2 

-i 0 1 2 -i 0 1 2 

Figure 5.3.15a Two particles/vesicles. Figure 5.3.15b A small particle/vesicle 
is subtracted. 

We have found it useful to square a function. As x2=l has two roots and 
forms two planes, the square of the equation of a circle becomes two 
circles. This can be regarded as a more complete structure description of 
the plasma membrane around a cell or a vesicle, showing the outer surfaces 
of the lipid bilayer. If we use the squares as in equation 5.3.14, we see in 
figure 5.3.16 how a small vesicle can go right through a bigger one. We will 
below relate this mechanism to pinocytosis, i.e. a flow of vesicles through a 
cell. 

e_(X 2 +y2 _14)2 + e_4[(x+Ax)2 +(y_Ay)2_0.512 = 0.6 5.3.14 

For the figures 5.3.16 a-I the Ax and Ay take the pairwise values below. 

1,-7; 1,-5; 1,-4; 1,-3.2; 1,-2.8; .5,-2; -.5,-1; -2,-.5; -3,0; -4.1,0; -5,.5; -7,1; 
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Figure 5.3.16 A small particlelvesicle going through a bigger. Ax and Ay from above. 
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Vesicles control the transport in and out from cells by processes called 
endocytosis and exocytosis respectively. Endocytosis is usually achieved 
via coat-proteins in the plasma membrane, such as clathrin. A kind of cage 
is formed by clathrin, and with the lipid bilayer a vesicle is successively 
formed (coated vesicle). 

Pinocytosis is endocytosis taking place by small vesicles (radius below 100 
nm), and often this transport goes through the whole cell (transcytosis). 
One example is the efficient flow of macromolecules through the 
endothelial cells lining blood vessels. These vesicles are not coated by 
clathrin. Another example is the flow through the tubule cell of the kidney, 
as shown in figure 5.3.17 [9]. 

Figure 5.3.17 Illustration of transcytosis via flow of pinocytic vesicles through kidney 
tubuli cells. The protein molecules from the lumen side are digested by lysosomes 
during the passage. Modified after [9]. 

There is no physical explanation of this efficient flow through cells in the 
literature. The model shown above seems relevant in order to understand 
the bilayer mechanisms. See further chapter 8. 
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5.4 More Motion in 3D 

We show three vesicles and two sets of GD-planes in a number of pictures 

after equation 5.4.1. We make only one of the vesicles move, and Ax 
describes this in equation 5.4.1 and takes the values 3, 2, 1, 0, -1 and -2. In 
figures 5.4.1a-e this is shown, and we see that a vesicle fuses with the 
plane/membrane. At the other side a new vesicle is formed and the 
operation continues. 

Figure 5.4.1 Only one of several vesicles 
move with Ax. a Ax =3. 

b Ax =2. 

c Ax =1. d Ax =0. 
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e A x  = -1 .  

1 
1 -[(x-3"5) 2 +y2 +z2_.~.] +--e -4 ]  1 -[(x-Ax) 2 +(Y+2-3) 2 + z2 1 

~ e  
4 4 

1 1 -[(x-5) 2+y2+(z+2"5)2-~] 
+ - - e  

4 
+ e-(X 2 -1) + e -(x-8)2 = 0.2 

5.4.1 

Catenoids are very commonly formed in structures occurring in nature, for 
example at liquid interfaces. 

First a simple catenoid is made from a double cone after equations 5.4.2-3, 
and shown in figures 5.4.2-3. 

Figure 5.4.2 Catenoid from 5.4.2. Figure 5.4.3 Different constant. 
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Figure  5.4.4 A particle moves through 
a catenoid after 5. 4. 4. 
a Az=3.5. 

b Az =1.5. 

c Az =0. d Az = -3.5. 

x 2 + y2  _ 2z  2 - 0 5.4.2 

x 2 + y 2 - 2 z 2 - 4 =  0 5.4.3 
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A spherical body, which may be a protein molecule or a vesicle, goes 
through the catenoid under interactions, if modelled by these mathematics. 
We go exponential to keep the two geometries apart. The equation is 
5.4.4. 

eX2 +y2_2z2_4 + e_3[x2 +y2 +(z_Az)2 ] = 0.15 5.4.4 

Az describes the motion of the particle, and takes the values 3.5, 1.5, 0, 
and -3.5 for the figures 5.4.4a-d. 

Interaction is studied with a bigger sphere with equation 5.4.5. 

x 2+y2_2z2_4 e_l.6[x2+y2+(z)2] 
e + =0.15 5.4.5 

Reaction between the particle and the catenoid under these conditions gives 
high curvature which cracks the particle, as seen in figure 5.4.5. 

Figure 5.4.5 A particle and the catenoid are reacting. 

Figure 5.4.6a-d shows the passage of a body shaped as a cube through the 
catenoid, and the corresponding equation is in 5.4.6. 



Motion in Biology 97 

eX2 +y2 _2z 2_4 + e-2[x6 +y6 +(z_Az)6 ] = 0.15 5.4.6 

Az describes the motion of the particle and takes the values 3, 0, -3, for the 
figures 5.4.6a-d. Figure 5.4.6c is the projection of b. 

The interaction occurs via opening of catenoids from the cube edges as 
seen in 5.4.6c. 

Figure 5.4.6 A cube is going through a 
catenoid, a Az=3. 

Figure 5.4.6b Az=0. 

Figure 5.4.6c projection of b. Figure 5.4.6d Az=-3. 
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We want to make a tetrahedron 
equation 5. 4. 7. 

go through, and therefore formulate 

e(X 2 +y2_2z 2_4) 

+e -0"4[ex+y+z-Az +eX-Y-Z+AZ +e-X-Y+z-Az +e-X+Y-Z+AZ ] = 0.15 
5.4.7 

Az varies as 3, 0, -3 for figures 5.4.7a-c. 

Figure 5.4.7a A tetrahedron is 
approaching a catenoid. 

Figure 5.4.7b The tetrahedron has 
reached the centre of the catenoid. 

Figure 5.4.7c The tetrahedron has 
gone through the catenoid. 

Figure 5.4.8 A bigger tetrahedron is 
reacting. 
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For figure 5.4.8 and equation 5.4.8, the tetrahedron is larger, and again the 
edges make interactions in form of catenoids. 

e(X 2 +y2-2z2-4) 

+e -0"362[ex+y+z +eX-Y-Z +e-X-Y+Z +e-X+Y-Z ] = 0.15 
5.4.8 

A sphere goes through a torus, and the equation is in 5.4.9, with the figures 
5.4.9a-e. The Az:s are 4, 2, 0, -2, -4. 

e_(((x 2 +y2)0.5_4)2 +z 2) + e_(X 2 +y2 +(z_Az)2) = 0.2 
5.4.9 

Figure 5.4.9 A sphere goes through a 
toms. a Az=4. 

Figure 5.4.9b Az=2. 

Figure 5.4.9c Az=0. Figure 5.4.9d Az=-2. 
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Figure 5.4.9e Az=-4. 

Figure 5.4.!0 Polymerase and DNA. Reproduced with 
permission from ref. [7]. 
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By making the sphere bigger, interaction occurs with the torus, of the same 
circular kind as in figure 5.4.5. 

We wish to show an example in molecular biology of the dynamics above. 
In figure 5.4.10, from x-ray crystallography [7], there are two sub-units of 
the enzyme polymerase III that form a doughnut, or torus, around DNA, 
which permits the enzyme to synthesise long stretches of DNA. The 
polymerase ring may also slide along the DNA. We have formulated an 
equation for this motion. First we show the DNA molecule of different 
groves after equation 5. 4.10 and ref. [8]. 

15 e ((x2+y2))  +e(YC~ 2 

1 (y cos 2(z+2)+x sin 2(z+2)) +--e 
2 

=3.5 

5.4.10 

Figure 5.4.11 DNA from 
ref. [8]. 

Figure 5.4.12 DNA goes through a toms. 

Now we formulate equation 5.4.11, to make this DNA molecule go through 
a torus. 

Above in figure 5.4.12, A is zero, but below A is 4, making the torus slide 
on the DNA molecule in the job of replication, or proof reading. 
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1 ((x2+y2)) (ycos--z+xsin--z) 1 (ycos (z+2)+xsin (z+2)) 
4e --[e2 +e 2 2 +-e2 

+e -(((x2 +y2)0"5-5)2 +(z+A)2) = 0.4 

5.4.11 

Figure 5.4.13 DNA continues sliding through a toms. 
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6 Periodicity in Biology- Periodic Motion 

The scene is Hollywood; Archimedes is meeting Newton to shoot the 
Millenniums in the year 1999. 
Archimedes: Euclid started his geometry with a point; what do you start 
dynamics with? 
I start with a body, replied Newton. 
Archimedes cried: ... I am eaten with impatience, how is this body defined? 
What is its size? What is its shape?.., perhaps it is just  a mathematical point 
in motion? 
Newton blushed slightly [Synge,1]. 

Periodic translation motion is described with damped circular functions, 
equivalent with the Hermite function. 
In this way the flagella movements are described as snake and screw 
motions. 
During a damped periodic particle motion the particle/object changes 
shape. 
Rotation in biology is described as a double translation operation. Circular 
and elliptical orbits are described. 

6.1 The Hermite Function 

The basics of periodicity was given in chapter 2 with the link between the 
fundamental theorem of algebra and the circular functions. Finite 
periodicity is described as finite products of roots. 

The GD-function is in statistics called the error function, and was discussed 
in chapter 5. In chemistry it is used to describe concentration gradients, and 
as such, a solution to the diffusion equation. In physics the equivalent is 
valid for heat. 

The GD-function is unique as there exist no anti-derivative 
which means it must be evaluated numerically. 

expression, 

Some simple and fundamental mathematics of the GD-function lead us over 
to the foundation of finite and infinite periodicity. Nature has also 
examples of almost periodic phenomena, where the DNA molecule is one 
example which has stimulated the study below. 
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The Hermite polynoms build some of the most famous nearly periodic 
functions. 

We give the derivatives of the GD-function, starting with the GD-function 
with each successive derivative below. 

_ x  2 
e 

_2xe-X 2 

(-2 + 4x 2)e -x2 

(12x-  8x3)e -x2 

(12-  48x 2 + 16x4)e -x2 

(-120x + 160x 3 - 32x5)e -x2 

(-120 + 720x 2 - 480x 4 + 64x6)e -x2 

6.1.1 

These derivatives, also called Hermite functions, consist of the Hermite 
polynoms multiplied with the GD-function itself. So the GD-function is an 
essential part of the Hermite function, and is often called a weight or 
damping function. 

With the proper physical constants, these are the Schr6dinger wave 
functions of the harmonic oscillator, with the GD-function itself as the 
ground state. 

We shall show that these polynoms are very similar to the polynoms that 
build the roots of the fundamental theorem of algebra. We start by using 
the polynom from the fourth derivative of the GD-function, 

x 4 _ 3x 2 + y4 _ 3y2 + z 4 _ 3z 2 + 2.25 - 0 6.1.2 

and show it in figure 6.1.1. 

x ( x -  1)(x + 1)(x- 2) + y(y - 1)(y + 1)(y - 2) + z(z - 1)(z + 1)(z - 2) = 0 6.1.3 

The corresponding root function from the fundamental theorem of algebra, 
equation 6.1.3, is shown in figure 6.1.2, and the two structures are almost 
identical. Changing the constant in the Hermite polynom, as in 6.1.4, gives 
figure 6.1.3, which is similar to the electron distribution of a B6H 6 molecule 
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from Schr6dinger calculations. The B6H6 octahedron has a similar shape as 
in figure 6.1.1, where only half of it is shown, while the electron 
distribution describes the dual form, which is a cube. This is the beginning of 
the description of molecules, small or big, with finite periodicity. 

x 4 _ 3 x  2 + y 4 _ 3 y 2  +z 4 _ 3 z  2 +3 .5 _ 0  6.1.4 

Figure 6.1.1 P-surface cubosome after a 
Hermite polynom. 

Figure 6.1.2 P-surface cubosome after 
the fundamental theorem of the algebra. 

Figure 6.1.3 The B6H6 molecule from the Hermite 
polynom of equation 6.1.4. 
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We also show the power expansions of sine and cosine, to point out the 
similarity with the Hermite polynomials. The odd polynomials are similar 
to sine, and the even are similar to cos. 

x 3 x 5 x 7 
s i n x - x - ~ + ~ - ~ + . . .  

6 120 5040 

x 2 x 4 x 6 
c o s x =  1 - ~ + ~ - ~ + . . .  

2 24 720 

6.1.5 

We shall now compare the Hermite functions directly with cosine to study 
this similarity. We take advantage of the power of the computer program 
Mathematica in a case like this and use the routine 

HermiteH[n,x], 

where n stands for the order of the derivative, and the output is just the 
Hermite polynomials. While the Hermite polynomials oscillate violently, 
the functions do not, since they contain a damping term. We plot the 
equation 6.1.6 in figure 6.1.4, which simply is the derivative number eight 
of the GD-function. 

_x 2 
e hermite[8x] - y 6.1.6 

3001 
2O 

m 

1 

0 

ii ~ . 0 

/j  i 

Figure 6.1.4 Hermite function of degree 8 as compared with cosine. 
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Next, we make the cosine function overlap as a separate function in form 
of equation 6.1.7, which is plotted in figure 6.1.4. 

3000 cos ~x = y 6.1.7 

We shall show that the Hermite functions are very similar to the circular 

_ ix2  
functions by reducing the power of the damping term, using e 2 . So in 
equation 6.1.8 we calculate for various n the shapes, and compare 
corresponding cosine functions after 6.1.9, which is illustrated in figures 
6.1.5-8. 

_1x2 

e 2 hermite[nx] = y 6.1.8 

n = 1 0  

3.104 cos 1.5~x = y 

n - 2 0  

6.7.1011 cos 2~x - y 

n - 3 0  

2.1020 cos2.48~x = y 

6.1.9 

n = 4 0  

3.4.1029 cos2.84nx = y 

We observe that with increasing n, the Hermite function is becoming very 
similar to cosine. 

So we formulate the equation 6.1.10, when n is very high. In textbooks of 
quantum physics this is said to represent the wave function of a particle, 
and there called a wavelet or wave packet. 

_x 2 
y = e cos 2rex 6.1.10 
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Figure 6.1.5 Hermite function of degree 10 Figure 6.1.6 Hermite function of degree 
as compared with cosine. 20 as compared with cosine. 

Figure 6.1.7 Hermite function of degree Figure 6.1.8 Hermite function of degree 
30 as compared with cosine. 40 as compared with cosine. 

v v v v v v  

Figure 6.1.9 The GD-function Figure 6.1.10 Cosine damped with 
compared with cosine. the GD-function to become a wave 

packet. 
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In figure 6.1.9 we compare the GD-function with cosx, plotted as two 
different functions. And in figure 6.1.10 we have multiplied the two terms 
after equation 6.1.10 to show the effect of damping. From figure 6.1.4 we 
see that the Hermite functions very early become similar to the damped 
cos function in equation 6.1.10. 

For us this is indeed a very important function. Earlier we have shown that 
it can be used to describe the translation of structures of dilatation 
symmetries, which gives the mathematics to describe many structures in 
solid state science [2]. We shall use this application later in biology, but 
first we describe its use for motion, and in particular periodic motion. 

6.2 Flagel la-  Snake and Screw Motion 

In chapter 5 we showed that we could move things with a GD-function. We 
go back to the simple Hermite damping function used to describe a particle 
wave. 

y - e -(x-Ax)2 cos2~x 6.2.1 

When Ax takes the values 0; 0.2; 0.4;...1, the curve moves as seen in figure 
6.2.1a-f. This is periodic motion, or damped sinusoidal, in one plane, 
resembling the characteristic snake motion, which of course is similar to 
the movement of the paddle wheel, or to the way birds fly. And you can 
make a wave packet move - via the Hermite functions and their relations 
to the algebra, we understand that this is nothing but counting. 

This is the way the flagella of sperms make these cells swim. In figures 
6.2.2a-e we have used a piece of the function of equation 6.2.2, and let Ax 
takes the values 0; -0.4; -0.8;...-1.6. The pictures we obtain are similar to 
the pictures of the flagella sperms occurring in common textbooks [3]. As 
the sperm swims to the left, the head is also to the left. 

1 
e -=(2 x-  Ax) 2 

Y cos zcx 6. 2.2 



-3 

J 

1 

O. 

0 

-2N']-i I 1 k./ 2 
- r5 

o s~ 

112 Chapter 6 
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Figure 6.2.1a-f Biological motion modelled by a wavepacket after equation 6.2.1. 
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Figure 6.2.2a-e The flagellum of a sperm with 
movement modelled by equation 6.2.2. 

There is an entirely different motion for the flagella of bacteria, an 
example is the E. coli bacteria, which swims with a helical tube or spiral 
movement. This is attached via an axis of rotation, an elongation of the 
spiral, to a motor built of ring-forming proteins, sitting in the outer and 
inner membrane of the bacteria. The 'ship' is driven by a propeller instead' 
of a paddle wheel. 
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We now show how to derive the mathematics for this motion. We start by 
making a helicoid as in figure 6.2.3, with the classic equation in 6.2.3. 

zcos 2 r tx -  y sin2rtx - 0 6.2.3 

By enveloping a cylinder in equation 6.2.4, we get a helical tube in figure 
6.2.4. 

zcos 2rtx - y sin2~x + 4(x 2 + y2)  _ 0 6.2.4 

Figure 6.2.5 GD-damping of spiral tube gives a worm like screw. 
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We now do the damping as we did in the Hermite function, and as in the 
last example of moving the flagella sperm. The equation will simply be as 
in 6.2.5. 

_x 2 
e (z cos 2rex- y sin2rcx) + 4(x 2 + y 2 ) -  0 6.2.5 

This equation gives the beautiful worm in figure 6.2.5. 

Now we make this worm or spiral move in the same way as we did with the 
flagellum of sperm, using the GD-function in equation 6.2.6. 

e -(x-Ax)2 (zcos 2 r tx -  y sin2rtx) + 4(x 2 + y2) _ 0 6.2.6 

Figure 6.2.6 The motion of a screw or flagellum of bacteria. 



116 Chapter 6 

Ax takes the values 0; 0.1; 0.2; 0.3; 0.4; and 0.5; in the figures 6.2.6, which 
simply are projections of 6.2.5. We clearly see that the GD-function is 
pushing the screw along x, making the screw rotate. It must do this, since 
the spiral function is changing all the time with Ax. Indeed we have a 
complete mathematical model for the topological motion of a screw and 
thereby of the E. coli bacteria movement as well. 

6.3 Periodic Motion with Particles in 2D or 3D 

We know that motion in biology is not only change of site, or size, it is 
also change of shape. We saw that on the study of flagella. Here we extend 
the analysis and extend to 3D. Equation 6.3.1 expresses a simple spherical 
damping of the simplest cosine function. For the given constant this is a 
sphere. In figure 6.3.1 we can move this body with Ax taking values 0; 0.4; 
0.8; ... to 4. 

1 e_[(x_Ax)2 +y2 +z2 ][cos w x + cosgy + cos gz] - ~ 6.3.1 

The 'structure' moves, and changes shape periodically in a continuos way. 
Just like a walking human being. The x-coordinate shows where the 
'structure' is. 

We may of course easily make the 'structure' move in different directions. 
This is a true, and very simple, 3D periodic motion. 

This was crawling, and the periodic motion is also well described with 
equation 6.3.1b and shown in figure 6.3.2a. This agrees very well with the 
current pictures of cyclic crawling of cells [4], which we reproduce in figure 
6.3.2b. Two mechanisms driving this kind of motion have been described. 
One is just changes in the membrane, involving endocytosis in the back and 
exocytosis in the front. This means that the membrane will move and 
force its inside content to follow this motion. The other mechanism is a 
force on the membrane from the inside, provided by actin, as shown in 
figure 6.3.2b. 

e_[(x_Ax)2 +y2 +5z 2 ][cos 1 1 - nx + cos xy + cos nz] - - 6. 3. lb  
2 2 
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Figure 6.3.1 Periodic motion in 3D. 
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Figure 6.3.2a More periodic motion. 
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Figure 6.3.2b Crawling motion of a cell, 
modified after [4]. 

We will now do the experiment with two particles meeting each other. To 
make it simple they have the same structure but different sizes. 

We take the simplest circular or nodal function of all, and damp it with a 
GD-function like we did above. We start in two dimensions after equations 
6.3.2- 6.3.4. 

l 

-1 

~ B  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-3 -2 -i 0 1 2 3 

Figure 6.3.3 Nodal structure. 
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cos 7vx + cos x y -  O. 1 6.3.2 

e_l(x2 +y2) [cos x + cos y] - O. 1 6. 3.3 

e - l ( x 2  +y 2 ) 
[cos rex + cos rpy] - 0.1 6.3.4 

First we show the nodal structure after equation 6.3.2 in figure 6.3.3. 

With the damping we cut two different sizes of the 
equation 6.3.3 and 6.3.4 in figures 6.3.4a and 6.3.4b. 

nodal surface after 

? .................................... ? ..................... ~ 1 7 6  
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 

Figure 6.3.4a Damped nodal structure. Figure 6.3.4b Less damped nodal 
structure. 

-2[(x-Ax)2 +y2 ] 
e [cos 7rx + cos rpy] 

+e_l[(x+Ax)2 +y2 ] 
[cos ~x + cos 7zy] - 0.1 

6.3.5 

Due to the nature of the GD-function we can put equations on different 
places in space by addition, and keep their original shape. This is done in 
one function with 6.3.3 and 6.3.4, together with separation in the x- 
dimension, in equation 6.3.5. In figures 6.3.5a-i Ax takes the values 4, 3, 2, 
1, 0 , - 1 , - 2 , - 3 , - 4 ,  after equation 6.3.5. When the particles move towards 
each other, they change in shape due to the periodic motion. They go right 
through each other and regain their original shapes. This is a mathematical 
mechanism for how a particle (of some structure, in this case periodic) goes 
through another particle (also of some structure, in this case also periodic), 
or how a small crystal is added to a bigger one. 
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Figure 6.3.5a-i Two nodal structures go through each others. 
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In equation 6.3.6 we do this in three dimensions to show that the functions 
are continuos. 

1 2 
e_~[(x_Ax) +y2+z 2] 

[cos rtx + cos r~' + cos rtz] 

+e_l [ (x+ Ax)2 +y2 +z 2 ] 
[cos rex + cos roy + cos r~z] = 0.1 

6.3.6 

With the variation of Ax from -4; -3;...0 the particles continuously fuse as 
in figures 6.3.6a-e, and separate again, or go through each other if the 
motion is continued. 

Figure 6.3.6a Two cubosome like structures belonging to equation 
6.3. 6 damped to different sizes. The two structures are made to go 
through each other via "biological motion" in the figures below. 
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Figure 6.3.6b 

Figure 6.3.6c 
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Figure 6.3.6d 

We shall also move a tetrahedron along the Cartesian space diagonal. The 
equation is in 6.3.7, which is partly recognised from 5.2.12. 

e -2[(x+Ax)2 +(y+Ay)2 +(z+Az)2 ][sin rc(x + y + z )+  sin ~ ( - x  + y - z) 

+ s i n ~ ( - x -  y + z)+  s i n n ( x -  y - z) + cos rffx + y + z) 

+ cos rc(-x + y - z) + cos r c ( - x -  y + z) + cos n ( x -  y - z)] - 0.4 = 0 

6.3.7 

The A:s take the values 0.50, 0.50, 0.50; 0.25, 0.25, 0.25; 0, 0, 0 ; - 0 . 2 , -  
0.2, -0.2; -0.5, -0.5, -0.5; 

In figures 6.3.7a-e we see first a beautiful inversion of this damped part of 
the D-surface, a tetrahedron of four spheres, over a transition state. Then 
there is a transition to a bigger piece of diamond, or a molecule called 
admantane. 
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Figure 6.3.6e Continuing the motion means complete separation with 
the smaller part coming out to right. 

Figure 6.3.7a A body of tetrahedral 
symmetry moves along the Cartesian 
space diagonal. 
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Figure 6.3.7b Figure 6.3.7c 

Figure 6.3.7d Figure 6.3.7e Continuing the climbing 
means a return to the tetrahedron as the 
motion is periodic. 

This motion with dramatic changes of shape may be induced by a locomote 
like in chapter 5, but is of course periodic. Crawling, walking, swimming, or 
the flagella motions are tied up to geometry, and it is only natural to 
describe them with periodic mathematics, as we have done. The jelly fish 
for example has movements that are periodic, and the simple topology in 
6.3.7c-d may serve as a model for that. 
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0 .5  

6.4 Periodic Motion with Rotation of Particles in 2D 

So far we have described motion via translation. Rotation is the other 
fundamental operation and we shall shortly describe it here, as it can also be 
said to be periodic. 

We start to rotate a square with the simple equation in 6.4.1. We vary A 
between 0, 0.2, 0.4, 0.6, 0.8, and 1. In figure 6.4.1 we plot one square on 
the top of another, and see the squares rotate beautifully. 

(Ax+ y) 4 + ( x - A y )  4 - 1 6.4.1 

Periodicity in Biology- Periodic Motion 

Figure 6.4.1 Different functions plotted on top of each 
others. 

Next is to put a particle into an orbit. We start with a small circle after 
equation 6.4.2. 

x 2 + y2 _ r 2 
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and 

y = ~/r 2 - x  2 

and 

Ay - a/r 2 - Ax 2 6. 4. 2 

Below is an equation describing a small circle that is translated a distance, r, 
along the x-axis. 

( x -  r) 2 + y2 = 
1000 

We let r=l and we want to make the small circle rotate in an orbit of the 
bigger circle of radii =1. The centre for this orbit will be the centre of the 
coordinate system. 

( x -  1) 2 + y2 = 10~0 

O 0  

) 

0-2[ 
. . . . . . . . . . . . . . .  , , - . . . . .  . . . . . .  

[ 0.2 0.4 0.6 0.8 < z J  

0 
O 

Figure 6.4.2 Rotation described as double translation 
after equation 6. 4.3. 
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And the equation of motion will be 6.4.3. 

( x -  1 + Ax) 2 + ( y -  1 + Ay) 2 = 5 6.4.3 
1000 

This description of the rotation operation as a double translation operation 
is simple and useful, and fits into our way to describe biological motion. We 
do believe that the mechanism of the motor proteins when they make 
things rotate, is more like double translation than anything else. 

For various Ax we calculate Ay and for some of the circles we give the pairs 
0.2, 0.4; 0.29, 0.29; 0.4, 0.2; 0.6, 0.08; and 0.8, 0.02; The plot is found in 
figure 6.4.2. 

We make the orbit elliptical as plotted in figure 6.4.3, after equation 6.4.4. 

( x -  1 + Ax) 2 + (2y - 1 + Ay)2 = 5 6.4.4 
1000 

0.4 

0.3 

0.2 

0.I 

, , , | , , | , , , , | , , , , | , , . . . . . .  ~ .  

0 . 2  0 . 4  0 . 6  0 . 8  

Figure 6.4.3 Elliptical orbit after equation 6. 4. 4. 

The ellipses are made circles by the equation 6. 4.5 as in the plot of figure 
6.4.4. 

4 ( x -  1 + Ax) 2 + ( 2 y -  1 + Ay) 2 = 5 6.4.5 
1000 
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Figure 6.4.4 Elliptical orbit after equation 6.4.5. 
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7 Finite Periodicity and the Cubosomes 

And thick and fas t  they came at last, 
And  more, and more, and more. 
In his description of isometry and symmetry, Coxeter quotes Lewis Caroll, [1] 

The cubosomes constitute formidable examples of the occurrence of 
symmetry in soft matter in Nature. 
Finite periodicity with circular functions, the GD-function, or the Hermite 
functions are used to describe the giant cubosome lipid bilayer assemblies. 
The structures of the three different kinds of cubosomes - the G, D and P - 
are also discussed using connectivity 3, 4, and 6. 
Connectivity 2 is used to describe topology of twisted ropes, or proteins. 

7.1 Periodicity and the Hermite Function 

The cubosome colloidal particle was first identified in in vitro lipid systems 
and described by one of us [2]. The possibility of periodic curvature along 
the lipid bilayer of cell membranes was introduced when the triply-periodic 
character of cubic lipid-water phases was revealed [3]. In thousands of cases 
such cubic structures have since then been clearly demonstrated to exist in 
cell membrane assemblies [4,5]. This is further described in chapter 8. 

In a wave mechanical description of a molecule, the molecule itself and its 
outer forces of attraction constitute the boundaries for a standing wave. In 
our descriptions of the structure of the cubosome, using the circular 
function, we have added a function like a sphere, or a cube, as boundaries, 
giving the structure a shape of finite periodicity [6,9]. 

We have described the cubosome as a standing wave, a giant aggregate 
formed by self-assembly of lipid molecules. We postulated this property 
with the boundaries we used [7,8]. We shall here give a more complete 
mathematical description of the cubosome. 

Furthermore, we shall describe hexagonal structures related to cubosomes, 
like the muscle cells in chapter 9, and the tubular arrangement between cells 
in chapter 11. 
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We shall first use the Hermite function, which is the Schr6dinger solution 
to the harmonic oscillator, as discussed in chapter 6. The equations are in 
7.1.1 and 7.1.2, and the figures in 7.1.1 and 7.1.2. The period is doubled in 
7.1.2 which gives the double molecule, which is an example how a finite 
part of a crystal structure, or molecule, is derived. In this case it is a cubic 
close packed arrangement of bodies, and in figure 7.1.1 the bodies form the 
comers of a cube octahedron. 

-X2e-y2e-Z2 e cos ~xcos 7W c o s ~ z -  0.05 = 0 7.1.1 

e-X2e-y2e-Z2 cos2rtxcos2rpy cos2r tz-  0.05 = 0 7.1.2 

Figure 7.1.1 Cube octahedron of 
bodies. 

Figure 7.1.2 Bigger part of cubic close 
packed arrangement of bodies 

The damping property of the Hermite function gives the type of structures 
we want, and we feel there is reason to use similar boundary constructions 
to make giant molecular aggregates, the cubosomes. 

We have no simple analytic function for periodicity when it stands for 
translation in one dimension. Cosine is by definition an infinite product, 
which means that the periodicity is really hand-made, like the periodicity 
we made with the roots. We can only handle periodicity well in dimensions 
higher than one, as we showed in chapter 2, and as we will show in further 
detail below. 
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In this description of the cubosomes we shall use three different branches of 
periodicity; 

I The circular functions 

II The GD-type functions. 

III Hand-made functions. 

7.2 Cubosomes and the Circular Functions 

The essential property of periodicity is easily understood from the figures 
below. The first three equations of 7.2.1 are the infinitely repeated planes 
in space as shown in figure 7.2.1. If we add them together pair-wise as in 
7.2.2, they collaborate in space to form cylinders as in figure 7.2.2. If all 
three sets of planes, or cylinders, are added together after equation 7.2.3, 
they collaborate to give the infinitely periodic P-surface, as in figure 7.2.3. 
A good example is if all the planes are multiplied with each other after 
equation 7.2.4, and shown in figure 7.2.4. In figure 7.2.5 we have added a 
constant of 0.2 as in equation 7.2.5, and as a result we have 'bodies'. We 
now realise that periodicity is a mathematical machine which is formidable 
for duplication. If we in this machine add a number of bodies, n, after each 
axis, the machine produces at least n 3 new bodies altogether. 

COS ~ X  = 0 

cos ny = 0 

c o s  71;z = 0 

7.2.1 

Figure 7.2.1 The planes in space from cosine 
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cos 7zx + cos x y  = 0 

cos ~ x  + cos ~z = 0 

cos x y  + cos rcz = 0 

7.2.2 

Figure  7.2.2 The cylinders in space after cosine 

cos 7u~ + cos %3' + cos ~z = 0 7.2.3 

cos ~ x  cos roy cos ~z = 0 7.2.4 

Figure  7.2.3 P-surface after addition 
of cosine. 

Figure  7.2.4 Intersecting planes after 
product of cosine. 
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cos nx cos zty cos ztz = 0.2 7.2.5 

Figure 7.2.5 By adding a constant the intersecting planes become bodies. 

In order to make cubosomes, the periodic functions need to be damped in a 
simple way, depending on what shape we want. The simplest is a sphere, 
which really is a set of  planes as in equation 7.2.6, and this cubosome is 
illustrated in figure 7.2.6. 

cos 2rtx + cos 2r~y + cos 2rcz + x 2 + y2 + z 2 _ 2 7.2.6 

Using four planes, or a cylinder, as in 7.2.7, and we get the column 
structure in figure 7.2.7. 

cos zrx + cos z~y + cos ~z + x 2 + y2 _ 1 7.2.7 

A double plane as in 7.2.8 gives a beautiful layer structure as in figure 7.2.8. 

cos ztx + cos rvy' + cos rcz + x 2 - 0.5 7.2.8 
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Figure 7.2.6 Cubosome of the P-surface with 
spherical boundaries. 

Figure 7.2.7 Column structure of 
the P-surface with cylindrical 
boundaries. 

Figure 7.2.8 Layer structure of the P- 
surface with planar boundaries. 
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In equation 7.2.9 we have used a cube as boundary which gives the beautiful 
cubosome in figure 7.2.9. 

e c~176176 +e x2 +e y2 +e z2 8.7 7.2.9 

Figure 7.2.9 Cubosome of the P-surface with cubic boundaries. 

The D-surface has tetrahedral symmetry, which makes it natural to use a 
tetrahedron as boundary. This is shown in figure 7.2.10, after equation 
7.2.10. 

eCOS m(x+y+z)+cos n(x-y-z)+cos rc(-x-y+z)+cos rc(-x+y-z) + 

+eSin ~(x+y+ z)+sin m(x-y- z)+sin m(-x-y+ z)+c sin rc(-x+y- z) + 7.2.10 

+e x+y+z +e x - y - z  +e -x -y+z  +e -x+y-z  = l l 
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Figure 7.2.10 Cubosome of the D-surface with tetrahedral boundaries. 

The polyhedron created by the symmetry of the gyroid is the rhombic 
dodecahedron, but we have given cubic boundaries to the cubosome in figure 
7.2.11 after 7.2.11. 

eSin 4x(x+ y)+sin 4x(x-y) +sin 4g(x+ z)+sin 4~:(z- x) +sin 4~:(y+ z) +sin 4x(y- z) 

x 2 z 2 
+e + e y2 + e = 5.5 

7.2.11 
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Figure 7.2.11 Cubosome of the gyroid surface with cubic boundaries. 

7.3 C u b o s o m e s  and the GD-Funct ion  - Finite Periodicity  

S y m m e t r y  P 

and 

The properties of the GD-function were used to develop biological motion 
as we saw in chapter 5, and will now be applied to periodicity. 

Using the polynoms, we found in chapter 2 that it was the cooperation of 
planes, the roots, in space that generates periodicity. This was also shown 
for the circular functions above. Similar planes are found in the GD- 
mathematics, which has 'built in' boundaries like a molecule or cubosome, so 
there is no need for damping. 

In the equations in 7.3.1 we do the counting as before, and get the planes in 
space as in figures 7.3.1a-e. 
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_x 2 
e - 0 . 5  

_y2 
e - 0 . 5  

_ Z  2 
e - 0 . 5  

7.3.1 

Figure 7.3.1 GD-planes that give periodicity. 

Figure 7.3.2 Six GD-planes give 
eight cube comers. 

Figure 7.3.3 The six GD-planes 
have formed three cylinders that 
meet. 

_x 2 e + e -y2  + e -z2 = 0.5 7.3.2 
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Adding the planes together, as in equation 7.3.2, we make them cooperate 
and the first periodic picture is found in figure 7.3.2. The three terms in the 
equation give eight cube comers. 

_x 2 e + e -y2 + e -z2 - 1.8 7.3.3 

Changing the constant to 1.8, as in equation 7.3.3 gives the 
polyhedron in figure 7.3.3, obviously ready for periodicity. 

beautiful 

_x 2 e +e -y2 +e -z2 - 2.5 7.3.4 

_x 2 z 2 e_(X_2)2 e_(Y_2)2 2 e +e -y2 + e -  + + +e -(z-2) =2.7 7.3.5 

Increasing the constant further, the GD-cylinders close up and give a body, 
as in figure 7.3.4. And by adding terms with new coordinates as in 7.3.5, the 
periodicity starts giving the picture of the molecule B6H6. A change of 
constant brings out the bodies as in figure 7.3.6. More finite periodicity is 
shown in 7.3.7 after equation 7.3.7. 

_x 2 2 e_(Y_2)2 e_(Z_2)2 e + e -y2 + e -z2 + e -(x-2) + + = 2.9 7. 3.6 

Figure 7.3.4 Change of constant 
makes the GD-cylinders close up. 

Figure 7.3.5 Two bodies along the 
Cartesian space diagonal give periodicity 
to six more bodies, joined by catenoids 
to form a B6H6 molecule. 
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_x 2 2 e_(Y_2)2 2 e + e -y2 + e -z2 + e - (x-2)  + + e - (z-2)  

+e - (x-4)2  +e - (y-4)2 +e - (z-4)2 = 2.85 

7.3.7 

Figure 7.3.6 Bodies liberated. 

Figure 7.3.7 Three bodies along the 
diagonal give a 27 body periodic 
structure. 

After equation 7.3.8 we get the formidable cubosome in figure 7.3.8. 

_x 2 e + e -y2 + e -z2 + e - (x-2)2 + e -(y-2)2 + e -(z-2)2 

+e-(X-4) 2 + e-(Y-4) 2 + e-(Z-4)2e-(X-6)2 + e-(Y-6) 2 + e-(Z-6) 2 

+e-(X-8) 2 + e-(Y-8) 2 + e-(Z-8) 2 

+e_(X_lO)2 2 + e-(y-lO) +e -(z-lO)2 =2.65 

7.3.8 
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Figure 7.3.8 Six bodies along the space diagonal multiply to a formidable 
cubosome of 216 bodies. 

7.4 Cubosomes  and the GD-Funct ion  - Symmetry  G 

Cubosomes of the gyroid symmetry are derived from the (x+y) 
permutations in space which generate planes, like in figure 7.4.1 after 
equation 7. 4.1. 

e -(x+y)2 =0.8 7.4.1 

With all the six permutations of planes in space, and with the proper 
translations to give more terms after equation 7.4.2, there is now a small 
cubosome, shown in figure 7.4.2. 
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e-(X+y-0.5)2 +e-(X-y-0.5)2 e-(X+Z-0.5)2 e-(y+z-0.5) 2 + + + 

+e-(-x+z-0.5) 2 + e-(Y-Z-0-5) 2 + e-(X+y-2.5) 2 + e-(X-y-2.5) 2 + 

+e-(X+Z-2.5) 2 +e-(Y+Z-2.5) 2 e-(-x+z-2.5)2 + + e-(y- z-2.5) 2 + 

+e-(X+y+l.5)2 +e-(X-y+l.5)2 +e-(X+z+l.5)2 e-(y+z+l.5) 2 + + 

+e_(_x+z+l.5)2 2 + e-(y-z+l.5) = 5.3 

7.4.2 

Figure 7.4.1 The gyroid symmetry 
give diagonal double planes of GD- 
type. 

Figure 7.4.2 Three bodies after equation 7. 4.2 
give a small cubosome. 

A bigger cubosome is obtained using still more terms after equation 7.4.3, 
which is illustrated in figure 7.4.3. The cubosome has the shape of a 
rhombic dodecahedron, and the structure is projected after its three fold 
axis in the figure. 
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e-(X+y-0.5) 2 + e-(X-y-0.5) 2 + e-(x+z-0.5) 2 + e-(Y+Z-0.5) 2 

+e-(-x+ z-0.5) 2 + e-(Y-Z-0.5) 2 + e-(X+y-2.5) 2 + e-(X-y-2.5) 2 

+e-(X+Z-2.5) 2 + e-(Y+Z-2.5) 2 + e-(-x+z-2.5) 2 + e-(Y-Z-2.5) 2 

+e-(X+y-4.5)2 +e-(X-y-4.5)2 +e-(X+Z-4.5)2 +e-(y+z-4.5) 2 

+e-(-x+z-4.5)2 +e-(y-z-4.5) 2 +e-(X+y+l.5)2 +e-(X-y+l.5)2 

+e-(X+z+l.5) 2 + e-(Y+z+l-5) 2 + e-(-x+z+l.5) 2 + e-(Y-z+l.5) 2 

+e-(X+y+3.5)2 +e-(X-y+3.5)2 +e-(X+Z+3.5)2 +e-(y+z+3.5) 2 

+e-(-x+z+3.5)2 +e-(y-z+3.5) 2 +e-(X+y+5.5)2 +e-(X-y+5.5)2 

+e -(x+z+5"5)2 + e -(y+z+5"5)2 + e -(-x+z+5"5)2 + e -(y-z+5"5)2 = 5.3 

7.4.3 

Figure 7.4.3 Six 
bodies give a 
beautiful gyroid 
cubosome. The 
shape is rhombic 
dodecahedraland 
the projection is 
along a space 
diagonal, which 
is a three fold 
axis. 
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Figure 7.4.4 Bounded projection of the cubosome from 
figure 7.4.3 along the a-axis, a Thickness of 2 unit cells. 

Figure 7.4.4b Thickness of 1/4 of a 
unit cell. 

Figure 7.4.4e Thickness of 1/8 of a unit 
cell. 
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Figure 7.4.4d Thickness of 1/12 of a unit cell. 

From equation 7.4.3 and figure 7.4.3, we have calculated slices of various 
thickness in projection after a cubic axis. Figure 7.4.4a corresponds to a 
thickness of 2 unit cells and b to 1/4, e to 1/8 and finally d to 1/12 of the 
cubic unit cell projection axis. Bounded projections like these from 
fractions of unit cell dimensions make the picture of the structure vary. We 
show such slices here, because cubosomes can be very large, and electron 
microscopy pictures may have been taken on thin slices of objects. This is 
a background for identifications of cubosomes [5] described in chapter 8. 

7.5 Cubosomes  and the GD Function - Symmetry  D 

We show the planes, or roots, in figure 7.5.1 to the 
permutation of the variables in space after equation 7.5.1. 

first general 

e -(x+y+z)2 =0.8 7.5.1 

With all the permutations and proper phase shifts there 
symmetry in figure 7.5.2, after equation 7.5.2. 

e-(X+y+z+0.5)2 -(x-y+z+0.5) 2 +e 

+e -(x+y-z+0"5)2 -(-x+Y+Z+0"5)2 - 2.3 
+ e  

is tetrahedral 

7.5.2 
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Figure 7.5.1 GD planes corresponding 
to tetrahedral symmetry. 

Figure 7.5.2 Tetrahedral body 
from GD exponentials. 

Figure 7.5.3 Two bodies give the 
admantane molecule. 

Figure 7.5.4 Three bodies give a small 
piece of the diamond structure - or a small 
cubosome. 

With increased number of terms of translation, there is the beautiful 
structure of admantane in figure 7.5.3 after equation 7.5.3, and a piece of 
diamond in figure 7.5.4 after equation 7.5.4. 
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e-(X+Y+Z+0.5) 2 + e-(X-Y+Z+0.5) 2 +e-(X+y-z+0.5) 2 

+e-(-x+y+z+0.5)2 +e-(X+y+z-l .5)2 +e-(X-Y+z-l .5)  2 

+e - (x+y-z - l ' 5 )2  + e - ( -x+y+z- l '5 )2  -- 3.7 

7.5.3 

e-(X+Y+Z+0.5) 2 + e-(X-Y+Z+0.5) 2 +e-(X+y-z+0.5) 2 

+e-(-x+y+z+0.5)2 + e-(X+y+z-l.5)2 + e-(X-Y +z-l.5) 2 

+e-(X+Y-z-l.5) 2 + e-(-x+Y+z-l .5)  2 +e-(X+y+z+2.5)2 

+e -(x-y+z+2"5)2 +e -(x+y-z+2"5)2 + e -(-x+y+z+2"5)2 - - 3.7 

7.5.4 

Figure 7.5.5 Six bodies give a bigger cubosome of the D type. 
The outer shape is an octahedron. 
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Figure 7.5.6 Different projection. 

Finally we show a D-cubosome in figure 7.5.5, after equation 7.5.5. 
shape is octahedral, and we also show a projection in figure 7.5.6. 

e-(X+y+z+0.5)2 + e-(X-y+z+0.5) 2 + e-(X+Y-Z+0.5) 2 

+e-(-x+Y+Z+0.5) 2 + e-(X+Y+z-l.5) 2 + e-(X-Y+z-l.5) 2 

+e-(X+Y-z-l.5) 2 + e-(-x+Y+z-l.5)2+e-(X+Y+Z+2.5)2 

+e-(X-Y+Z+2.5) 2 + e-(X+Y-Z+2.5) 2 + e-(-x+Y+Z+2.5) 2 

+e-(X+y+z-3.5)2 +e-(X-y+z-3.5)2 + e-(X+Y-Z-3.5) 2 

+e-(-x+y+z-3.5)2 +e-(X+y+z+4.5)2 + e-(X-Y+Z+4.5) 2 

+e -(x+y-z+4"5)2 + e -(-x+y+z+4"5)2 = 3.5 

The 

7.5.5 
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Another advantage with finite periodicity is the possibility to bring in 
defects, or disorder, by just adding or omitting a term corresponding to the 
growth. This is of course important in biology. 

Also, there needs not be any translation at all between the terms in the 
equation input - as long as these terms can be described as planes, 
periodicity will be present in space. 

An obvious application is found in functions of dilatation symmetry. In 
equation 7.5.6 we have formulated a function which indeed gives the 
remarkable structure of a 3D Fibonacci periodicity, illustrated in figure 
7.5.7. The structure is a dilated P-surface, or dilated primitive packing of 
bodies. In figure 7.5.8 we give a larger region of this beautiful symmetry as 
the corresponding 2D plot, at a constant of 1.9. 

2 2 e-(X-3)2 +e-(Y-3) 2 +e-(Z-3)2 +e-(X-5)2 +e-(Y-5) +e-(Z-5) 

+e-(X-8) 2 + e-(Y-8) 2 + e-(Z-8) 2 + e_(X_13)2 2 2 +e-(y-13) +e-(z-13) 

+e-(X-21)2 +e-(y-21) 2 +e-(Z-21)2 

+e-(X-34)2 e-(y-34) 2 e-(Z-34)2 + + =2.5 
7.5.6 

Figure 7.5.7 3D Fibonacci periodicity. 

5 oo o o o o 

3O 

25 

20 . . . . . .  

15 
o o o o o o 

i0 
o o o o o o 

O0 o o o o 

oo o o o o 

.................................... 

0 5 i0 15 20 25 30 35 

Figure 7.5.8 2D Fibonacci 
periodicity. 
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We know that the Fibonacci periodicity gives a sharp Fourier transform 
(=sharp diffraction pattern), which is evidence of long range order. We 
conjecture that this will also be the case when there is no regular 
connection at all between the terms in the equations of finite periodicity as 
in equation 7.5. 7, which is plotted in figure 7.5.9. And the terms represent 
planes and give repetition in space, but there is no translation vector. 
Complete disorder in one dimension becomes repetition in two dimensions. 
This is one of the lowest degrees of order ever - only irregular spaced 
planes - and might be relevant in biology. 

e-(X-2) 2 + e-(Y-3) 2 + e-(X-4) 2 + e-(Y-5) 2 + e_(X_7)2 2 + e-(Y-9) 

+e_(X_ 10)2 + e_(y_12)2 + e_(X_12)2 2 +e -(y-15) = 1.85 

7.5.7 

15 
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10 
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O 0  0 O 0  

O 0  0 O 0  

O 0  0 O 0  
O 0  0 O 0  
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0 2.5 5 7.5 i0 12.5 15 

Figure 7.5.9 Low degree of order according to 
equation 7.5. 7. 

7.6 Cubosomes and the Handmade 

We now study functions of the type 

Function 

e -(x2 +y2+z2) =C.  
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The function disappears at C=I (e~ and with decreasing C there is a 
growing sphere. 

As there are no planes, the function cannot be used to generate periodicity. 
But the sphere is protected by the exponential, and may be moved and 
repeated manually to a periodic structure, as has been shown earlier in this 
book. 

With this function we may now put out spheres in space and make them 
approach each other. We use the concept of connectivity: If one vesicle is 
surrounded by six other vesicles, and they approach each other so that 
catenoids are formed, we have the commencement of the formation of the 
P surface. This is shown in figure 7.6.1a and b, after equation 7.6.1 and 
clearly demonstrates connectivity 6. 

e_(X 2 +y2 +z 2) + e_((x_2)2 +y2 +z 2) + e_(X 2 +(y_2)2 +z 2) 

+e_(X 2 +y2 +(z+2)2) + e_((x+2)2 +y2 +(z)2) 

+e -(x2 +(Y-2)2 +(z)2) + e -((x)2 +(Y+2)2 +z2) = C 

7.6.1 

Figure 7.6.1a Six bodies approaching a 
central one. 

Figure 7.6.1b Six-connectivity. 

We increase the number of bodies in equation 7.6.2, and get a cubosome as 
we show in a split picture in figure 7.6.2. 
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e_(X 2 +y2 +z 2) + e_((x_2)2 +y2 +z 2) + e_(X 2 +(y_2)2 +z 2) 

+e_(X 2 +y2 +(z_2)2) + e_((x_2)2 +y2 +(z_2)2) 

+e-(X 2 +(y-2) 2 +(z-2) 2) + e-((x-2) 2 +(y-2) 2 +z 2 ) 

+e_((x_2) 2 +(y_2)2 +(z_2)2) 2 + e_((x_4) +y2 +z 2) + 

+e_(X 2 +(y_4)2 +z 2) + e_(X 2 +y2 +(z_4)2) + e_((x_4)2 +y2 +(z_2)2) 

+e_(X 2 +(y_2)2 +(z_4)2) 2 z 2 + e-((x-4) +(y-Z) 2 + ) 

+e_((x_2)2 +y2 +(z_4)2) + e_(X 2 +(y_4)2 +(z_2)2) 

+e-((x-2) 2 +(y-4) 2 +z 2 ) + e-((x-4) 2 +(y-2) 2 +(z-2) 2) 

+e-((x-2) 2 +(y-2) 2 +(z-4) 2) + e-((x-2) 2 +(y-4) 2 +(z-2) 2) 

+e-((x-4) 2 +(y-2) 2 +(z-4) 2) + e-((x-4) 2 +(y-4) 2 +(z-2) 2) 

+e_((x_2)2 +(y_4)2 +(z_4)2) + e_((x_4)2 +y2 +(z_4)2) 

+e-(X 2 +(y-4) 2 +(z-4) 2) + e-((x-4) 2 +(y-4) 2 +z 2 ) 

+e -((x-4)2 +(Y-4)2 +(z-4)2) = 0.68 

Z6.2 

Next is connectivity four of tetrahedral symmetry which gives the 
commencement of the D surface, as shown in figure 7.6.3a and b, and 
equation 7.6.3. More bodies are added in figure 7.6.4 which is a small 
cubosome, or a piece of diamond. The cubic diamond structure has a 
hexagonal version (hexagonal diamonds have been found in meteorites 
from outer space, and their mineral name is Lonsdaleite), and as we have 
no nodal surface equation for this, we build one with these mathematics. 
The cubosome is derived from a number of hexagonal coordinates and 
shown in figure 7.6.5a, with a projection in b. We point out that this is of 
course also connectivity four, and the density of this hexagonal form is 
identical with the cubic. The equation for this cubosome may be found in 
reference [10]. 

e-(X-1)2+(y-1)2+(z-1) 2 + e-(X+l)2+(y+l)2+(z+l) 2 

+e_(X+ 1)2 +(y_3)2 +(z_3) 2 2 +(y+ 1)2 +(z_3)2 + e -(x-3) 7. 6. 3 

+e_(X_3) 2 +(y-3)2 +(z+ 1)2 = 0.08 
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Figure 7.6.2 Split of a handmade cubosome. 

Figure 7.6.3a Four bodies approach a 
fifth in a tetrahedral manner. 

Figure 7.6.3b Four-connectivity. 
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e-(X-1)2+(y-1)2+(z-1) 2 + e-(X+l)2+(y+l)2+(z+l) 2 

+e_(X+l)2 +(y_3)2 +(z_3)2 + e_(X_3 )2 +(y+l)2 +(z_3)2 

+e-(X-3) 2 +(y-3) 2 +(z+ 1) 2 e-(X-1)2 +(y-5)2 +(z-5)2 
+ 7.6.4 

+e-(X-5)2 +(y-l) 2 +(z-5) 2 + e-(X+3) 2 +(y-l) 2 +(z-5) 2 

+e -(x-l)2 +(Y+3)2 +(z-5)2 = 0.08 

Figure 7.6.4 A piece of diamond. 

Connectivity three is the lowest possible for the hyperbolic nodal surface 
types we deal with here, and we have it in the important gyroid surface. So 
we put out spheres after this symmetry as in equation 7.6.5, and the 
structure is plotted in two different projections in figures 7.6.6 a-b to make 
the connectivity clear. 

e-(X+l)2 +(y-l) 2 +(z-l) 2 + e-(X-1) 2 +(y-l) 2 +(z-3) 2 

+e-(X-3)2 +(y-3) 2 +(z-3) 2 + e-(X-1) 2 +(y+l) 2 +(z-5) 2 
7.6.5 

+e -(x-3)2 +(Y-5)2 +(z-5)2 + e -(x-5)2 +(Y-3)2 +(z-l)2 = 0.25 
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Figure 7.6.5a Hexagonal correspondence of the D 
surface in finite form. 

Figure 7.6.5b Different projection. 
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Figure 7.6.7 A handmade gyroid cubosome. 
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Many more vesicles can be organised after this symmetry to give the 
gyroid cubosome structure in figure 7.6.7. The equation for this cubosome 
may be found in reference [10]. 

Figure 7.6.8a Linear conformation of two-connectivity. 

Figure 7.6.8b Two-connectivity with zigzag conformation. 
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It is clear that connectivity two cannot form hyperbolic periodic surfaces, 
but we shall deal with it as it is a way to describe the protein structures. 
There are two methods to describe this connectivity using units of three 
amino acid residues, the linear and the zigzag ways which are given in 
figures 7.6.8a-b, and equations 7. 6. 6 and 7. 6. 7. 

e_(X)2 +(y)2 +(z)2 + e_(X_2)2 +(y)2 +(z)2 + 

2 +(y)2 +(z)2 +e_(X_4)2 +(y)2 +(z)2 + e_(X_6 ) = 0.5 
Z6.6 

e_(X)2 +(y)2 +(z)2 + e_(X_2)2 +(y)2 +(z)2 + 

2 +(y)2 +(z-2)2 +e_(X_2)2 +(y)2 +(z_2)2 + e_(X_4) + 

+e_(X_4)2 +(y)2 +(z_4)2 + e_(X_6)2 +(y)2 +(z_4)2 - - 0.5 

Z6.7 

Two-connectivity does not give simple periodicity, but offers instead a 
formidable topology. It can form long chains which may be twisted, or 
turned to form any type of protein structure. 

We have chosen the zigzag topology to describe a simple model of sheets 
distributed in space in a tetragonal manner as present in the catenoid or 
barrel proteins. The equation is in 7. 6.8 and the figures are in two different 
projections in 7.6.9a-b. The connection between the sheets may be 
constructed with the linear connectivity, or a mixture of the two. The 
connection may be made 'thinner' by proper weighting of the terms. 

e_(X) 2 +(y)2 +(z)2 2 + e_(X)2 +(y) +(z_2)2 + e_(X_2)2 +(y)2 +(z)2 + 

+e_(X+2)2 +(y)2 +(z_2)2 + e_(X_2)2 +(y)2 +(z+2)2 + 

+e-(X+2)2 +(y-2) 2 +(z+2) 2 + e-(X+2) 2 +(y-2) 2 +(z) 2 + e-(X+2) 2 +(y-4) 2 +(z) 2 + 

+e-(X+2)2 +(y-4) 2 +(z-2) 2 + e-(X+2) 2 +(y-6) 2 +(z-2) 2 + 

+e-(X) 2 +(y-6) 2 +(z+2) 2 + e-(X) 2 +(y-6) 2 +(z) 2 + e-(X-2) 2 +(y-6) 2 +(z) 2 + 

+e_(X_2)2 +(y_6)2 +(z_2)2 + e_(X_4 ) 2 +(y_6)2 +(z_Z)2 + 

+e_(X_4) 2 +(y_4)2 +(z+2)2 2 +(y_4)2 +(z)2 2 2 2 + e-(X-4) + e-(X-4) +(y-2) +(z) + 

+e_(X_4)2 +(y_2)2 +(z_2)2 + e_(X_4)2 +(y)2 +(z_2)2 = 0.5 

7.6.8 
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Figure 7.6.9a Two-connectivity in space in a 
tetragonal manner to give a catenoid or barrel. 

Figure 7.6.9b Different projection. 
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8 Cubic Cell Membrane Systems/Cell Organelles and 
Periodically Curved Single Membranes 

'Gentlemen, the views of  space and time which I wish to lay before you 
have sprung from the soil of experimental physics, and therein lies their 
strength.' 
[Minkowski presenting his very famous equation for the amalgamation of 
time and space introducing four-dimensional space for the first time: 
Lecture in K61n 1908]. 

Cell membranes forming cubic symmetry, cubosomes, are described. The 
time-averaged conformation of the lipid bilayer corresponds to nodal 
surfaces, reflecting the standing wave dynamics of these membranes. 
Cubosomes can be produced in vitro using well-defined lipids, and the 
experimental knowledge on these colloidal particles are derived from such 
lipid systems. In vivo cubosomes seem to be formed under some kind of 
equilibrium condition in the cell. Other three-dimensional cell membrane 
systems are related to cubosomes, and an example described mathematically 
here is the endoplasmatic reticulum. Periodic curvature along single 
membranes is analysed, and the bilayer conformational changes involved in 
vesicle transport processes are derived based on standing wave dynamics. 

8.0 Introduction 

Membranes formed by lipid bilayers with embedded proteins envelope all 
kinds of living cells, from microorganisms to the cell organisation in 
mammals, and the organelles in the cells. The shape of the cell membranes 
and structural changes involved in biological processes therefore tell us a lot 
about basic biological structures. 

8.1 Cubic Membranes 

For a long time the structure and functionality of the lipid bilayer of cell 
membranes have been related to the lamellar liquid-crystalline phase. Later 
segregating regions with solid-like hydrocarbon chains of the lipid 
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molecules (the gel-state in lipid-water bulk phases) have been introduced in 
the description. 

New aspects on cell membrane structure and function are based on our 
recent understanding of the bilayer character of cubic lipid-water phases. 
The most obvious proof of the biological significance of cubic lipid bilayers 
was the observation that cell membranes can form three-dimensional 
aggregates with the same cubic symmetry. It seemed natural to term these 
colloidal particles cubosomes [1]. A description of these structural features 
of cell membranes will be presented below. 

The structure determination of the complex cubic lipid-water phases has 
been complicated due to the limited number of X-ray diffraction lines from 
the different phases, which is related to the high degree of disorder and a 
strong temperature fall-off of the intensities. A milestone was the 
introduction of infinite periodic minimal surfaces, cf. [1]. It is now 
generally accepted that cubic lipid-water phases, which are lipid and water 
continuous, have structures consistent with the three fundamental types of 
minimal surfaces D, G and P. We will first demonstrate the biological 
occurrence of these structure types. Later, in paragraph 8.4, we will go one 
step further, from the minimal surface structure representing a time- 
averaged conformation to what we consider to be the true dynamic 
conformation of the lipid bilayer. 

The early identification of the fundamental minimal surface structures in 
cell membrane assemblies [1] has been extended to involve thousands of 
reported electron micrographs of cell membranes [5,6]. Thus membrane 
textures were analysed in relation to periodicity and curvature of different 
fracture planes of the three surfaces D, G, and P. 

The endoplasmatic reticulum and mitochondria are the membrane 
assemblies which most commonly (under conditions discussed below) 
exhibit cubic textures, cf. figure 8.1.1. 

The experimental basis behind the identification of these membrane 
structures is studies during the last decade of cubic phases in well defined 
lipid-water systems. Such phases occur in aqueous environments of polar 
lipids, for example certain membrane lipids, which tend to form reverse 
structures in water. The binary system which has been best characterised is 
the monooleylglycerol-water system, exhibiting two cubic phases in the 
temperature range from about 10 ~ to about 90 ~ This polar lipid, 
although not a membrane lipid, is a good model lipid in order to study the 
reverse types of structures. The introduction of periodic minimal surfaces 
in order to understand the structures of these cubic phases proved to be 
very fruitful, and it was demonstrated that the two cubic phases give X-ray 
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diffraction data consistent with the minimal surfaces known as the gyroid 
surface, G, and the diamond surface, D [2]. Furthermore the dimensions at 
the phase transitions shows a relation in agreement with a Bonnet relation 
between the two forms (involving a transformation without change of 
curvature). By this result it was obvious that curvature of the lipid bilayer is 
a significant factor in lipid bilayer behaviour. The conclusion was that these 
phases are formed by infinite and intersection-free lipid bilayers curved in 
three dimensions so as to correspond to the D-surface and G-surface, 
representing the mid-surface of the bilayer. These are two of the three 
fundamental cubic periodic minimal surfaces. The third, the P (primitive) 
surface, can be formed if proteins or polymers are added to this lipid-water 
mixture, cf. [3]. Later these phases/surface types have also been observed 
in aqueous systems of true membrane lipids. The three surfaces are shown 
in chapter 3 and in appendix 2. 

Figure 8.1.1 A mitochondrial membrane from Pelomyxa 
carolinensis after [6]. This texture was earlier interpreted 
as tubular but examinations by Landh of different 
projections shows that it is a continuous membrane 
with conformation according to the P-surface. This 
section is a projection cut perpendicular to the (111)- 
direction. 

Why are only these minimal surface types observed, and no others, and 
why does a particular surface occur under certain conditions? Hyde has 
reported extensive theoretical studies in order to explain the fundamental 
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relations between these structures, cf. [4]. An important factor is the 
Gaussian curvature (K) inhomogeneity over the whole structure, expressed 
as <K2> / <K> 2. 

Among the ordered surfaces, the genus 3 surfaces P, D, and G are the most 
homogeneous. The value is 1.218755 (the same value due to the Bonnet 
relation). They compare with other surfaces (for example the genus 4 
surface IW-P with value 1.483759, and conclude that the P, D and G 
surfaces are the "least frustrated" immersions of a minimal surface sponge 
in three-dimensional space. 

Let us now retum to biological tissues. Cubic membranes with extended 
periodicities have been observed in catfish. This membrane system 
correspond to the D-surface, and occur in glandular cells of the dendritic 
organ [6]. The t-tubuli system of muscle cell have also been observed to 
sometimes exhibit cubic membranes [5,6]. Such a structure is shown in 
figure 8.1.2. 

Figure 8.1.2 Cubic membrane system formed by the t-tubuli 
system of cultured skeletal muscle cells from embryos, courtesy 
of Tomas Landh [7]. The upper inserted pattern was calculated 
from the G-surfaceprojected along the [320] direction and the 
lower pattern along [331 ]. The bar is 200 nm. 
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What are the physiological functions of cubic membranes? Landh observed 
that cubic membrane symmetry is often seen under pathological conditions, 
cf. [5]. An example of such a cubic cell membrane structure is shown in 
figure 8.1.3. 

Figure 8.1.3 Intranuclear cubic membrane of cells of a human 
bone tumour, from [6]. The symmetry indicates that the 
membrane forms a P-surface. 

Landh proposed that cubic arrangements of cell membranes is a way of 
providing space control in the cell [5]. Formation of parallel surfaces in 
cubic membrane assemblies makes possible creation of new compartments, 
not just the separation of an inside from the outside which characterises the 
classical membrane structure. Usually two parallel surfaces are seen in the 
ER, for example, providing three closed compartments. 
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A recent report by Deng and Mieczkowski [8] of reversible formation of 
cubic membranes in mitochondria is most interesting in this context. They 
followed the ultrastructure of the mitochondria membrane structure of the 
giant amoeba Chaos carolinensis. The cubic membrane formed in the 
absence of food and disappeared in the presence of food as in figure 8.1.4. 
They were able to identify the periodic structures induced when starving, as 
double membranes of the cubic D- or P-surface, see [8]. 

Figure 8.1.4 TEM mitochondrial images of amoeba Chaos carolinensis under three 
conditions: a) fed, b) unfed, e) refed. With permission from [8]. 

It is interesting in this connection to consider the phenomenon of 
programmed cell death; apoptosis. It has been proposed that the symbiotic 
origin of mitochondria in eukaryotic cells leads to the evolution of 
apoptosis. By binding of certain proteins (Bax-proteins) to the bilayer 
surface, a permeability transition pore in the mitochondrial membrane is 
opened [9]. Cytochrome, c, is then released, which activates the caspase 
family of proteases, responsible for the biochemical breakdown of the cell. 
The first permeability changes also results in inactivation of the 
mitochondria itself [9], with loss of volume homeostasis and dissipation of 
inner transmembrane potential. In other words an equilibrium situation. 

These aspects of mitochondria are somewhat similar to the transition 
between thylakoid membranes of chloroplasts and the cubic membrane 
forming the so-called prolamellar body. The prolamellar body in plants is a 
storage form of membranes, for example in pine trees during the winter 
season in arctic climates when there is no photosynthesis. In the spring 
season when the photosynthesis starts the prolamellar body is transformed 
into a new membrane morphology building chloroplasts. As far as we know, 
this was the first report relating a cell membrane system to cubic lipid- 
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water phases [10]. It was then interpreted as a P-surface, according to the 
ultrastructure observed by Gunning. Landh later showed that the membrane 
in prolamellar bodies is a D-surface [5]. 

If we consider these features of cubic membranes in mitochondria, in the 
prolamellar bodies in plants, and Landh's observation that cubic membranes 
seem to occur frequently in connection with pathological conditions, it 
seems likely to us that cubic membranes reflect a vegetative state when 
compositional equilibrium has been reached. The lipid bilayer can  hardly 
vary in composition within a cubosome, as the periodicity then will be 
destroyed. In a dynamic situation characteristic for life processes, a 
membrane assembly cannot be perfectly periodic due to gradients in lipid 
composition along the bilayer and variations in water space composition in 
the three dimensions. A general property of cell membranes is an 
asymmetry in lipid species between the two sides of the bilayer. The 
observed cubic membranes are all symmetric in relation to the mid-surface 
of the membrane. This is an additional argument for an equilibrium 
structure. 

On this basis we propose that the explanation for the occurrence of the 
cubic membranes is a state of compositional equilibrium. This does not 
make them less interesting. Their crystallographic character opens the 
possibility to study structures of such an enormous complexity by X-ray 
diffraction and electron crystallography methods. Particularly the 
discovery of methods to produce cubic symmetry of mitochondria 
mentioned above will probably be of great importance in the future. 

Provided that cubosomes represent an equilibrium state (a vegetative state), 
the non-equilibrium state of membrane assemblies will involve variations in 
curvature and periodicity. An important membrane system which is known 
to occasionally exhibit cubosome structure is analysed below. 

8.2 The Endoplasmatic Reticulum 

The endoplasmatic reticulum is the dominating membrane system in 
eukaryotic cells. The common textbook description is a network of 
interpenetrating tubuli in the centre, smooth ER (SER), which outwards 
continuously folds into oriented stacks of flattened cistemae; the rough ER 
(RER). Landh [5] observed that the most common structure of SER is a 
double membrane forming the G-type of cubic structure. He also observed 
the connection between the cubic morphology of SER and the lamellar 
RER, see figure 8.2.1. 
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Figure 8.2.1. ER according to a three-dimensional reconstruction, 
modified after [ 11 ]. 

According to our discussion above about cubic membranes representing a 
kind of equilibrium state, we assume that a fully active ER is formed by a 
lipid bilayer with curvature that changes from a tubular network with G- 
type of structure towards planar lamellae forming the outer RER cisternae. 
We apply the mathematics from chapter 4 to build this ER-structure. 

From figure 4.1.12 and its equation 4.1.3 we make the strategy to 
formulate the mathematics needed. There we make an arbitrary orientation 
of parallel planes react with the gyroid. By weighted addition the planes are 
gradually transformed into the gyroid surface. 

We start with the equation of the double gyroid in equation 8.2.1. 

eC~ xx sin fez+cos my sin xx+cos ~zsin xy 

+e-(COS ~xsin~z+cos ~:ysin~+cos rczsin ~j) = 3.9 
8.2.1 

We add a cube to this equation to make a cubosome and get 8.2.2. 
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eC~ n'x sin ~zz+cos 7W sin n'x+cos 7rz sin xy 

+e-(COS nxsinnz+cos n3,sinnx+cos nzsinn-y) + x 2 + y2 + z 2 _ 3.9 
8.2.2 

We will now add parallel planes as the original ER, in form of the double 
exponential of cosine. We have to do that to keep the identity of each 
function in the final grand equation. 

_eCOS ~x 
e = 0.2 

The planes come out pair-wise with interplanar distances which may be 
changed with the constant. The pairing is important for the transformation 
mechanism given below. 

Figure 8.2.2 General projection of equation 8.2.3. 
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After some trying, we can now formulate the grand equation 8.2.3. 

-[eC~ nxsin rtz +cos ny sin nx+cos ltz sin ny +e-(COS rtxsin nz +cos ny sin nx+cos rtz sin n3z) + l ( x 2  + y2 + z 2)_1 ] 

e 

1 _e c~ 1 
+ - e  

5 10 
8.2.3 

With this formula we calculate how an ER has been transformed in the 
centre to a cubosome structure related to the double gyroid type as shown 
in a number of different pictures of different projections and borders in 
figure 8.2.2-6. 

In a different projection from figure 8.2.2, it is easily seen in figure 8.2.3 
that tubes are formed via pair-wise layers. The whole structure is a layer 
structure. 

In figure 8.2.4 there is a split to show the formation of the cubosome 
structure in the centre. 

Figure 8.2.3 Tubes are formed via pair-wise layers. 
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Figure 8.2.4 Split to show cubosome formation. 

Figure 8.2.5 Detail to show layer and tubular structure. 
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We go into more detail to show the tubular structure from the double layers 
in figure 8.2.5. 

We select a new projection and new borders to show how planes transform 
to tubes in figure 8.2.6. 

Figure 8.2.6 Plane transformation to tubes. 

Different borders give a detailed picture of the double gyroid, and we also 
see how the planes surround and transform into a tubular structure in figure 
8.2.7. 

If we change the equation 8.2.3 by weighting down the constant for the 
exponential cos(x) term the whole structure is transformed to a structure 
topologically identical with a double gyroid structure. This structure is 
consistent with ultrastructural descriptions of ER, cf. figure 8.2.1. 

It is thus proposed that ER under normal functional conditions is a 
complex lipid bilayer structure with compositional gradients, resulting in 
varying curvature. The bilayer system is described by equation 8.2.3, and it 
is closed at the outer regions of the planar RER bilayers. 
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Figure 8.2.7 Double tubular gyroid-like structure. 

8.3 Protein Crystallisation in Cubic Lipid Bilayer 
Cubosomes - Colloidal Dispersions of Cubic Phases 

Phases and 

Landau and Rosenbusch have found that bacteriorhodopsin crystals can be 
grown from monoolein-water cubic phase where the protein is solubilised 
[28]. The crystals obtained were hexagonal, and of such good quality that 
the structure could be studied by X-ray diffraction. Their work provides a 
promising approach to crystallise membrane proteins, which are unable to 
aqueous solution. Beside providing a medium where such protein molecules 
can be solubilised, the lipid molecules of the bilayer can also co-crystallise 
in order to fill space of this would be needed. 
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Cubic phases can be dispersed into colloidal particles which closely 
resembles the cubic structures identified in biological samples [1]. The 
dispersion can be obtained in regions of ternary phase diagrams, where the 
cubic phase coexists in equilibrium with a lamellar liquid-crystalline phase 
and water. This can be observed in lipid systems where one lipid component 
tends to be cubic whereas the other tends to be lamellar; a situation which 
often can be expected in membrane lipid systems. A cryo transmission 
electron microscopy study has shown the morphology and lattice of all 
three types of surfaces [12]. And an example of this is shown in figure 
8.3.1. 

Figure 8.3.1. A cryo -TEM micrograph of colloidal particles with the 
cubic P-surfacetype of structure obtained from 1-monooleylglycerol: 
poloxamer in weight ratio 92.6:7.3, with permission from [12]. The 
repetition distance observed here is about 10 nm. 
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8.4 From a Minimal Surface Description 
Dynamic Model of Cubic Membranes 

to a Standing Wave 

The background to our changed view from that expressed in LANGUAGE 
OF SHAPE [6] on cubic lipid-water phases and cubic membrane systems will 
first be summarised. A few years ago von Schnering and Nesper [13] found 
that the Fourier series which were used to calculate the electron density, 
involving only one, or in some cases two, low-index structure factors, could 
give surfaces very close to those of minimal surface when the sum was set 
to zero (therefore they used the term nodal surface). In the case of the P- 
surface the nodal surface is found in equation 8.4.1. 

cos x + cos y + cos z = 0 8.4.1 

This surface was observed to agree with the P-type minimal surface within 
0.5 %. In this paper they pointed out that they saw no direct physical 
meaning of their calculated nodal surfaces. 

Inspired by their work we started to reconsider the minimal surface model 
of cubic lipid bilayers, and came to the conclusion that the nodal surface 
description reflects the true dynamic character of the cubic lipid bilayer 
phases [14]. In other words, the lipid bilayer conformation oscillates as 
standing waves in relation to the nodal surfaces D, G and P respectively. 
Driven by thermal excitations, the lipid bilayer is known to exhibit wave 
motions with amplitudes related to the elastic rigidity. Considering a lipid- 
water nanocrystal, a cubosome, with perfect crystallographic periodicity, 
these motions must be in phase along the lattice; the bilayer exhibits 
standing wave oscillations. The higher the elastic rigidity, the smaller the 
amplitudes will be. 

A lipid bilayer in a cubosome with the cubic P-surface type of structure 
follows a standing wave conformation which can be expressed by the 
equation (bilayer centre): 

cos x + cos y + cos z = p 8.4.2 

where p will oscillate with time between the maximal amplitudes. The nodal 
surface of these standing wave motions corresponds to p=0. The equation 
8.4.2 is a wave equation describing the centre of the bilayer, and different 
values of p represents isosurfaces frozen in time. A breathing mode of 
motions is illustrated in figure 8.4.1. 
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Figure 8.4.1 The P-nodal surface illustrated as a 
net surrounded by the breathing vibration as 
transparent layers, from ref. [ 14]. 

It is shown in chapter 3 that in the same way as the P-surface represents 
permutation of cosx, the simple permutations of cos(x+y) gives the G - a n d  
IWP-surfaces, and the permutations of cos(x+y+z) gives the D-surface. 
Here we will only show the formulas as illustrations of the simple 
mathematical equations which describes the most complex of all known 
lipid structures; molecular organisations which until recently were unknown 
in spite of extensive studies. 

We give first the von Schnering-Nesper formulas in equations 8.4.1, 8.4.3, 
and 8.4.4. 

The P-surface 
cos xx + cos xy + cos ~z = 0 8.4.1 

The G-surface 
cos nx sin rgy + sin nx cos nz + cos ~ sin nz - 0 8.4.3 

The D-surface 
cos ~x cos ny cos nz + sin nxsin xy sin nz - 0 8.4.4 

And below we give the equations we get with our mathematics, which are 
identical to the von Schnering-Nesper equations. 
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The P-surface 
cos 7zx + cos 7zy + cos ~z = 0 

The G-surface 
sinrffx + y)  + s i n ~ ( x -  y) + s in~(x + z) + s i n r t ( z -  x) + s in~(y  + z) + sinrt(y - z) = 0 

The D-surface 
cos rc(x + y + z) + cos r e ( x -  y - z) + cos r t ( - x -  y + z) + cos ~ : ( -x  + y - z) + 

sin rc(x + y + z) + sin r e ( x -  y - z) + sin r c ( - x -  y + z) + sin r c ( -x  + y - z) = 0 

Representat ive  parts of  each surface are shown in figures 4.1.1-10. 

Figure 8.4.2. D-surface cubosomes with tetrahedral boundaries and periodicity n equal 
to 1, 6 and 10 in a, b and e respectively, after [ 14]. 
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To describe these standing wave conformations in cubosomes of different 
sizes, the exponential scale description can be used. An example is shown in 
figure 8.4.2. 

We will now retum to the question why the lipid bilayers adopt the 
different surfaces P, D, and G. In simple binary systems the unit axis of the 
cubic phases is short, and the different surfaces therefore result in different 
average molecular shape, and it has been possible to explain the transitions 
between the three cubic phases in this way. In cubic symmetry occurring in 
cell membranes, however, the unit cell length is much longer and therefore 
the shape factor is always like that of lamellar phases (close to 1). 

Cubic membrane systems will be formed when single membranes associate 
into three-dimensional assemblies, and when there is no directional 
preference. This might occur by fusion of vesicles or by excess membrane 
material starting to invaginate surrounding tissues and forming isotropic 
aggregates. We assume that the possibility of transport and motion of 
solutes in the water medium is important, and therefore the structure should 
be as open as the bilayer organisation can allow. If vesicles are considered, 
which fuse by catenoid formation, the most open structure is that with the 
lowest possible number of connections per vesicle (connectivity). The 
lowest is 3-coordination of vesicles, which after fusion corresponds to the 
G-surface. Next comes the D-surface with connectivity 4, and finally the 
P-surface with connectivity 6. 

The wave motions of the bilayer is related to the elastic energy of 
curvature, cf. [15]. Considering now the picture of the G-, D-, and P- 
surfaces formed from vesicle fusion, with the wave shape following the 
bilayer shape, the simplest cubic wave geometry will correspond to the 
lowest connectivity, which is the G-surface. Then follows with increasing 
complexity the 4-connected units (D-surface) and connectivity 6 (P- 
surface). Still higher connectivity has not been observed. The IWP-surface 
has not been found experimentally in lipid-water systems or in cubic 
membrane textures. The reason is probably the complex standing wave 
motions which would be required by such a high connectivity (8). 

This, in addition to the Gaussian curvature homogeneity discussed in 
section 8.1, indicates that cubic lipid bilayer membrane assemblies will show 
D-, G-, and P-nodal surface conformations of standing wave motions and 
no other conformations. 

The local conformational changes of the bilayer involved in the standing 
wave oscillations will now be discussed. The transverse motions of the 
bilayer means that the surface area will expand and contract. These 
motions will be related both to the bilayer compressibility and the curvature 
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elasticity. Contrary to standing wave vibrations in an ordinary crystal, the 
space changes on each side of the bilayer must be taken into account. 
Minor oscillations may reflect density fluctuations in the water channel 
system. The standing waves are described by oscillations with time of p in 
equation 8.4.2, (analogously in the equations of the D- or the G-surface). 
The wave shape defines the mid-surface of the lipid bilayer. If the 
amplitudes, i.e. the variations of the water compartment size, are larger 
than the density fluctuation in the water compartments, there will be a net 
movement of water molecules between the globular units coupled to the 
wave frequency, as it seems reasonable to assume that there is no water 
transport over the bilayer. 

Let us consider one altemative of motion of water in the P-surface 
structure. We start from the globular bilayer structure unit around origin, 
which, at a certain time, is assumed to oscillate inwards in relation to the 
nodal surface conformation. This means that the adjacent units in x-, y-, 
and z-direction will oscillate in phase, but outwards. The next units in the 
three directions will oscillate inwards, and so on. 

An alternative would be that the bilayer in every globular unit moves 
through the nodal surface, with the same kind of alternations 
inwards/outwards as described before. This intuitively appears more 
attractive. The time-averaged conformation of the centre of the bilayer in 
both these alternatives is equal to the nodal surface. 

We can illustrate the extremes of these conformations by calculations of 
the P-surface, allowing p in equation 8.4.2 to alternate between the 
positive and a negative extreme values of p when going from one unit to 
the next. This corresponds to motions according to the second altemative 
described above. 

There are other alternatives of bilayer motion. In figure 8.4.3 it can be 
seen that half of each globular unit moves inwards as the other half moves 
outwards. 

The wave motion amplitude varies with Gaussian curvature of the time- 
averaged conformation, exhibiting a maximum at flatpoints and changing 
to zero at the middle of the catenoids (with the smallest negative value of 
the Gaussian curvature). This appears logical from a molecular packing 
point of view. The freedom of lipid molecules to move in a transverse 
direction must be highest at the flatpoints. The conclusion from this 
discussion is that the requirement of a coherent bilayer and constant total 
volumes on each side leaves only a few wave motion alternatives. 



182 Chapter 8 

Figure 8.4.3 Illustration of altemation of conformation within 
each unit of the P-surface according to the equation: 
cos x + cos y + cos z - 0.6 sin x sin y sin z = 0. 

Going from the perfect cubic symmetry of lipid-water cubosomes discussed 
above to cubic membranes, the situation must be the same even if the unit 
cell of the membrane assemblies is much longer, and therefore the 
periodicity less perfect. Standing wave motions of the membranes are thus 
assumed to take place in all cell organelles exhibiting cubic symmetry. Even 
surface membranes like the plasma membrane may sometimes form 
periodically curved bilayers. Considering such periodicity along a closed 
surface, standing wave oscillations should occur, as described in the last 
paragraph. A general feature of biomembranes is that the bilayer seem to 
exist on the border between an ordinary planar conformation, 
corresponding to the lamellar phase in lipid-water systems, and reverse 
phases (such as the cubic or reverse hexagonal phases in lipid-water 
systems). This means that the bilayer has a high inner packing pressure, 
which results in elastic rigidity. And we repeat; with elastic rigidity and 
periodicity of the bilayer the thermal motions must form standing waves. 
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8.5 Periodical Curvature in Single Membranes 

When the bilayer character of cubic lipid-water phases and their existence 
in biology had been revealed, as described above, it was natural to consider 
the possibility of a similar periodic curvature along the surface of single 
membranes [16]. We proposed that the periodically curved conformation 
represents a functional state. Experimental evidence were later reported, 
such as effects of anaesthetic agents, cf. [1]. Helfrich has independently 
proposed a similar periodicity ("highly localised saddles of very high 
curvature") along membrane surfaces [17]. 

Meyer et al [18] observed periodically curved membranes in L-form cells of 
Streptomyces hygroscopicus and also in vesicles prepared from their lipids, 
see figure 8.5.1. 

Figure 8.5.1 Periodically curved membrane 
observed in the L-form of membranes of 
Streptomyceshygroscopicus, after [ 18]. 
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In an analysis of the mechanical properties of the bilayer in simple lipid 
phases, Seddon [19] concluded from the stress profile that non-planar 
spontaneous curvatures should occur frequently. This tendency should be 
more pronounced in cell membranes, with an asymmetric lipid distribution 
over the bilayer. 

The membrane lipid composition of membranes is regulated to induce a 
structure very close to the transition into a reversed phase, either a cubic or 
revere hexagonal [20,21]. Detailed analysis of environmental influence on 
membrane lipids of E. coli shows that they regulate membrane composition 
to correspond to the three-dimensional transition region "between the gel- 
state and non-lamellar structures" [22]. Diacylglycerols added to membrane 
lipids tend to induce a phase transition into cubic phases. From a study in 
yeast, this molecule has been proposed to give "non-bilayer" structures in 
Golgi, and by this mechanism induce vesicle formation [23]. Phase changes 
of the lipid bilayer induced by anaesthetic agents is a striking demonstration 
of the intricate balance between bilayer/nonbilayer conformations, and 
provides strong evidence for the significance of periodic curvature. This is 
not discussed further here as it is covered in connection with nerve signal 
propagation in chapter 13. 

Our interpretation of the these data is that membrane lipid composition is 
controlled by the physical state in the bilayer; the lateral packing pressure 
[1]. Membrane embedded enzymes for lipid synthesis/modification can 
provide these mechanisms, with the inner pressure working as an on/off 
switch. The inner pressure reflects the balance between a lamellar (Lt~- 
type) and a periodically curved conformation, which in turn determines 
elastic rigidity and periodic curvature of the bilayer structure. 

If there is crystallographically perfect periodicity along the surface, the 
thermal motions, which in a bilayer are wave oscillations, must form 
standing waves. 

A calculation modelling an oscillating periodic membrane is shown in figure 
8.5.2 These calculations should only be regarded as indications of possible 
standing wave conformations. The smallest vesicles observed have 
diameters in the size range a few hundred A. There is some information on 
wave geometry from undulation studies of lamellar liquid-crystalline phases, 
which indicate that such small vesicles will exhibit maximal wave-length, 
which means that the shape will oscillate between an oblate and prolate 
ellipsoid. With larger vesicles other wave conformations will be possible. 
Positions along the spherical surface with largest amplitudes must form 
networks fitting the surface area. The simplest wave conformation with a 
triangular network is shown in figure 8.5.2 and equation 8.5.1. The 
amplitude maxima are located at the six points of intersection between the 
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coordinate axes and the sphere, and the wave-length is a quarter of the 
radius. The simplest case (longest possible wave-length) with a square 
network is obtained when the surface is divided into six equal squares (by 
intersections between two circles perpendicular to each of the three 
coordinate axes, giving eight points of amplitude maxima). The waves in 
this simplified description will sweep through the spherical surface. In the 
last case, the three circles through the origin perpendicular to the three 
axes will form nodal lines at their intersection with the sphere. 

x 2 + y2 + z 2 + c0(cos 2rtx + cos 2rpy + cos 2rtz) - 1 8.5.1 

Figure 8.5.2a co=0.02. Figure 8.5.2b o)=-0.02. (the dual of a). 

In a true membrane the spontaneous curvature is likely to deviate from 
that of a spherical shape, as pointed out early by Helfrich, cf. [15], and the 
time-averaged equilibrium shape will therefore exhibit periodic curvature. 
When the structure is periodic, involving elastic rigidity, the motions will 
be restricted to standing waves. These motions may therefore be limited to 
oscillations between the equilibrium position. An example, which we 
consider relevant to a true membrane in the micron size range, is illustrated 
in figure 8.5.3 as spherical cuts and equation 8.5.2. 

x 2 +y2 +z  2 

+0~(cos 2rex sin2~z + cos 27vy sin2rcx + cos 2nz s i n 2 ~ )  = 12 
8.5.2 
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Figure 8.5.3a o3=0.4. Figure 8.5.3b o~=-0.4 (the dual of a). 

Figure 8.5.3c co=0.25. Figure 8.5.3d co=0.6. 
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Figure 8.5.3e 03=0.3 

In order to get a uniform wave conformation in this way, the outer shape 
will follow the Cp(100)-, CD(111)- or C6(111)-surface structure (giving 
square or hexagon repetition units) in all directions. It can also be 
mentioned that the Cc-surface can provide chirality to the membrane 
curvature, see figure 8.5.4. 

x 2 +y2 +z  2 

+0.4[cos 2rcxsin2nz + cos 2~vy sin2rcx + cos 2rcz sin27zy] = 12 
8.5.3 

As discussed above in connection with cubosomes, it is assumed that there is 
one dominating mode of wave oscillations, which is directly related to the 
periodicity of the curvature. The oscillations represents contraction and 
expansion of the bilayer in relation to the time-averaged conformation. 
This average conformation is assumed to be of the same order of magnitude 
as observed in erythrocyte membranes [24] with a wave-length of about 
100 nm and an amplitude of about 10 nm. The frequency of this kind of 
bilayer motions is considered to be about 10 Hz [25]. There are less 
information available on probable size of the standing wave conformational 
variations, which is related to the elastic rigidity of the bilayer..They can 
be expressed as variations in average cross-section area per lipid molecule, 
and there are some data on this from X-ray studies of bilayer dimensions of 
cubic phases with different curvatures, cf. [6]. 
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Figure 8.5.4. Illustration of a time-averaged conformation of a 
membrane of spherical shape oscillating as a standing wave 
according to equation 8. 5. 3. 

Wave-like motions of lipid bilayers in vesicles and membranes have earlier 
been frequently discussed, cf. [25,26]. These undulations/fluctuations have 
been assumed to occur statistically along the bilayer, and the bilayer units 
moving in and out have been modelled as a two-dimensional gas. It seems 
natural to assume this kind of wave movements when the bilayer lacks 
lateral periodicity. With periodic curvature occurring in the membrane, the 
bilayer will exhibit standing waves, providing an organisation of the 
membrane in time and space (membrane functions requires control in time 
and space). 

Finally we will consider the budding off processes of vesicles from 
membranes and membrane assemblies, and the reverse processes, both of 
which are involved in cellular transport phenomena. An intensive vesicle 
traffic occur constantly between ER, where proteins and lipids are 
produced, the Golgi apparatus, and the plasma membrane. Some vesicle 
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formation takes place through cage-forming proteins like clathrin, but 
there are also vesicle formation/transportation phenomena which do not 
involve such skeleton forming molecules. Transport via pinocytosis is one 
example. 

In any periodic cell membrane assembly, the bilayer will exhibit wave 
motions. A change in packing within the bilayer, for example a pH-shift 
leading to change of a membrane protein conformation or a membrane 
lipid ionic charge, must be expected to influence the wave length of these 
wave motions. We show below in figure 8.5.5, in the case of a curved 
membrane system how such wave structure variations can lead to vesicle 
budding off. If we reverse the process it corresponds to membrane fusion. 

Figure 8.5.5 Vesicle formation, as defined by 

cos nx + cos 7vy + cos nz + e (x-0"5) - 2.2 = 0. 

These vesicle transport phenomena, particularly the ones involving the 
Golgi apparatus, are further described in chapter 11. 
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The standing wave view on membrane structure has fundamental 
implications. A membrane with periodic curvature, which therefore shows 
standing wave motions, represents a mechanical equilibrium along the 
whole membrane surface. A mechanical disturbance, the fusion of a vesicle, 
or a conformational change inside the bilayer of a membrane protein, will 
be sensed over the whole membrane within the time of the standing wave 
frequency (neglecting damping effects). 

Assuming that this dynamic model of control of membrane structure via its 
physical properties is correct, many questions remain to be answered. How 
common is the occurrence of periodic curvature along a bilayer? If it only 
occurs as a transient state, what are the conditions that will switch the 
conformation from non-periodic (with thermal mobility taking place as 
"undulations") to a periodic structure and a standing wave state? 
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9 Cel ls  

D N A  

and their  Div i s ion  - M o t i o n  in M u s c l e s  and in 

Un homme qui y consacrerait son existence 
peindre la quatridme dimension [Poincar6,1]. 

arriverait peut-~tre h se 

A mathematical model of membranes in cell division is given. Such 
divisions are carried out with the two kinds of lipid bilayer membranes, the 
single plasma membrane and the 
mitochondria. 
The Hermite operator is used to 
transformation. 
With mathematics for "handmade" 
divided. 

double nuclear membrane and of 

transfer cell content through the 

periodicity, a mitochondrion cell is 

The motion in a muscle cell is described mathematically. 
A translation operation on two single spirals gives a double of DNA-type. 
Mathematical mechanisms are given to form the DNA-structures of the 
Holliday junction, and the cruciform. 

9.1 The Roots and Simple Cell Division 

This section is partly an example of periodic growth, and we shall use a 
mathematical machinery similar to that of the periodic motion. We will 
treat two cases, the single plasma lipid bilayer-membrane as in division of 
animal cells, and the double membrane as in division of mitochondria. The 
plant cell with the plasma membrane and the cell wall are topologically 
similar to the mitochondrion case. 

We begin with some basic functions. In the first two equations we use the 
square roots and see periodicity, and after this variants of the GD-function 
are used. We do also notice that squares give double roots. The equations 
are in order in 9.11 for figures 9.1.1a-f. 

We are now ready to derive the division of cells with a single plasma bilayer 
membrane, and an organelle with a double membrane. We do it first in the 
simplest possible way. 
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x -2 - 4 

x -2 + ( x -  4) -2 - 4 

-x  2 e(X-4)2 e + =0.8 

e -(x2 +y2-1) = 0.5 

e -(x2 +y2-5) = 0.5 

2 
e -(x2+y2-5) = 0.5 

9.1.1 

We put two cells together with Ax=0 in equation 9.1.2a, in which the cells 
overlap completely mathematically. The motion starts when we increase 
Ax in equation 9.1.2a, splitting the cells as in figures 9.1.2a-d where Ax 
takes the values 0, 2, 3, and 4. 

e -((x-Ax)2 +y2-5) + e -(x2 +y2-5) = 0.5 9.1.2a 

In figures 9.1.2e-f there are quadruple division and motion after formula 
9.1.2b below. Ax and Ay take the values 4 and 3 for figure e, and 4 and 4 
for figure f. 

e-((x-Ax) 2 +y2-5) + e-(  x2 +y2-5) 

+e -((x-Ax)2 +(y-Ay)2-5) + e -(x2 +(y-Ay)2-5) = 0.5 
9.1.2b 

In pictures in ref. [12] of about eight new cells it is clear that the spherical 
cells have been heavily distorted in order to fill space. Primitive packing of 
spheres, as it is from the beginning, fill space badly. Cubes in primitive 
packing fill space to 100%, so we distort the spheres towards cubes and 
repeat the division procedure. 

Ax takes the values 0, 2, 3.1, and 3.2 in figure 9.1.3a-d. 

e -((x-Ax)4 +y4-5) + e -(x4 +y4-5) = 0.5 9.1.3 

We have continued the cell division after equation 9.1.4 to show the 
packing of cuboid cells as in figure 9.1.3e. 
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Figure 9.1.1a-f Plots from equation 9.1.1. 
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Figure 9.1.2 Simple cell division after equation 9.1.2 
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Figure 9.1.3 Cell division after equations 9.1.3-4. 

e-((x-3.2) 4 +y4-5) + e-( x4 +y4-5) 

+e -(x4 +(Y-3"2)4-5) + e -((x-3"2)4 +(Y-3"2)4-5) = 0.5 
9.1.4  
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Figure 9.1.4 First cell division after equation 9.1.5. 
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Figure 9.1.5 Second cell division after equation 9.1.5. 

We do the same in 3D, and with our experience we can formulate an 
equation for the first three divisions. 

Nle_(X 2 +y2 +z2_5) + e_((x_Ax)2 +y2 +z2_5) 

+N2e-(X 2 +(y-Ay) 2 +z2-5) + e-((x-5) 2 +(y-Ay) 2 +z2-5) 

+N3e_(X 2 +y2 +(z_Az)2_5) + e_((x_5)2 +y2 +(z_Az)2_5) 9.1.5 

+N 4 e-(x2 +(Y-5)2 +(z-Az)2-5) + e -((x-5)2 +(Y-5)2 +(z-Az)2-5) 

1 
- - = 0  

2 
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For the first division Nj=I, N2=N3=N4=0, and Ax varies between 0, 1, 2, 4, 
and 5. This is shown in figure 9.1.4a-e. 

For the second division NI=I, Ax=5, N2=l, N3=N4=0 and Ay varies between 
0, 2, 3, and 5. This is shown in figure 9.1.Sa-d. 

For the third division NI=I, Ax=5, N2=l, Ay=5, N3=N4=l and Az varies 
between 0, 1, 3.5, and 5. This is shown in figure 9.1.6a-d. 

Figure 9.1.6 Third cell division after equation 9.1.5 
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Using this method we may formulate one equation that gives any number 
of cell divisions. 

There are numerous examples in the literature showing the cell division 
process as in these calculations. See for example the beautiful micrographs 
showing fertilisation and division of the sand dollar in ref. [2]. 

9.2 Cell Division with Double Membranes 

Next, we will use the double root functions in a simple form to describe the 
division with double membranes, which must take place in the nuclear 
envelope and in the mitochondrion. The equations start with 9.2.1 with 
Ax=0 and 1, and are shown in figures 9.2.1a-b. Figure 9.2.1b is not quite 
what we want, so we reformulate the equation in 9.2.2. In figures 9.2.1c-h 
we obtain a typical cell division, and we notice in figures f and g that one 
double membrane is in common for two cells. 

2 2 
e -(x2+y2-5) +e -(x-Ax)2+y2-5) = 0.5 9.2.1 

In equation 9.2.2 Ax takes the values 1, 3, 4, 4.7, 5, and 5.4. 

[e -(x2 +y2-5) + e -((x-Ax)2 +y2-5)] 2 - 0.5 
9.2.2 

Cell division is of course more complicated than this, but our intention is 
just to derive a mathematical machinery that works for the topological 
transformation of the plasma membrane. For the complete motion it is 
important to derive a machinery that carries the internal structure of the 
cell through the transformation. We shall model that in two different ways. 

The first is to use the Hermite operator after equation 9.2.3. The damping 
is reinforced by adding a GD like term, which gives the plasma membrane 
boundary. The structure is really a cubosome. 

e -(x2 +y2-6)[cos 2~x + cos 2xy] + e -(x4 +y4-6) - 24 - 0 9.2.3 

The motion of the cell division is in the equation 9.2.4. The content gives 
curvature to the membrane and the structure changes shape during the 
motion. The last connection is a catenoid, or the umbilical cord, as seen in 
figure 9.2.2e. 
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Figure 9.2.1 Double cell membrane division. 
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Ax takes the values 0, 1, 2, 2.5, 2.7, and 3 in figures 9.2.2a-f respectively. 

e -(x2 +y2-6) [cos 27tx + cos 2rty] + e -(x4 +y4-6) 

+e-( (x-  Ax) 2 + y2 -6) [cos 2~x + cos 27D,] + e - ( (x-  Ax) 4 +y4 -6) _ 44 - 0 
9 .2 .4  

2 2 
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e f 

Figure 9.2.2 Cell division with Hermite operator after equation 9.2.4. 
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Figure 9.2.2g After equation 9.2.5. 

Finally we show the packing of four cells with equation 9.2.5, which is 
illustrated in figure 9.2.2g. 

e -(x2 +y2-6) [cos 2rtx + cos 2rpy] + e -(x4 +y4-6) 

+e -((x-3)2 +y2-6) [cos 27zx + cos 2rqr + e -((x-3)4 +y4-6) 

+e -((x-3)2 +(Y-3)2-6) [cos 2rtx + cos 2rpy] + e -((x-3)4 +(Y-3)4-6) 

+e -(x2 +(Y-3)2-6) [cos 2~x + cos 2~y] + e -(x4 +(Y-3)4-6) - 88 - 0 

9.2.5 

We realise now that this mathematical description of cell division was 
founded earlier in chapter 5, where we showed the property of the GD- 
function which made it possible for functions, and structures, to go through 
each other and yet keep their identities. 

The other method involves using a handmade construction with a function 
similar to the GD-function. We use this to build a model of a 
mitochondrion as in [3]. The equation is derived below in 9.2.4, and the 
figures are in 9.2.3a-d. We note that just before separation, the two 
"individs" have one double membrane in common as we expect. This is 
shown in 9.2.3c. The result is similar to ultrastructural observations of 
mitochondria divisions, and an example is shown in ref. [4] (figure 23-5). 
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We give the equation for 9.2.3c 
figure 9.2.3d. 

in 9.2.5. The final separation is shown in 

lO-[(x-3) 2+lO-(y-lO)+lO(y-33) + lO-[(x-8) 2+lO-(y-lO)+lO(y-33) 

+ 10_[(x+3)2 +10-(y+ 15) +10(Y-33) 2 0(Y-8) 5) + 10-[(x ) +1 +10 -(y+I 

+10-[(x-5)2+10(Y-8)+I0-(Y +15) 5)2+10(Y -8) 0-(y+15) + 10 -[(x-1 +1 

+10_[(x_17)2+10(Y-28)+10-(y-15) 2 0(Y-18 ) 0-(y+10 ) + 10-[(x-11) +1 +1 

+ 10 - [(x-20) 2 + 10 -( y + 15) + 10 (y- 33) 0(x-21) + 10-[(y-33) 2+1 +10-(x+4) 

+ 10 -[(y+ 15) 2 + 10 (x-2 I) +10 -(x+4) = 0.6 

9.2.4 

10_[(x_3)2 +10-(y- 10) +10(Y-33) 2 0-(y-10 ) 33) + 10 -[(x-8) +1 +10 (y- 

+10-[(x+3) 2 + 10 -(y + 15) + 10 (y- 33) + 10-[(x) 2+10(y-8) +10-(y+15) 

+10_[(x_5)2 +10(y-8) +10-(y+ 15) 2 8) 15) +10-[(x-15) +10 (y- +10-(Y + 

+10-[(x-17)2+10(Y-28)+10-(Y -15) 1)2+10(Y -18) 0-(y+10) + 10 -[(x-1 +1 

+ 10 - [(x-20) 2 + 10 -(y + 15) + 10 (y- 33) + 10 -[(y-33)2 + 10 (x-21) + 10 -(x+4) 

+10 -[(y+I 5)2 + 1 o(X-21) +1 o-(X+ 4) 

+10-[(x-26) 2 +10-(y- 10) +10(Y -33) + 10-[(x-31) 2 +10-(y-10) +10(y-33) 

+10-[(x-20)2 +10-(Y +15) +10(Y-33) [(x-23)2+10 (y-8) 0-(y+15) + 1 0 -  +1 

2 0(Y-8 ) 15) 8)2 0(Y-8 ) 15) + 10 - [(x-28) + 1 + 10 -(y + + 10 - [(x-3 + 1 + 10 -(y + 

+10_[(x_40)2+10(Y-28)+10-(y-15) 2 0(Y-18 ) 0-(y+10 ) + 10 -[(x-34) + 1 +1 

+10-[(x-43) 2 + 10 -(y + 15) + 10 (y- 33) + 10 -[(y-33)2 +10(x-44) +10-(x- 19) 

+ 10 -[(y+ 15) 2 + 10 (x-44) + 10 - (x-  19) = 0.6 

9.2.5 
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Figure 9.2.3 Model of mitochondrion and its division from equations 9.2.4-5. 

9.3 Motion in Muscle Cells 

That 'function presupposes structure' has been declared an accepted axiom 
of  biology ... the cell histologists have ever since been trying to comply [5]. 

The actin/myosin complex in skeletal muscle cells exhibit perfect 
periodicity in three dimensions, as is evident from the sharp X-ray 
diffraction characteristics and the electron microscopy textures, cf. figure 
9.3.1 from [6]. The thick elements are myosin molecules, whereas the thin 
ones are actin, and we see a cross-section of the helical association 
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complexes. These contractile elements, being surrounded by water in a 
hexagonal organisation, allow some disorder at atomic distances, like the 
liquid-crystalline phases of lipids that we have discussed in some detail 
above. A remarkable feature is the movement of the myosin heads in 
relation to the associated actin about 10 nm to give the power stroke 
within the ordered lattice. The perfect crystalline periodicity means that 
molecular motions will be accurately controlled, and should be expected to 
form standing waves like motion in other crystals. We think that this 
aspect of muscle contraction is relevant to coordination of motions of 
each contractile element. The motion of an individual myosin molecule in 
relation to an actin helix is described in chapter 10. Here we will deal with 
the overall motion and the cooperativity. 

Figure 9.3.1 Electron micrographs of a muscle revealing excellent crystallinity, 
from the classical work by Auber, cf. ref [6]. Enlargement to the right. 

Let us now consider two major motion geometries of the hexagonal 
organisation. 

The first type is the motions in the (ab)-plane; standing wave oscillations 
of the long molecules perpendicular to their axes. The association/ 
dissociation of actin and myosin heads localised in the same (ab)-plane 
(involving calcium ions and the ATP-binding) will therefore take place in 
phase. It is known that the movements of different myosin heads along a 
myosin thread, fuelled by the ATP-cycle, occur asynchronously, and the 
generated force is therefore constant with time. With the standing wave 
model of motion, only the myosin heads separated by the whole pitch 
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(about 145 A) will move at the same time. The other five heads along the 
pitch will move at successively later times during the cycle, related to wave 
oscillations along the myosin rod. 

The second type of motion takes place along the c-axis. The myosin heads 
form a helical surface. These helices should be expected to exhibit standing 
wave motions corresponding to movement forward and backwards in 
relation to the myosin molecule endings at the core of the rods. When the 
myosin heads change their conformation driven by the ATP -> ADP 
reaction, it seems likely that the motion of the heads will be coupled with 
this second type of standing wave motion, so that the conformational 
induced lateral movement of myosin in relation to actin does not 
counteract, but amplifies the standing wave movement. Such coordination 
requires that there is a coupling between all the actin and all the myosin 
movements. 
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Figure 9.3.2 Equation in 9.3.1 gives 2D projection of 
the hexagonal picture in figure 9.3.1. 

We give the mathematical equation for the projection in figure 9.3.1 in 
equation 9.3.1, and show it in figure 9.3.2. 
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Figure 9.3.3 Equation 9.3.2 combines extemal boundaries with the 
structure in figure 9.3.1. 

As is obvious from figure 9.3.1, the structure unit, the sarcomere, consists 
of hexagonal rods, so we design an equation by combining a periodic 
structure with outer boundaries, using a hexagon equation to give the 
sarcomere borders in equation 9.3.2, the result is shown in figure 9.3.3. 
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1.2 x 10-4[e (xc~ sin(rt/3)) + e (xc~ sin(2rc/3)) 

+e(X cos(37t/3)+y sin(3rt/3)) + e-(X cos(rt/3)+y sin(Tt/3)) 

+e-(X cos(2rt/3)+ y sin(2rc/3)) + e-(X cos(3rc/3)+y sin(37t/3)) ] 

-[cos~xcosrc(-~+-~y) - x  cos rct-~+-5-y)+cos 27tx cos 2n(-~+@y) cos 2rc(-2+@y)] 1 
- t - e  - - -  

2 
9.3.2 

Figure 9.3.4 Corresponding 3D-structure. 

In figure 9.3.4 we extend it to 3D. 

Changing equation 9.3.1, after the principles described in chapter 3, to 
bring in the z dimension we get equation 9.3.3. 

c o s T t x c o s r t - +  y c o s r t - - +  .y 
2 2 2 2 

+cos  xcos  (x (x - +  y c o s 2 g - - +  y 
2 2 2 2 

9.3.3 

+0.075cos 4~z - 0.5 
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This brings in small catenoids between the actin and myosin filaments, 
which may represent the myosin II motor proteins which perform the 
sliding work. The figures are in 9.3.5 and 9.3.6, the latter being the 
projection. 

Figure 9.3.5 Catenoids between the actin and myosin 
filaments after 9.3.3. 

Figure 9.3.6 Projection of figure 9.3.5. 
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It should be pointed out that this shows the total association over the 
whole crystallographic repetition period. As mentioned above, only one of 
the six heads is associated at a particular time. 

Shown above in 3D is only a piece of the sarcomere, and here we derive a 
complete model in 2D. 

The equations are 9.3.4 and 9.3.5, and the biological motion is obtained by 
changing some of the y-coordinates. This is a good example of handling 
the exponential scale, and the muscle work is shown in figures 9.3.7 and 
9.3.8 for sarcomere units. 

10 -[(x-4)2 +10(y-22) +10.(y+4) +1 0 -[(x)2 +10(y-22) +1 0 -(y+4) 

+10 -[(x-8)2 +10(y-22) +10.(y+4) + 0.15.10 -[(x-2)2 +1 0 -(y-  15) 

+0.15-10 -[(x-6)2+10-(y-15) 2 0-(y-15) + 0.15.10 -[(x+2) + 1 

+0.15-10 -[(x-10)2+10.(y-15) +0.15.10 -[(x-2)2+10(y-3) 9.3.4 

+0.15.10 -[(x-6)2+10(y-3) +0.15.10 -[(x+2)2+10(y-3) 

+0.15.10 -[(x-lO)2+lO(y-3) +0.2-10 -[(y-38)2+lO(x-11)+lO-(x+2) 

+0.2 10 -[(y+I 9)2 +10(x- 11) +10.(x+2) 
�9 = 0 . 1  

10_[(x_4)2 +10(y-22) +lO-(y+4) + 10_[(x)2 +1 0 (y-22) +1 0 -(y+4) 

+ 10 - [(x- 8) 2 + 10 (y- 22) + 10 -(y +4) +0.15.10 -[(x-2)2+lO-(y 10) 

+0.15.10 -[(x-6)2 + 10 -(y- 1 o) +0.15.10-[(x+2)2 + 10 -(y- 1 o) 

+0.15-10 -[(x-10)2 +10-(y-I~ + 0.15.10 -[(x-2)2 +10(y-8) 

+0.15.10 -[(x-6)2 +lO(y-8) +0.15.10-[(x+2) 2 +1 0 (y-8) 

+0.15.10 -[(x-lO)2 +lO(y-8) + 0.2.10 -[(y-33)2 +lO(X-11) +lO-(X+2) 

+0.2.10 -[(y+15)2 +lO(X-11) +lO-(X+2) = 0.1 

9.3.5 
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Figure 9.3.7 Sarcomere units. Figure 9.3.8 The muscle work. 

9.4 RNA and DNA Modelling 

Self-replicating RNA molecules were supposed to exist in the first 
membrane bounded cells in the prebiotic soup (cf. chapter 15). Such 
molecules could carry genetic information as well as being catalytic. 

As a starting point we make two spirals after equation 9.4.1. For A=0 the 
two are identical, and overlapping as in figure 9.4.1.a. 
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[_e(X2 +y 2 ) +ey cosrrz+xsin rtz __ff]l 
e 

)2 [-e ((x+A +(Y+A)2)+e(Y+A)c~ -zl 
+e -~]  __1 = 0 

8 

9.4.1 

"Mathematical self replication" is obtained by giving A the values 1, 1.1, 
and 1.25, and the result is two parallel RNA strands in figures 9.4.1b-d. 

If we for A=I above, introduce a phase shift of 1 in z for one of the 
strands, the total structure transforms via interactions between the two 
strands to a double spiral of DNA type. We shall do this stepwise and first 
we formulate equation 9.4.2. 

[_e(X 2 +y2 ) +ey cosrcz +x sin rrz _1] 
e 8 

[-e((X+A)2+(y+A)2)+e(Y+A)c~ -21 
+e -~]  __1 = 0 

8 

9.4.2 

Then, having the two strands separated, we bring them together with 
A=l.5, 1.25, 1, 0.8, and 0.5, as shown in figure 9.4.2a-d. The two strands 
approaching each other form a double helix via cross bonding. 

This mathematical transformation, applied locally at one helix tum, offers 
a model similar to the cleavage and rejoining mechanism of a 
phosphodiester bond, as done by DNA-polymerase during the DNA- 
replication [8]. 

We shall also show the topology when two spirals in a double-helix meet 
another identical double-helix of a different orientation. The double spirals 
unify after some translation as in equation 9.4.3. As one strand of one 
double spiral proceeds into another strand of another double spiral, we 
generate a topology similar to a so called Holliday junction. We show this 
in figure 9.4.3a-b. 

[ 1 e x2 +(Y- 3)2 +2x(y-3) cos ztz-(x 2 -(y-3) 2) sin ~z] 
e-= ~ 

[ 1 e z2 +y2 +2zy cos ~;x+(z 2 _y2)sin ~;x] 
+e - ' ~  - 1 - 0  

9.4.3 
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Figure 9.4.1 Two spiral units show mathematical self-replication. 
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Figure 9.4.2 Two spirals form a double helix under a phase shift. 
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Figure 9.4.3a Two spirals in a double-helix meet another 
identical double-helix of a different orientation. 

We make the two spirals interpenetrate even more in equation 9.4.4,  and 
see in figures 9.4.4a-b that the topology now resembles cruciform DNA in 
figure 9.4.5 (from ref. [10]). The cruciform conformation is visible in 
electron micrographs of circular DNA, cf. [11]. These models of DNA 
interactions does of course leave out the enzyme wrestling and the specific 
base pair interactions. Furthermore, we simplify the double helix by making 
both helices identical with a translation of half a pitch in relation to one 
another. Never-the-less, the mathematical handling of DNA and RNA 
elements may reveal relevant interaction mechanisms. 

A more complete mathematical description of DNA and other multi-spirals 
is given in appendix 5. 
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Figure 9.4.3b Projection of a. 

1 +(y-l.5) 2 e-[~eX2 + 2x(y - 1.5)cos rcz- (x 2 - ( y  - 1.5) 2) sinrcz] 

1 
+e-[~  e 

z 2 +y2 
+ 2zy cos 7vx + (z 2 - y2)sin 7vx] 

- 1 - 0  

9.4.4 
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Figure 9.4.4a Topology of cruciform DNA. 

Figure 9.4.4b Different projection of a. 
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Figure 9.4.5 Cruciform DNA from ref. [ 10]. 
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10 Concentration Gradients, Filaments, Motor Proteins 
and again- Flagella 

Thermodynamics is mainly concerned with the transformations of  heat into 
mechanical work and the opposite transformations of  mechanical work 
into heat [Fermi, l]. 

We describe the formation of catenoids between vesicles. 
We build actin filaments and show how they move, grow or shrink, or pack 
in bundles or networks. 
We describe the dilatation symmetry of the axoneme, and cog-wheels. 
We describe the power stroke of the myosin head. 
We describe how algebraic roots, or counting, give curvature to flagella, and 
how a twin operation (crystallographic) on the dynamic structure of 
flagella gives the breast stroke swim motion of cilia. 
All with mathematical functions. 

10.1 Background and Essential Functions 

So far we have described how cell, organelles and vesicles change shape, size 
and site during biological motion, and also how they interacts with other 
bodies. This was done mathematically and topologically. We shall now 
show how building by filaments of the cyto skeleton can be described, and 
then model the function of motor proteins. In order to do that we need to 
analyse the physical picture that can be pulled out from the mathematics 
w e  u s e .  

Membranes and vesicles are formed by self-assembly of lipid and protein 
molecules in water, which means that there is a distribution of the 
molecules out in the water medium. Close to the surface, the concentration 
will be higher than the equilibrium concentration out in the bulk water 
environment (the solubility). This is due to the constant motion of 
molecules in and out from their sites of their associated state in the surface 
layer. The variation of the concentration u(x) at a distance x from the 
body, will follow the GD-function in 10.1.1, which is shown in figure 
10.1.1. This means that if some of the molecules which are outside the 
surface are removed, some molecules in the surface layer will move into the 
water to make up for the loss. On the contrary, if some molecules are added 
to the water, or if the solubility is reduced, for example by a pH shift, some 
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molecules must be precipitated at the surface. With these processes, the 
membrane changes shape and obtains a dynamic behaviour. There are other 
reasons for changes of shape, such as protein conformation transitions, but 
now we will focus on the lipid bilayer only. 

The fundamental solution to the diffusion equation at t=O is the GD- 
distribution 10.1. la. 

_x 2 
u ( x ) -  e lO. l . la  

In a Cartesian system this will be as in equation l O.l.lb. 

_x 2 
y = e  lO. l . lb  

0 .5  

o 
i 

-2 . . . .  - ' 1  . . . .  6 . . . .  i . . . .  i 

1 .5  

Figure 10.1.1 The GD-function. 

The addition of a larger peak via a coordinate shift as in equation 10.1.2, 
and figure 10.1.2, make the two GD-functions exist next to each other. 
This property of the GD-function was used in chap 5 to describe motion. 
Here we consider the overlap of two functions, generating excess 
concentration (C > 0 )be tween  the two. This is even more evident in 
equation 10.1.3 and figure 10.1.3, where two identical GD-functions are 
used. 

y - e -(x)2 + 2e -(x-3)2 10.1.2 

-x  2 e-(X-2.5)2 
y - e  + 10.1.3 
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Figure 10.1.2 Two GD-functions. 
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Figure 10.1.3 Two overlapping GD-functions. 

This means that if a body like a vesicle which exists in a lipid solution, and 
has its own GD-profile, approaches another similar vesicle, there is an 
increase in lipid concentration between the two, due to the overlap. The 
lipid molecules constituting the surface membranes of all organelles and 
vesicles have different specific solubilities (sometime this is forgotten as 
they are just regarded as insoluble). In the case of phosphatidylcholine, for 

12 example, the value is about 10 M. Thus, very few molecules need to be 
added or removed to change the structure at the surface. When the 
solubility (molecular solution) is reached, precipitation occurs with a 
topology dictated by concentration gradients, a neck or a catenoid. 

Spherical vesicles will now be considered. In three dimensions the formulas 
corresponding to 10.1.1a-b is found in 10.1.4 or 10.1.5 respectively. 

u(x, y,z) - e -(x2 +y2 +z 2) 10.1.4 

o r  

e -(x2 +y2 +z2) =C 10.1.5 
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Figure 10.1.4 Two spheres are separated after equation 10.1.6. 
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There is no need to worry about a complete picture of the equations. It is 
sufficient to say that with concentration, the implicit function in 10.1.5 is 
a sphere, and the smaller the concentration, the bigger sphere. The sphere 
is then also a picture of the body that sets up the concentration. With the 
GD-function it is possible to put two such spheres next to each other, and 
make them move. We did that to study motion in section 5.3. We shall do 
something similar here, but from a different angle, which indicates how it is 
constructed mathematically. We start by making a complete overlap, as if 
we had a cell division in equation 10.1.6. We then move the two spheres 
apart, and Ax varies with 0, 1.5, 2.5, 2.8, 2.9, and 3.4, which is shown in 
figures 10.1.4a-e. 

e -(x2 +Y2+Z2) +e -((x-Ax)2+y2+z2) = 1/4 
10.1.6 

Mathematically there is interaction between the constant and the x- 
parameters. In reality the two functions can, when separated, be said to 
represent two different concentrations. When we put together one 
function, under a common constant, we conjecture that this is also a 
picture of reality. These mathematical interactions describes the mixing of 
concentration gradients in space. What we do with these implicit functions 
is to stay in 3D, and just vary the metric parameters and keep the 
concentration u(x,y,z) constant for each experiment. 

The reverse process can take place when two vesicles made of lipids 
happen to be close. We have discussed elsewhere how the lipid bilayer exists 
in equilibrium with monomers at saturated concentration in solution. Their 
respective concentration gradients overlap, and precipitation occurs in the 
form of catenoids. 

So we have a good tool, adding or subtracting GD-functions give changes in 
concentrations and dynamics of shape. We shall now build structures like 
filaments which form the frames of the cells. We shall also build structures 
to describe the motor proteins. 

10.2 Filaments 

Actin and microtubules are two important filaments which are essential for 
cell division. They give the stability and flexibility to the skeleton of the 
cell, they form parts of muscles, they make the flagella swim, they shape 
the axons, etc. 
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Figure 10.2.1 Actin rod with two "free" 
actin molecules. 

Actin protein molecules polymerise to give rod filaments in a helical 
arrangement. This occurs from actin in solution when the concentration is 
high enough. The interactions between molecules become strong (and 
frequent) and precipitation begins. The helical shape of the precipitation 
has its origin in the shape of the molecule that also gives the rod a polar 
character. 
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In figure 10.2.1 we have used catenoids between spheres to show 
interactions between molecules in an actin rod after equation 10.2.1. Two 
molecules are just about to land (or have just left), demonstrating the 
dynamic behaviour of the filament, as depending on variations of the GD- 
concentration gradients outside the tip of the filament. 

e-[(x-1) 2 +(y-l) 2 +z 2 ] + e-[(x+l) 2 +(y+l) 2 +z 2 ] + 

2 +(y-1)2 +(z-2)2 ] +e-[(x-1) 2 +(y+l) 2 +(z-2) 2 ] + e-[(x+l) + 

+e-[(x-1) 2 +(y-l) 2 +(z-4) 2 ] + e-[(x+l) 2 +(y+l) 2 +(z-4) 2 ] + 

+e-[(x-1) 2 +(y+l) 2 +(z-6) 2 ] + e-[(x+l) 2 +(y-l) 2 +(z-6) 2 ] + 

+e-[(x-1) 2 +(y-l) 2 +(z-8) 2 ] + e-[(x+l) 2 +(y+l) 2 +(z-S) 2 ] + 

+e -[(x+l)2 +(Y-l)2 +(z-10"5)2 ] + e -[(x+l)2 +(Y+l)2 +(z-12"5)2 ] = 1/4 

10.2.1 

The actin filaments are most important for the stability and flexibility of 
most mammalian cells. The molecules polymerise to networks of non- 
intersecting rods, and the rods are held together with special proteins. Non- 
intersecting rods occur frequently in biology, and we have done the 
mathematics of such structures elsewhere [2], and in this book we will only 
repeat a couple of essential parts. We described the parallel rod systems in 
chapters 3-4, and we shall put three such systems together. The systems are 
identical but with different orientations in space, and they are always non- 
intersecting. We have to go exponential, otherwise they would all fuse 
together. The first equation is after equations used earlier in chapters 3-4. 
There is an intimate relation between the circular and the GD equations, as 
discussed earlier [3]. 

The rod system in figures 10.2.2-3, made from cosine and GD respectively 
(equations 10.2.2 and 10.2.3), is the simplest packing of rods. We continue 
with the GD-types, as they are easier to handle 

7~ 71; 71; 71; 
C O S ~  eC~176 +e 2 z+cos (y+2) +eC~176 =6  10.2.2 

e-(X 2 +(y+2)2) 2 + e-(Y 2 +(z+2)2) 2 + e-(  z2 +(x+2)2) 2 

+e-(X 2 +(y-2)2) 2 + e-(Y 2 +(z-2)2) 2 e-(Z 2+(x-2)2) 2 
+ =0.65 

10.2.3 
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Figure 10.2.2 Fence packing of rods with 
cosine. 

Figure 10.2.3 Fence packing of 
rods with GD-function. 

We take a more general rod packing, of the same symmetry as the gyroid 
surface, and give the equations in 10.2.4-5. The cos version is shown in 
figure 10.2.4. 

eCOS2(x-y)+cos2(Y+ z)+cos2 (x+z) 

7~ 7~ 7~ +eCOS~(x+y+2)+cos~(y-z)+cos~(x+ z+2) 

+eCOS2(x+y)+cos2(Y+Z+2)+cos2 (x-z-2) 

cos2(x-y+2)+cos2(Y-Z-2)+cos2(x- z) 
+e = 15 

10.2.4 

Now we use the GD-function, to make the rods separate, we also change the 
constant to make them thinner. The result in figure 10.2.5 reminds us very 
much of an actin bundle. 

e-((x-y) 2 +(y+z) 2 +(x+z) 2) + e-((x+Y) 2 +(y+z+4) 2 +(x-z-4) 2) 

+e -((x-y+4)2 +(Y-Z-4)2 +(x-z)2) + e -((x+y-4)2 +(Y-Z)2 +(x+z-4)2) = 0.95 

10.2.5 
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Figure 10.2.4 Rod packing of gamet or gyroid symmetry. 

Figure 10.2.5 Filament of GD-mathematics and gyroid symmetry. 
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We demonstrate the dynamics of filaments, important for cell motion, cell 
growth, cell division, and cell stability, with the use of these rod 
mathematics. For this purpose we select a cylinder, shown in figure 10.2.6, 
with the equation in 10.2.6, and with Al=A2=6. 

e -[10(y2+z2)+ex-A1 +e-(X+A2)] = 1/2 10.2.6 

Figure 10.2.6 Rod of certain extension and size. 

We make it thinner and vary its length with equation 10.2.6, and we give 
all equations for the changes of size below. The series of figures shown, 
reveals that mathematics easily may change the speed of growth in both 
the ends of the filament, and also move the filament itself. In two cases 
there are no scale since the sizes are clear from the equations given. Each 
figure has its corresponding equation number. 

e -[100(y2+z2)+ex-10+e-(x+10)] = 1/2 10.2.7 

e -[100(y2+z2)+ex-10 +e-(X+10)] = 1/2 10.2.8 

e_[100(y2 +z2)+eX-8 +e-(X+ 14)] = 1/2 10.2.9 

e -[100(y2 +z2)+eX-15+e-(X+15)] = 1/2 
10.2.10 

e -[100(y2 +z2)+eX-15+e-(X+15)] = 1/2 
10.2.11 
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Figure 10.2.7 Thinner and longer rod. 

10 

Figure 10.2.8 Same rod but with scale. 

-10  

Figure 10.2.9 The rod moved towards left. 
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O00O~ 

Figure 10.2.10 Still longer rod. 

Figure 10.2.11 Same rod but without scale. 

We shall end with a simple filament construction using these mathematics. 
In figure 10.2.12 there are thin filaments anchored to planes via catenoids, 
in reality there are special proteins that serve as glue. There is also a 
filament going perpendicular, non intersecting, but joined to the others via 
catenoids, which again substitute for proteins. The equation is in 10.2.12. 

e-5[x2 +(y+2) 2 ] + e-5[ x2 +(y-3) 2 ] + e-5[(x-0.5) 2 +z 2 ] 

+e z-12 +e -(z+12) = 1/2 
10.2.12 
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Figure 10.2.12 Filament construction. 

10.3 Microtubulus and Axonemes 

Tubulin protein dimers polymerise to form hollow microtubulus in a helical 
arrangement, giving a polar structure. The dimers can polymerise, and later 
depolymerise, which generates dynamic instability as a result of GTP- 
hydrolysis, analogously to the actin filaments. 
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Nine triplets of microtubulus organise themselves to a centriole, and to the 
similar structure of a basal body. Such bodies anchor cilia and flagella to the 
surface of the cell. They also initiate the growth of the most important 
axonemes, the fundamental structure of both flagella and cilia. The 
microtubules in axonemes are arranged in a 9+2 pattern, in which a central 
pair of microtubulus are surrounded by nine doublets. 

Symmetry nine is important here, and we shall in our mathematical 
description of this symmetry use a structure of one central microtubulus 
surrounded by nine others, something between a centriole, or a basal body, 
and the axoneme. 

Nine-fold symmetry cannot give regular translation periodicity. So why 
does Nature choose nine-fold symmetry? A guess would be that the sliding 
motion, giving the bending to flagella, requires a certain number and space, 
and nine would then be the lower limit. The central one or two would serve 
to help the extra filaments or proteins between these units of microtubulin 
to build a structure strong enough. Much like a so-called goke which is 
needed in a rope with four or more strands. 

-i 

-2 

-3 

m 4  . . . . . . . . . . . . . . . . . . . .  , . . . .  | . . . .  , . . . .  , 

-4 -3 -2 -i 0 1 2 3 

Figure 10.3.1 Polygon with 9 edges - a nonagon. 

But we like to demonstrate this symmetry as derived from a mathematical 
discussion. We start by showing the nine polygon, the nonagon, taken from 
the mathematics we have derived earlier [4]. Equation 10.3.1 below gives 
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exponential scale, do not intersect but bend over to the polygon in figure 
10.3.1. 

e(XCOS(TZ/9)+ysin(~:/9)) 3 + e(-XCOS(2~/9)-ysin(2~;/9)) 3 

+e(X cos(3~/9)+y sin(3~/9))3 + e(_X cos(4~/9)-y sin(47z/9))3 

+e(X cos(5rc/9)+y sin(5rc/9)) 3 + e(_X cos(6rc/9)-y sin(67z/9)) 3 

+e(XCOS(7~/9)+ysin(77z/9)) 3 +e (xcos(8~/9)+ysin(8~/9)) 3 + 

+e (xc~ = 2.107 

10.3.1 
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Figure 10.3.2 Five fold symmetry. 

We shall go circular with this kind of mathematics to give the kind of 
repetition this quasi symmetry gives. And we start with celebrated five-fold 
symmetry in figure 10.3.2 from equation 10.3,2. The repetition is of 
dilatation nature, a symmetry one of us has described in 3D in detail before 
[5,6,7]. In the origin there is a five-ring, which in various shapes is 
repeated in a radial manner. The distances between the five-rings follow the 
famous Fibonacci numbers 1,1,2,3,5,8,13,21... Fibonacci (son of good 
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nature) had the name Leonardo of Pisa, and lived between 1175-1250. His 
sequence is indeed one of the early applications of mathematics to biology. 
There are many examples of biological growth involving this sequence: the 
reproduction of rats and bees, the branching of trees, the patterns of petals 
on many flowers, and much more. 

271; 
sinzrx sinzr(xcos zr 5 - -- + y sin ) + sinn(xcos 

5 5 

2 ~  
+ y sin--~) 

3~z 3re 47z 
- s inn(xcos  ..... + ysin )+s in r t (xcos  

5 T 5 
47r, 

+ y sin--7-) - 2 
3 

10.3.2 

From the exponential equation 10.3.1 we design equation 10.3.3 to show 
the 9-fold symmetry in figure 10.3.3. 

rt 7z 27z 
s i n r t x - s inn (xcos - -+  ysin )+s in r t (xcos  

9 9 9 

271; 
+ y s i n - z - )  

3rc 3~ 4re 4re 
- s in rc (xcos  + y sin + sin~(xcos �9 + y sin 

9 --9-) 9 --9-) 
5re 5re 6re 6rt 

- sin n(x cos + y sin--z--) + sin n(x cos +ys in  ? )  
9 9 - -  9 

7~ 7~ 8~ ~_ 
-sin~:(xcos 9 +ys in- - f f )+s in~: (xc~ +ys in  ) - 3  

10.3.3 
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Figure 10.3.3 9-fold symmetry. 
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The axonemes have nine doublets of microtubulus, and the individuals in 
each doublet have different sizes, which means we need to square. We also 
need to damp in order to cut off the outer terms, this is done using the 
Hermite operator in equation 10. 3.4. 

1 "x2+y2 ) 
e -~  t [sinTzx sinz~(xcos 7z 9 + y sin ) + sin n(xcos 2re 2re - -- + ysin 

9 9 --9-) 
3re 3re 47z 4rt 

- sinzt(xcos ~ + y sin ) + sin rt(xcos + y sin # )  
9 --9 9 

sin zt(xcos 57z 5z~ - + y sin ) + sinzt(xcos 
9 Y 

6rt 67z 
+ ysin 

9 --if) 

-sinrt(  xc~ 77z + y sin ) + sinzt(xcos 8re 
9 9 

87r, 
+ y s in-~- ) -  0.5] 2 - 1 

10.3.4 

-2  

-4  

-6  

 tO~ o 
r 0 

C> o 
o <2) 

 o00t -2 

-4 

-6 
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 

F i g u r e  1 0 . 3 . 4  Square of function give 
doublets. 

F i g u r e  10.3.5 Interaction with central 
circle. 

In figure 10.3.4 we have the doublets, and by changing constant, as in 
equation 10.3.5, we get a structure in the centre that interacts with the 
doublets in figure 10.3.5. 
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1 ,x 2 _~( +y2) 
[sinrcx- sinrc(xcos ~ 9 +ysin ) + sinrc(xcos 2rc 2~ - -  + ysin 

9 9 --9) 

sin zr(xcos 3zt 3zr 4zt 4~z 
- ~ + y sin + sin rffxcos + y sin 

9 -9-) 9 -9-) 

sinn(xcos 5re - ~  +ysin ) + sinrt(xcos 6re - ~ + ysin ) 
9 9 

7re 7re 8n 
-sinrc(xcos 9 +ysin--~)+sinn(xcos 9 + y s i n ~ ) -  0.5] 2 -0.175 

10.3.5 

In equation 10.3.6 we have added a circle and changed some of the 
constants. In figure 10.3.6 we show the plasma membrane, slightly curved, 
to complete the axoneme structure. 

e - l ( x 2  +y 2 ) rc rc 2~ ~_~ 
[s in~x-sin~(xcos--+ysin )+sinrffxcos ..... +ysin ) 

9 -9 9 

-sinrffxcos 3___g_~ +,Y s i n ~ )  + sinn(xcos 4n 
9 9 

+ y sin-~ -~ ) 

sinrffxcos 5re ~ 69) + y sin ) + sinzr(xcos 6n - ~ + ysin 
9 9 

_sinrffxcos 7~ 7re 8re 8~ + y sin + sin rt(x cos + y sin 0.5] 2 
9. T ) 9 T ) - 

1 2+y2) 
1 el-6( x + ~  

10 
= 3.2 

10.3.6 

1 2 

e_]_6( x +y2)[sin 9 ~: 2~ ~:x-sinrc(xcos + ysin-~)+sin~(xcos 9 

sinrc(xcos 3re 3~ 4rc 4re 
- ~ + y sin + sin rt(xcos + sin 

9 --9-) 9 y -9-) 

sinrc(xcos 5rt 5rt 6rt 6r~ 
- + y sin + sin rffxcos ~ + y sin 

9 --9-) 9 -9-) 

9 9 
-sinrffxcos 9 +ysin )+s in rc (xcos~+ys in  )-1] 2 

9 
1 2 

1 e~-6( x +Y 2-1) 

10 
=2 

+ y s in-~)  

10.3.7 
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Figure 10.3.6 Plasma membrane added. 
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Figure 10.3.7 Nine more fibres. 
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The advantage with this quasi-, or dilatation-, symmetry is that it can 
expand, similar to ordinary translation. In the mammalian sperm there are 
nine more outer denser fibres, which we can get just by changing weights as 
in figure 10.3.3. The equation is in 10.3.7 and the figure in 10.3.7. 

We have also made a 3D calculation after equation 10.3.4, and show this in 
figure 10.3.8. 

Figure 10.3.8 Three dimensional model of the axoneme. 

We also like to demonstrate the possibility of using these polygonal 
mathematics for making cog-wheels. We use nine-fold symmetry, as we 
have it above (any symmetry can be used of course), the equation is found 
in 10. 3.8 and the figure in 10.3.9. 



Concentration Gradients, Filaments, Motor Proteins and again - Flagella 243 

_2 �84 

- 4  

-2  

- 4  . . . . . . . . . . . . . . . . . . . . . . .  

-4  -2 0 2 4 -4  -2 0 2 4 

Figure 10.3.9 Cog wheel. Figure 10.3.10 Eccentric cog wheel. 

1 2 
~ 2rr e - ~ ( x  +Y2)[sinrtx-sinn(xcos--+ysin +sinn(xcos 

9 -9) 9 

sinzt(xcos 3n: ~ 4n + y sin ) + sinn(xcos 4n 
- ~ + ysin 

9 9 --9) 

sinn( xcos 5n ~ + ysin )+ sinn(xcos 6n 
- ~ + ysin ) 

9 9 

sinn:(xcos7n: 9 8rr - ~ 
- ~ + y sin ) + sinn(xcos + y sin ) -  0.5] 

9 9 
1 2 

+e_i_~(x +y2) = 3.2 

+ y s i n ~ )  

10.3.8 

1 2+y2) 2rr 
e --i-6(x [sinrrx sinrr(xcos rr 9 - -- + y sin ) + sin n(xcos 

9 9 

sinrt(xcos 3rt 3rr 4n _~ 
- ~ + y s i n  ) + s i n n ( x c o s ~ + y s i n  ) 

9 -if 9 

sin~(xcos 5~ 5~ 6~ 6rr 
- ~ + y s i n  ) + s i n n ( x c o s ~ + y s i n  ) 

9 T 9 - 9  

sin~(xcos 7n: + y sin ) + sin~(xcos 8rr 8rr 
- ~ + y sin 0.5] 

9 9 --9-)- 
1 (x 2 +2y2) 

+e 10 = 3.2 

2 ~  
+ y sin--~-) 

10.3.9 
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The eccentric cog-wheel is obtained by making the circular boundary 
elliptic, as in equation 10.3.9 and shown in figure 10.3.10. Such a cog-wheel 
could be part of a shape for a dynein head, with a pitch fitting the cog fold 
of the wheel. The ATP motion of such an eccentric wheel could 
mechanically trigger the power stroke, and the release in the sliding 
mechanism that gives curvature to flagella. 

10.4 Motor Proteins and the Power Stroke 

The motor proteins must belong to the most spectacular of all chemicals. 
They are the executives for most of the motions in the animal kingdom. 
There are two motor proteins that seem to be most important; myosin, 
which with actin filament does the muscle work, and dynein which moves 
the doublets of tubulin rods (along the axes) in the 9+2 axoneme and makes 
the flagella whip. 

We have already in chapter 9 considered the coordination of this motion in 
skeletal muscle cells. Here we will discuss the basic element of this motion. 

The myosin molecule consists of a head and a helical tail. The crystal 
structure of the head has been determined with X-rays and with electron 
microscopy, and has given a molecular mechanism for the motor. First the 
myosin is bound to actin, involving calcium binding. ATP is bound to the 
back of the head in a large cleft. The cleft closes around the ATP-molecule 
and causes a large shape change which makes the head move along the 
filament, a distance of 50-100 A. The release of inorganic phosphate 
during the ATP hydrolysis, provides the energy of the movement, when 
ADP is released, and the head goes back to the initial position. To 
illustrate, we do this with mathematics. 

First we make the molecule of myosin I, and start with the tail. We 
construct a helicoid after equation 10.4.1, and the surface is in figure 
10.4.1. 

z cos n x -  y sin wx = 0 10.4.1 

We do the Hermite damping to make a screw with equation 10.4.2. 

e_(0.2x2 +y2 + z 2) [z cos ~x - y sin rrx] - 0.3 - 0 10.4.2 

The Hermite damping is ellipsoidal to give extension along x, and the screw 
is shown in figure 10.4.2. 
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Figure 10.4.1 A helicoid. 

We also make two spheres to the head after equation 10.4.3, which is 
shown in figure 10.4.3. One of the spheres will make the joint to the tail. 

e_[(x_3.5)2 +(y+0.7)2 +z 2 ] + e_[(x_2)2 +y2 +z 2 ] _ 0.75 - 0 10.4.3 

Figure 10.4.2 Hermite damping to the 
helicoid gives a screw. 

Figure 10.4.3 Two spheres. 
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Figure 10.4.4 Myosin molecule and the power stroke after equation 10. 4.5, 
Ay=0. 

Figure 10.4.5 Ay =0.35. 

Figure 10.4.6 Ay =0.7. 
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We now make these equations fuse together to the equation 10.4.4 for the 
myosin I molecule shown in projection. We have protected the damped tail 
by going up one step on the exponential scale. 

e(e- (0.2x 2 +y2 + z 2 )zcos wx-y sin wx- 0.3) 

+0.4[e_[(x_3.5)2 +(y)2 +z 2 ] + e_[(x_2)2 +y2 +z 2 ]] _ 1 - 0 

10.4.4 

We now mimic the power stroke with biological motion, and show that in 
equation 10.4.5. Changes in Ay result in a move of the outer sphere, and 
takes the values 0, 0.35 and 0.7 in the figures 10.4.4-6. 

e(e-(0.2x 2 +y 2 +z 2 )z cos 7rx_y sin rrx_0.3 ) 

+0.4[e_[(x_3.5)2 +(y+Ay)2 +z 2 ] + e_[(x_2)2 +y2 +z 2 ]] _ 1 - 0 

10.4.5 

10.5 Algebraic Roots Give Curvature to Flagella 

In chapter 6 the biological motion with the Hermite operator was 
introduced and applied in general terms to the two kinds of flagella. We 
shall now, in the light of more experience, analyse the flagella motion of 
the sperm. This motion must be of utmost importance for the evolution. 

It is well understood that the flagella sperm motion is periodic, and we 
proposed in chapter 6 that it was damped like the harmonic oscillator. 

As said above, all motion may be described by counting, here we shall first 
count to one, and later to two. With other words, the first root to use is x- 
1/2, and the second is x- 1. We show the first root with equation 10. 5.1 in 
figure 10.5.1. 

y = x - 0 . 5  10.5.1 

We apply the Hermite operator as in equation 10.5.2, 
beautiful periodic-like shape which we can use for the 
shown in figure 10.5.2. 

and we have a 
first flagella, as 

-0.15x 2 
y + e ( x -  0.5) = 0 10.5.2 
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Figure 10.5.1 One root. Figure 10.5.2 Hermite operator on the 
root. 

In order to make a 'real' flagella we need to square as in equation 10.5.3, 
which means going explicit. The constant, here 0.01, determines the 
thickness of the tail. The picture is shown in figure 10.5.3. 

[y + e-0"15x2 ( x -  0.5)]2 -0.01 - 0 10.5.3 

2 

1 

0 

-i 

-2 �9 , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  I . . . .  , . 

-7.5 -5 -2.5 0 2.5 5 7.5 

Figure 10.5.3 Going explicit with equation 10.5.3 gives thickness to the flagella tail. 

1 

0 

-i 
-7.5 -5 -2.5 0 2.5 

, , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . 

5 7.5 

Figure 10.5.4 The tail of the mammalian sperm. 

In the mammalian sperm, the tail is longer [8], so we count to two in 
equation 10.5.4. Due to symmetry reasons we have altered signs. A change 
of constants is also needed, as this is the beginning of an infinite product. 
The tail is shown in figure 10.5.4. 
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[ -2y + e-O" 15x2 ( x -  0 .5) (x-  1)] 2 -0 .03 - 0 10.5.4 

We can now make the complete sperms by adding heads in form of spheres, 
and put stop to the infinite tails. We give the two equations in 10.5.5 and 
10.5.6, and the sperms are shown in figure 10.5.5 and 6. 

[Y +e-O" 15x2 (x-0.5)] 2-0.01 _[(x+5)2 +(y_l)2 ] 
e - e  10.5.5 

+e-(X+l O) + e(X-1 O) _ 1 - 0 

[-2Y +e-O" 15x2 (x-O.5)(x- 1)12-0.02 _[(x+6)2 +(y) 2 ] 
e - e  10.5.6 

+e -(x+lO) +e  (x-lO) - 1 - 0  

2 

1 

0 

-i 

-2 �9 , �9 | �9 �9 , , l , , l . . . .  , . . . .  , . . . .  , , , , , I , 

- 7 . 5  -5 -2 .5  0 2.5 5 7 .5  

Figure 10.5.5 Head is added to the sperm of one root. 
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0 

-i 

- 2  l . . . .  , . . . .  i , , i | l , i �9 �9 ' . . . .  ' . . . .  ' . . . .  ' �9 
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Figure 10.5.6 Head is added to the sperm of two roots. 

We have shown that flagella gets its curvature from the roots, or the 
counting. When we now shall move the flagella, using the concept of 
curvature, we need many more roots, and for practical reasons it is better 
to use cosine. So we formulate the equations 10.5.7-9, which give the 
figures 10.5.7-9. With increased periodicity we get longer tails. 
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[y +e-0.15x2 cos(0.25rtx)]2_0.01 
e 

+e - (X+l  O) + e(X-1 O) _ 1 - 0 

[y +e-0.15x 2 cos( 0. 57vx)] 2 -0.01 
e 

+e- (X+ 1 O) + e(X-1 O) _ 1 - 0 

[y +e-0.15x 2 cos(0.75rtx)] 2 -0.01 
e 

+e- (X+ 10) + e(X-10) _ 1 - 0 

_ e - [ (x+4)  2 +(y- l ) ]  2 

_ e- [ (x+4)  2 + ( y - l )  2 ] 

_ e - [ (x+4)  2 + (y - l )  2 ] 

10.5.7 

10.5.8 

10.5.9 
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1 
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-1  
- 2  , , - . . . . . . . . . . . . . . . .  0 . . . .  ' . . . . . . . . . . . .  

-i0 -7.5 -5 -2.5 0 2.5 5 

Figure 10.5.7 Flagella with cosine. 
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Figure 10.5.8 With double periodicity. 
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Figure 10.5.9 With triple periodicity. 
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- 1  

- 2  . . . . . . . . .  ' . . . .  ' . . . .  ' . . . .  ' . . . . . . . . .  o �9 �9 

-i0 -7.5 -5 -2.5 0 2.5 5 
a Ax=0. 
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b A x = l .  
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-i 
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c Ax=2. 
-I0 -7.5 -5 -2.5 0 2.5 5 
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~ 2  . . . . . . . . . . . . . .  ' . . . . . . . . .  ' . . . . . . . . .  | �9 �9 

-i0 -7.5 -5 -2.5 0 2.5 5 
d Ax=3. 
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- 1  

- 2  , . , , | , , , , l , i . . . . . . . . . . . . . . . . . . . . . .  . �9 �9 

-i0 -7.5 -5 -2.5 0 2.5 5 
e A x = 4 .  

F i g u r e  10 .5 .10  The  f l age l l a  s w i m s  af ter  e q u a t i o n  10.5.10. 
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We now formulate the equation that makes the sperm swim in 10.5.10. 

varies O, 1, 2, 3 and 4 in figures lO.5.10a-e. 
Ax 

[y+e-0.15(x+Ax) 2 cos(0.25rtx)]2-0.01 _[(x+4+Ax) 2 +(y-l) 2 ] 
e - e  10.5.10 

+e -(x+lO+Ax) +e (x-lO+Ax) - 1 - 0 

Chlamydomona cilia has two flagella which beat in a breast stroke swim 
motion. Again, this is a remarkable use of symmetry in nature, if you put a 
mirror plane through the axis of symmetry of the Chlamydomona, you will 
see that each of the two flagellas make the motion of the single flagella, as 
shown in figure 10.5.11. The motion of the arms of a breast stroke 
swimmer is the motion of cilia, while the motion of the legs of a crawl 
swimmer is the motion of flagella. The motion oscillates over + 45 ~ cf. 
[9], just like in figures 10.5.10a-e here. 

Figure 10.5.11 A crystallographic twin operation is 
demonstrated, which describes the relation between the 
motion of flagella and cilia. Mirror symmetry has been 
applied to the motion of cilia, modified after [9], 
resulting in the swim motion of flagella. If only the 
asymmetric part is viewed, the sequence shows flagella 
motion. 



We do this with mathematics. We show a typical twin picture with a mirror 
operation in figure 10.5.12 after equation 10.5.11. The twin legs are 
perpendicular, just as in Chlamydomona in figure 23-29 in ref. [9]. 

e-[X 2 +e y-2 +e-y ] + 0.2e-[(x+y-3) 2 +e x +e x+5 ] 

+0.2e - [ ( -x+y-3)2  +e-X +eX-5 ] - 0.1 - 0 
10.5.11 

1 
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Figure 10.5.12 Mathematical twin operation gives the 
cilia topology. 

We do the twin operation on the sperm with the equations 10.5.7 (again) 
and 10.5.12. The figures are in 10.5.13-14. 

[y+e -0-15x2 cos(O.25wx)]2-O.O1 _[(x+4) 2 +(y-l)  2 ] 
e - e  10.5.7 

+e-(X+l 0) + e(X-10) _ 1 - 0 

[x+e-O-15y 2 cos(O.25r~y)]2-O.O1 _[(y+4)2 +(x_l) 2 ] 
e - e  10.5.12 

+e -(y+10) +e  (y-10) - 1 - 0  
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Now we are ready for the complete twin operation to give the 
Chlamydomona. We add the two equations 10.5. 7 and 10.5.12 to obtain 
equation 10.5.13, and in figure 10.5.14 the result is shown. 

e(-e 
[x+e -0" 15y 2 

+e (-e 

[y +e-0.15x 2 

=0.97 

cos(0.5r~y)]2-0.01 _e- [(y +4) 2 +(x- 1) 2 ] +e-(y +4) +e(y- 8 ) -1) 

cos(0.5~x)]2-0.01 _e-[(x+4) 2 +(y-1) 2 ] +e-(X+4) +e(X- 8) _1) 

10.5.13 

1 
0 

-i 
-2 ................................. 
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Figure 10.5.13 Flagella after equation 10.5.7. 
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Figure 10.5.14 Flagella after equation 10.5.12. 
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The variable separation we have done is probably not reflecting the reality 
of motion, which is diagonal in the Cartesian system, we can only 
demonstrate a bit of the motion, but enough to see that the greatest 
curvature change is close to the roots of the two flagella. Just like in the 
movie pictures of ref. [9]. Like when you whip. Or the use of the kick for 
butter fly swimming. This indicates that the main part of the motion is due 
to the triggering of motor proteins that are operating close to the 
fundaments of the two flagella. So we propose that the sliding mechanism 
with the dynein protein and the microtubulus occurs in the very beginning 
of the axoneme. 

-2 

-4 

�9 . , . . . .  , . . . .  | . . . .  i . . . . . . . . . . . . .  

-4 -2 0 2 4 6 

Figure 10.5.15 Mathematical twin operation to give 
cilia. 
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11 Transportation 

... to resolve the puzzling question 'what is charge?' by answering 'charge is 
topology'... [Schutz, 1] 

Vesicle traffic through single and double membranes, and the Golgi machine 
is described. 
We also describe motion through curved layers using polynomial algebra. 
We describe how to make holes in double membranes - plane or curved. 
Finally the nuclear pore complex, and its location in a double membrane, is 
described with exponential mathematics. 

11.1 Background - Examples of Docking and Budding with Single 
Plane Layers, and Other Simple Examples 

Cells and cell organelles exhibit both single and double membranes. We 
want to transport things through these layers. We will therefore make 
holes or dough-nuts in layers, using the earlier described membrane 
mathematics. 

We start with transport through a single layer. 

Budding off and fusion of vesicles are processes for transport of molecules 
and particles within a cell or in and out from cells. Changes of curvature is 
needed and one way of doing this is to organise skeletal coats of proteins, 
such as clathrin, which can bend the membrane and form polyhedral-shaped 
vesicles. There are other ways to curve a membrane that are shown below. 
Examples of the fusion and budding mechanisms are shown in chapter 13. 
Below we will below develop the mathematics needed. 

A vesicle is approaching a membrane and docking - mathematically a 
sphere is approaching a plane as in figure l l . l . l a - e  after equation 11.1.1 
with Az 1.7, 1.45, 1.4, and 0. 

e -[x2 +y2+(z-Az)2 +e -z  - 1 - 0 11.1.1 
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Figure l l . l . l a  A vesicle is docking a 
membrane after equation 11.1.1. 
Az=l.7. 

Figure l l . l . lb  Az =1.45. 

Figure 11.1.1 c Different projection 
ofb. 

Figure 1 l . l . ld  Az =1.4. 

Figure l l . l . l . e  Az =0. 

The vesicle has now left its cargo to the inside of the membrane. Now we 
change the sign of the membrane plane to get a curvature we can use for 
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the budding, as in equation 11.1.2. A vesicle is now leaving the membrane 
as shown in figures l l . l .2a-d. Az = 0,-1 ,-1.3, and-2.5. 

e -[x2 +y2+(z-Az)2 +e z - 1 - 0  11.1.2 

Figure l l . l .2a A vesicle is leaving 
the membrane. Az=0. 

Figure l l . l .2b Az =-1. 

Figure 11.1.2c Az =-1.3. Figure l l . l .2d Az =-2.5. 

There is a steady traffic of vesicles in the cell, for example through the 
Golgi machine that carries cargo which needs to be processed and 
transported further. We demonstrate this first in two dimensions with the 
equation 11.1.3. 
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10 - [ ( x -2 )  2 + 10 ( y - 8 )  + 10 - (y  + 9) + 10-[(x-7) 2+10(y-9)+10-(y+8) + 

+ 10 - [(x- 11)2 + 10 (y-7) + 10 -(y +9) + 10-[(x-17) 2 +10(y-9) +10-(y+7) 

+ 10 -[(x-3"5)2 +y2 ] + 10 -[(x)2 +(Y-2)2 ] + 10 -[(x-5)2 +(Y+3)2 ] + 

+10-[(x-8)2 +(Y) 2 ] + 10-[(x-9)2 +(Y-2) 2 ] + 10-[(x-12)2 +(Y+3) 2 ] + 

+ 10 -[(x-13.5)2 +(y)2 ] + 10 -[(x-16)2 +(Y-2)2 ] + 10 -[(x-15)2 +(Y+3)2 ] + 

+10 -[(x-23"5)2+(y)2] + 10 -[(x-19)2+(y-2)2] + 10 -[(x-20)2+(y+3)2] = 0.5 

11.1.3 

In figure l l . l . 3a  the movement starts with vesicles going through the 
membranes, and in figure l l . l . 3b  all the vesicles have moved one unit in x. 

The membrane system in Golgi has a low degree of order, which we will call 
parallel order. 

We have described this and before in equation 7.5.7, and figure 7.5.9. 
Physically this resembles mitochondria, where parallel order as well is most 
common. 

We have earlier seen the occurrence of lamellar membrane organisation in 
ER (chapter 8) and in mitochondria (chapter 9). The predominating 
lamellar arrangement of Golgi membranes is shown in figure 11.1.4. 
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Figure ll . l .3a Golgi machine after equation 11.1.3. 
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Figure l l . l .3b All vesicles have moved one unit in x. 

O 

Figure 11.1.4 Reconstruction from electron micrographs of the Golgi 
machine. Modified after [3]. 
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Figure 1 l.l.4e Cistem of Golgi machine. 

Figure 11.1.5 Vesicle production after equation 11.1.5. a Ax=0. 
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Figure l l . l .5b Ax=0.3. 

Figure 11.1.5c Ax=0.5. 

Figure 1 l.l .5d Ax =1. 



We have also made a cistem from the Golgi machine in three dimensions as 
shown in figure l l .l .4e. The equation is in 11.1.4. The first term is a 
flattened sphere and the following three are spheres weighted to be small. 

e_l[x2 +y2 +30z 2 ] 

-1 

+e -20[(x+0"5)2 +y2 +(z-0"7)2 ] + 11.1.4 

+e_20[(x_l)2 +y2 +(z_0.4)2 ] + e_20[(x_l)2 +(y+0.5)2 +(z+0.7)2 ] = 0.2 

Figure l l.l.6a Sendai virus 
approaching two cells. 
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Figure 1 l.l.6b 
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Figure 11.1.6e Fusion. 

-1 

-2 

Figure l l.l.6d The cell hybrid. 
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Next we build a machine for producing vesicles, which corresponds to the 
tubular network in Golgi (also occurring in ER). This is done in equation 
11.1.5. The machine is formed by a row of overlapping spheres. 

e_(X 2 +y2 +z 2) + e_((x_2)2 +y2 +z 2) + e_((x_4) 2 +y2 +z 2) 

+e_((x_6)2 +y2 +z 2 ) + e_((x_8)2 +y2 +z 2) + e_((x_l 0)2 +y2 +z 2) 

+e_((x_12)2 +y2 +z 2) + e_((x_14_Ax)2 +y2 +z 2) = 0.5 

11.1.5 

Ax is 0, 0.3, 0.5 and 1 in figures l l . l .5a-d respectively, which shows how 
one vesicle is budded of as Ax approaches unity. 

One small vesicle may of course fuse with a big one, or with two. A 
spectacular example is the behaviour of the Sendai virus, which may try to 
fuse into two cells simultaneously, resulting in a fused cell pair as modelled 
in figure l l.l.6a-d. This is a tool for achieving a cell hybrid [4]. 

11.2 Docking and Budding with Curved Single Layers 

We shall now make a small vesicle approach a curved layer, which in this 
case will be a sphere. We use equation 11.2.1, and in figure l l.2.1a there is 
a vesicle with its cargo coming from the outside, and in b it has fused and 
delivered its cargo. We use equation 11.2.2 which has a changed sign in the 
exponent compared to equation 11.2.1, and which also was the case when 
the vesicle interacted with the plane. And the vesicle goes from inside out 
as shown in figure 11.2.2a and b. 

e_(X 2 +y2 +z2_20) + e_((x_6)2 +y2 +z 2 +2) = 0.1 11.2.1 

e(X 2 +y2 +z2_20) + e_((x+3)2 +y2 +z 2 +2) = 0.1 11.2.2 

We will now do budding and local curvature. We retum to algebra just to 
show that this is possible to do with some extremely simple principles and 
start with a single plane as the plasma membrane. 

A cell membrane is characterised by its curvature. So we go to the algebra 
and use the general equation for a plane and transform that to equation 
11.2.4. 
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Figure 11.2.1a Docking with a curved 
membrane after equation 11.2.1. x=6. 

Figure ll.2.1b x=5. 

Figure 11.2.2a A vesicle goes from 
inside out. x=-3. 

Figure 11.2.2b x=-4. 

x + y + z = C  11.2.3 

x n + yn + z n _ C 11.2.4 

With n even in 11.2.4 we have described the 3D topology as built of  planes 
in chapter 2. For the case of n=4 the equations for such planes are in 
11.2.5. 
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x 4 - C  

y4 - C  

z 4 - C  

11.2.5 

If C=100, x = 4 ~ 0 0 -  +3.1622 which are two of the six planes in the cube 
in figure 2.2.1. With n even and higher, the cube gets sharper and sharper. 
As there must be a constant for n even there are double roots which are the 
faces of polyhedra. With n odd there are only single roots, and this is 
analysed below. 

n=l and C=0 in equation 11.2.4, and this plane is shown in figure 11.2.3. In 
figures l l.2.4a-b we have the function for n=3 and C=0 shown in two 
different projections. Out of the total of six planes we now have three, and 
since the constant is 0, they have to go through the origin. If we 
exponentially make them meet without intersecting, curvature is given to 
the plane. This may now be regarded as a monkey saddle [5], and it is even 
more pronounced increasing the exponent to 7, as in figures l l.2.Sa-b. 

Figure 11.2.3 A plane perpendicular to the space 
diagonal. 
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Figure 11.2.4a After equation 
11.2.4, n=3, C=0. 

Figure 11.2.4b Different projection. 

Figure 11.2.5a After equation 11.2.4, 
n=7, C=0. 

Figure 11.2.5b Different projection. 

Adding a constant when n is odd means that planes will not meet in the 
origin. Polyhedral comers are formed as described earlier [5]. 

We must do the same thing with the famous Diophante or Fermat equation 
11.2.6. 

x n + yn _ z n _ 0 11.2.6 
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So we study the equations 11.2.7 and 11.2.8, and we find the same thing, 
but with different orientation of the planes in figures l l.2.6a-b. 

x + y - z = O  11.2.7 

x 3 + y3 _ z 3 _ 0 11.2.8 

Figure 11.2.6a After equation 
11.2.7. 

Figure 11.2.6b After equation 11.2.8. 

Figure 11.2.7a A small piece of the 
P-surface in a plane. C=0. 

Figure 11.2.7b Different projection. 
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Figure l l.2.7e-e Transport of a vesicle through a plane by changing constant in 
equation 11.2.9. 

We count or add planes to the equation for n=3, which means making 
polynomials with roots as in 11.2.9. 

x ( x -  1)(x + 1)+ y ( y -  1)(y + 1)+ z ( z -  1)(z + 1)= C 11.2.9 

This simple equation of 11.2.9 gives a number of beautiful pictures in 
figures ll.2.Ta-e. 

By using roots, more curvature is given to the plane in form of a small 
piece of the P-surface, as shown in figure 11.2.7a. This is also shown with 
larger boundaries in 11.2.7b. Changing the constant from 0 in a and b to 
0.5 in e and -0.5 in e gives a beautiful mechanism for the transport of 
material through a membrane via vesicles (note that a is repeated as d). 
Interesting is that the approach of a vesicle to a point of a curved surface 
with zero mean curvature (monkey saddle)means opening three catenoids 
to points where there is curvature. It should be pointed out, however, that 
we don't know whether or not these membrane geometries have biological 
relevance. 

An analogous lock mechanism for transport is obtained using the 
Diophante equation. This is interesting as equations of this type would be 
needed if we wanted to transform a plane to a curved and closed surface of 
cell type, using the monkey cell approach. Such a surface could be covered 
with locks which would give curvature to the surface as well as serving as 
places or locks of transport. This means going exponential as done in 
equation 11.2.10 and shown in figure 11.2.8. 

e -x(x-1)(x+l)+y(y-1)(y+l)+z(z-1)(z+l) = 1 11.2.10 
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Figure 11.2.8 The exponential Diophante equation. 

Figure 11.2.9 Invaginations. 
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Invaginations in a cell membrane is exemplified in figure 11.2.9. with 
vesicles attached at random to a cell membrane. The equation is in 11.2.11. 

e_(X 2+y2+(z_l.4)2) e_(X 2+y2+(z_2.4)2) 2 + + e_((x_3) +y2+(z_l.4)2) 

+e_((x_3)2 +y2 +(z_2)2) + e_((x_2)2 +(y_2.5)2 +(z_1.4)2) 

+e -((x-2)2 +(y-2"5)2 +(z-2"6)2) +e -((x-5)2 +(y-3"5)2 +(z-1"4)2) 11.2.11 

+e-((x-5) 2 +(y-3.5) 2 +(z-2.5) 2) + e-((x-5.5) 2 +(y-l) 2 +(z-l.4) 2 ) 

+e -((x-5"5)2 +(Y-l)2 +(z-2"3)2) + e -z - 1 

An attachment with three openings to a cell membrane is shown in figure 
11.2.10. The equation is in 11.2.12. 

e-(X(X- 1)(x+ 1)+y(Y- 1)(Y+ 1)+ z(z- 1)(z+ 1)) + 

+e -((x-1"7)2 +(Y-1"7)2 +(z-1"7)2-1) + e -((x-3)2 +(Y-3)2 +(z-3)2-1) = 1 

Figure 11.2.10 An attachment with three openings to a cell 
membrane. 
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11.3 Transport Through Double Layers 

Double membranes surround the nucleus. As the Golgi machine and rough 
ER consist of thin spaces, they may also be regarded as double membranes. 

Figure ll.3.1a A vesicle is sent 
through a membrane after equation 
11.3.1. Ax =3.5. 

Figure ll.3.1b Ax =4.5. 

Figure 11.3.1c Ax =5.5. Figure ll.3.1d Ax =5.3. 
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In figure 5.4.1 we made a simple experiment with a double plane. We shall 
now use a curved double membrane, a part of a sphere. We only need one 
equation, given in 11.3.1, for sending a vesicle through - and the cargo is 
free between the layers. If the distance between the layers is not too large, 
the vesicle keeps its identity and the cargo is carried through the double 
membrane. 

2 
e_(X 2 +y2 +z2_20) + e_((x_Ax)2 +y2 +z 2 +1) = 0.2 11.3.1 

The Ax:s are 2.5, 3.5, 4.5, and 5.3 for figures ll .3.1a-d. 

Going to the nucleus, transport seems to occur through permanent holes in 
the double membrane. Below, we will show how to make holes in a double 
membrane. 

Figure 11.3.2 Plane borders give a periodic double membrane. 
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We start with the circular functions, and with the squared x-term we give 
two borders to the P-surface. We then vary the periodicity after equation 
11.3.2 and obtain a beautiful periodic double membrane in figure 11.3.2. 

1 1 
cos 7vx + c o s -  7py + c o s -  gz + 4x 2 - 2.8 

4 4 
11.3.2 

We really need to distribute the holes individually on any membrane. We 
go exponential in equation 11.3.3, where we have a double plane with the 
z-term, the two GD-spheres make the holes as shown in figure 11.3.3. 

e -(x2+(y+2)2+z2) +e -(x2+(y-3)2+z2) +e z2 = 1.5 11.3.3 

Figure 11.3.3 Two GD-spheres give holes in a double membrane. 

Similarly we make holes in a sphere, and start with the circle. The equation 
is in 11.3.4 and the plot in figure 11.3.4. 

2 
e(X 2 +y2-8) + e_[(x_2.~)2 +(y)2 ] + e_[(x_2)2 +(y_2)2 ] + 

+e -[(x)2 +(Y-2"~)2 ] + e -[(x-2)2 +(Y+2)2 ] = 2 

11.3.4 
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Figure 11.3.4 Small circular holes through 
concentric circles. 

These holes resemble the nuclear pores as seen in electron micrographs of 
the nucleus, cf. [6]. 

We will now go to 3D with the equation 11.3.5 and make just one hole, as 
shown in figure 11.3.5. 

e(X 2+y2+z2_8) 2 e_[(x_2af2)2+y2+z 2 
+ ] = 1.9 11.3.5 

There is a regular traffic of RNA's and proteins through a nucleus pore 
complex that sits in the holes of the double membrane of the nucleus. Such 
a nuclear pore complex is a very large structure - about 1000 A - and 
electron microscopy with three dimensional computer reconstruction has 
given detailed structural information [7,8]. It is possible to describe the 
complex as built of the hole in the double membrane combined with a) a 
system of doughnuts or b) a system of bodies. In both cases the symmetry 
is eight-fold and we shall here build mathematical models that well agree 
with the pictures obtained from the experimental observations of electron 
microscopy. 

We shall start and use the obvious eight-fold symmetry and build a 
dilatation, or quasi structure like we did with the nine-fold case for the 
microtubulus. 
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Figure 11.3.5 Nuclear pore in 3D. 

Figure 11.3.6 Double spheres in eight- 
fold symmetry. 

Figure 11.3.7 Small spheres connect 
the bigger. 
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e_[(x_2~f2)2 +(y_2~f2)2 ] + e_[(x_4)2 +y21 + 

+e-[X 2 +(y-4) 2 ] + e-[(x-2"f2) 2 +(y+2-q~) 2 ] + 

+e-[X 2 +(y+4) 2 ] + e-[(x+2x/-2-) 2 +(y+2,~/-2) 2 ] + 

+e_[(x+4)2 +y2] + e_[(x+2,~/~)2 +(y_2,~f~)2 ] + 

+e_[(x_3x/-2)2 +(y_3~f~)2 ] + e_[(x_6)2 +y2 ] + 

+e-[X 2 +(y-6) 2 ] + e-[(x-3x/2) 2 +(y+3-~f2) 2 ] + 

+e-[X 2 +(y+6) 2 ] + e-[(x+3x/-2) 2 +(y+3x/-2) 2 ] + 

+e_[(x+6)2 +y2 ] + e_[(x+3,~)2 +(y_3~f2)2 ] = 0.18 

11.3.6 

e_[(x_2~/-2)2 +(y_2,~/2)2 +(z)2 ] + e_[(x_4)2 +y2] + 

+e-[X 2 +(y-4) 2 +z 2 ] + e-[(x-2"q~) 2 +(y+2-q/-2) 2 ] + 

+e-[X 2 +(y+4) 2 +z 2 ] + e-[(x+Z'q/2) 2 +(y+Zxf2) 2 ] + 

+e_[(x+4)2 +y2 +z 2 ] + e_[(x+2~/-~)2 +(y_2~f~)2 ] + 

+e_[(x_3~)2 +(y_3~)2 +z 2 ] + e_[(x_6)2 +y2] + 

+e-[X 2 +(y-6) 2 +z 2 ] + e-[(x-3~r2)2 +(y+3~) 2 ] + 

+e-[X 2 +(y+6) 2 +z 2 ] + e-[(x+3~) 2 +(y+3~f2) 2 ] + 

+e_[(x+6)2 +y2 +z 2 ] + e_[(x+3~qF~)2 +(y_3~/~)2 ] + 

"x/2- 2 +(y_34)2 ] -[(x-7--~-) 1 +-[e  
2 

+e- [(x+3--~~)2 +(y-7 4 )  2 ] 

+e-[(x+74)2 +(Y+34) 2 ] 

+e-[ (x-7~)2 +(Y+34) 2 ] 

+ e-[(x-3-~~)2 +(y-7-~~)2 ] 

-[(x+7 "q~ 2 +(y_3 2~__~_2)2 
-5-) ] +e 

-[(x+34)2 +(y+7 ~ 2 -7 )  ] + e  

- [ (x-34)2  +(y+7 ~ 2 -7) 1 
+ e  

+ 

+ 

] - 0 . 1 7  

11.3.7 
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We start in two dimensions laying out double spheres that form elongated 
bodies as shown in figure 11.3.6. The equation is in 11.3.6. Next we add 
smaller bodies between the elongated ones in equation 11.3. 7. This is shown 
in figure 11.3.7. 

Figure 11.3.8a Nuclear pore complex after equation 11.3.8. 

Figure 11.3.8b Different projection. 
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Figure 11.3.8e Computer reconstruction of nuclear pore structure, 
modified after [7]. 

Finally in 11.3.8 we have gone 3D and the result is found in figures 
l l.3.Sa-b. The similarity to a computer reconstruction in ref. [7] is shown 
in figure 11.3.8e and this can be refined by adding more bodies of different 
sizes, or changes in the equation. 

We have changed the constant to 0.12 in equation 11.3.8 and the z- 
parameter for the smaller bodies to 1.5 instead of 1.8 to produce figure 
11.3.9. 
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e_[(x_2,~)2 +(y_2,x/-2)2 +(z)2 ] + e_[(x_4)2 +y2 +z 2 ] + 

+e-[X 2 +(y-4) 2 +z 2 ] + e-[(x-2"x/-2) 2 +(y+2.x/2) 2 +z 2 ] + 

+e-[X 2 +(y+4) 2 + z 2 ] + e-[(x+2"xf2) 2 +(y+2-q(2) 2 +z 2 ] + 

+e_[(x+4)2 +y2 +z 2 ] + e_[(x+2,xr2)2 +(y_2~q/-2)2 +z 2 ] + 

+e_[(x_3.q/2)2 +(y_3~f2)2 +z 2 ] + e_[(x_6)2 +y2 +z 2 ] + 

+e-[X 2 +(y-6) 2 +z 2 ] + e-[(x-3"~) 2 +(y+3-~) 2 +z 2 ] + 

+e-[X 2 +(y+6) 2 +z 2 ] + e-[(x+3"x/-2) 2 +(y+3-~f2) 2 +z 2 ] + 

+e_[(x+6)2 +y2 +z 2 ] + e_[(x+3ar~)2 +(y_3,q/-~)2 +z 2 ] + 

_.~ [e-[(x-7~)2 +(y-3~222 )2 +(z-1.8)2 ] + e-[(x-3~)2 +(y-7--~~)2 +(z-1.8)2 ] 

+e-[(x+3--~~)2 +(y-7-~~)2 +(z-1.8)2 ] + e-[(x+7--~~ )2 +(y-3--~~)2 +(z-1.8)2 ] + 

+e-[(x+7-~~) 2 +(y+3-~~)2 +(z-1.8)2 ] + e-[(x+3-~ ~ ) 2  +(y+7---~--~) 2 +(z-l.8) 2 ] 

"~f2.2 +(y+32~_~2 )2 +(z_1.8)2 ] -[(x-7--~-) 
+e 

+ 3 [e-[(x-7-~~)2 +(Y-3-~~ )2 +(z+1.8)2 ] 
4 

-[(x+3-~ ~ )  2 +(y-7 ~//-~" 2 +(z+1.8)2 ] 
+e T )  

~/-2.2 +(y+3__~~)2 +(z+ 1.8) 2 ] -[(x+7 T)  
+e 

-[(x-3-~~)2 +(y+7-~~) 2 +(z-l.8) 2 ] 
+ e  ]+ 

,~)2+(z+1.8)2] + e-[(x-3 )2 +(Y-7 T . 

-[(x+7--~~) 2 +(y-3--~~) 2 +(z+ 1.8) 2 ] 
+e + 

-[(x+3-~~) 2 +(y+7-~~) 2 +(z+ 1.8) 2 ] 
+ e  + 

-[(x-7 ~ ) 2 +(y + 3 ~ )  2 +(z+ 1.8) 2 ] 
T +e 

-[(x-3--~~) 2 +(y+7---~--~) 2 +(z+ 1.8) 2 ] 
+ e  ] = 0 . 1 7  

11.3.8 
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Figure 11.3.9 Nuclear pore complex after slight changes in equation 11.3.8 as 
described in the text. 

The nuclear pore complex is a gated channel through which ribonucleo 
proteins are transported to the cytoplasm. Electron micrographs have been 
recorded during such transport, cf. [8]. We will model this with a plug 
within the pore in accordance with electron microscopy data. In equation 
11.3.9 the first term is a double cell membrane hole, and the following 
three terms are torus equations. The result is shown in figure 11.3.10. 

e -(e-(x2 +(y)2 +z2_5) +eZ2 -1.5) 

+2e_[((x 2 + y2 )0.5 _ 2)2 + (z + 2) 2 + 0.5] 

+2e_[((x 2 + y2)0.5 _ 2)2 + (z - 2) 2 + 0.51 

+2e_[((x 2 + y2)0.5 _ 1.2)2 + z 2 + 0.6] = 1 

11.3.9 
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Figure 11.3.10 Different mathematics from equation 
11.3.9 to describe the nuclear pore complex ofref. [8]. 

Figure ll.3.11a A plug is added. Figure ll.3.11b Different projection. 

Next we make a large molecule in form of two spheres fused together to a 
plug consisting of the two last terms in equation 11.3.10. We see in figures 
l l .3.11a-b that the plug is on its way out. 
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e_(e_(X 2 +(y)2 +z2_5) +eZ2 -1.5) 

+2e_[((x 2 + y2)0.5 _3)2 +(z + 2.5) 2 ] + 

+2e_[((x 2 + y2 )0.5 _ 3)2 + ( z -  2.5) 2 ] 

+e_(X 2 +y2 +(z+3)2_1) + e_(X 2 +y2 +(z_3)2_ 1) =1 

11.3.10 
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12 Icosahedral Symmetry, Clathrin Structures, 
Axons, the Tree, and Solitary Waves 

Spikes, 

...no law of  nature indicates an intrinsic difference between left and right... 
[Weyl,1] 

There is a common dividend between the headings above - the 
mathematics. 
The icosahedron and the dodecahedron are described, and the symmetry 
relations to virus and clathrin is given. 
The hyperbolic polyhedra and the mathematics to describe them are useful 
for the description of spikes and axons. 
The division of cylinders or branches is described in analogy with cell 
division. And the growth of the tree is described. 
An altemative to the common soliton mathematics is given. 

12.1 The icosahedral symmetry 

Many virus-structures have icosahedral symmetry, so we shall give the 
mathematics for this symmetry. The icosahedron is described in equation 
12.1.1, and shown in figure 12.1.1. The permutations in space contain the 
constant x of the golden mean, since the planes used to derive the equations 
have interceptions containing this constant. The icosahedron has five-fold 
symmetry, which we will study more in detail later on using the pentagonal 
dodecahedron. 

x4(x+y+z)4 +eZ4(-x+y+z)4 +eX4(x+y-z) 4 +eX4(x-y+z) 4 +e(X+x2y)4 

+e(_X+l:2y)4 + e(Z+X2x)4 + e(Z_1:2x)4 + e(y+1:2z)4 + e(y_x2z)4 = 108 
12.1.1 

An icosahedral virus may have spikes, that can be made by making a 
hyperbolic icosahedron. In doing that we need to go over its dual which is 
the pentagonal dodecahedron. This is then subtracted from a sphere in 
equation 12.1.2, and in figure 12.1.2 we see the beautiful result. 

e(X2 + 1)(x 2 +y2 + z 2) _ e(XX+y)2 _ e(_Vx+y)2 

-e  (xy+z)2 - e  (-xy+z)2 - e  (xz+x)2 - e  (-xz+x)2 - 0 
12.1.2 
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Figure 12.1.1 The icosahedron after equation 12.1.1. 

Figure 12.1.2 The hyperbolic icosahedron after equation 12.1.2. 
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Using the icosahedral equation we get the beautiful hyperbolic pentagonal 
dodecahedron in 12.1.3. 

e(X3 +1:2 + 1)(x 2 +y2 + z 2) _ e x2 (x+y+z) 2 _ e x2 (-x+y+ z) 2 

-e  x2 (x+y-z)2 _ e x2 (x-y+ z)2 _ e(X+l:2y)2 _ e(_X +~2y)2 

e(Z+X2x)2 e(Z-~2x)2 e(Y+l;2Z) 2 e(y-1;2) 2 
. . . .  " ' 0  

12.1.3 

Figure 12.1.3 The hyperbolic pentagonal dodecahedron after equation 12.1.3. 

There is another very simple way to derive the mathematics for this 
important symmetry and these polyhedra. We use the equation of 
dilatation [2] as in 12.1.4, which is shown in a plot in figure 12.1.4. 

y - xsinTtx 12.1.4 
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4 

�9 A & A  

V_2 
-4 

-6 

F i g u r e  12.1 .4  

The function repeats itself under heavy expansion, and the symmetry in 
3D is very similar with a repetition of concentric structures in space, as 
reported in ref. [2]. 

We just plot the inner geometry of the equation 12.1.5 after boundaries in 
figure 12.1.5, and realise there is the electron structure of B6H 6 again. 

x s in  w x  + y s in  try + z s in  n z  - 1 12.1.5 

Figure 12.1.5 The electron structure of B6H6 
after equation 12. I. 5. 
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We can, in a similar way, make the other boron hydrides and we shall here 
show the two geometries of icosahedral symmetry, one of which is the 
B12H12 2 molecule (figure 12.1.7). We start with the icosahedron itself in 
equation 12.1.6 and plot it in figure 12.1.6. 

'fix + y + z)sin 7vr(x + y + z) + 'fix - y - z)sin art(x-  y - z) 

+ z ( - x -  y + z) sin r t z ( - x -  y + z)+ 'r(-x + y - z) sin wr(-x + y - z) 

+(x + z2y)sin rc(x + z2y) + ( -x  + '~2y)sin rr(-x + 'r2y) 

+(y + z 2z)sin rc(y + z2z) + ( - y  + z 2 z)sin rff-y + I: 2 z) 

+(z + z2x)sin~z(z + z2x)+ ( -z  + t:2x)sinn(-z +'r2x) + 2 0 

12.1.6 

Figure 12.1.6 Icosahedral symmetry and dilatation after equation 12.1.6. 

The dodecahedron has the equation in 12.1.7 and this structure is plotted in 
various projections, revealing the icosahedral symmetry in detail, in figure 
12.1.7a-d. 

(x + xz) sin rc(x + zz) + ( - x  + "rz) sin rr(-x + 'rz) 

+(y + 'rx) sin ~(y + "t'x) + ( - y  + 'rx) sin rt(-y + "rx) 

+(z + xy) sin rffz + xy) + ( - z  +'ry) sin rr(-z + xy)+ 2.7 - 0 

12.1.7 
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Figure 12.1.7a The dodecahedron after equation 12.1.7. 

Figure 12.1.7b The dodecahedron along the 2-fold axis. 
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Figure 12.1.7c The dodecahedron after the 3-fold axis. 

Figure 12.1.7d The dodecahedron after the 5-fold axis. 
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The reason we show these two models is partly due to the icosahedral virus 
structures, but also because the dodecahedral structure in figure 12.1.Ta-d 
may serve as model for the clathrin structures as they occur around 
vesicles. The plane can be described with six-rings as in figure 12.1.8a, and 
with equation 12.1.8. Combining five- and six-rings creates curvature, and 
we get the clathrin coating structures as shown with an electron microscope 
graph in figure 12.1.8b after ref. [3]. The extreme is to have only five- 
rings, which results in the dodecahedron in figure 12.1.Ta-d. 

coszrxcos - +  y cos - - +  y 
2 2 2 2 

- -0.1 12.1.8 

Figure 12.1.8a Plane built of six-rings. Figure 12.1.8b Single clathrin coated 
vesicle, modified from [3]. 

The dodecahedron and the icosahedron above can serve as good models for 
how the joining of vesicles via catenoids gives a double membrane with 
holes. We have first membrane units that join to the structure shown in 
figure 12.1.9. The equation is 12.1.7 but with a constant of 3.2. If we go 
exponential as in equation 12.1.9, the result is shown in figure 12.1.10 
which is a good picture of how to make holes in a polyhedron. The holes 
go in and meet comers of the dual icosahedron and a double membrane is 
formed. 
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e x+xz cos 7z(x + zz) + e -x+xz cos ~ ( - x  + 1;z) + e y+xx cos ~:(y + zx) 

+e -y+xx cos~:(-y + z x ) + e  z+xy cos~(z + z y ) + e  -z+xy cos~ ( - z  +z-y) 12.1.9 

+5.3 =0  

Figure 12.1.9 Membrane units 
("vesicles") approach to form a 
dodecahedron. 

Figure 12.1.10 Double membrane of a 
dodecahedron. The holes go in and meet 
the dual, the icosahedron. 

Such a double membrane can of course be made analogously by adding 
spheres or vesicles in a plane. The equation is in 12.1.10 and the plot is in 
figure 12.1.11a. In order to make the model more membrane-like we made 
the spheres or vesicles to ellipsoids as in equation 12.1.11. The plot in 
figure 12.1.11b shows the membrane. 

e_(X 2 +y2 +z 2) -I- e -((X-2)2 +y2 +z 2 ) -I- e -(x2 +(Y-2)2 +z2) 

+e_((x_2 ) 2 +(y-2) 2 + z 2) + e_((x_ 4) 2 + y2 + z 2) 

+e-(X 2 +(y-4) 2 +z 2) + e-((x-4)  2 +(y-2) 2 +z 2) 

+e -((x-2)2 +(Y-4)2 +z2) + e -((x-4)2 +(Y-4)2 +z2) = 0.8 

12.1.10 
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e_(X 2 +y2 +10z 2) + e_((x_2)2 +y2 +10z 2 ) + e_(X 2 +(y_2)2 +10z 2) 

+e_((x_2) 2 +(y_2) 2 +10z 2) + e_((x_4)2 +y2 +10z 2) 

+e-(X 2 +(y-4) 2 +10z 2) + e-((x-4) 2 +(y-2) 2 +10z 2 ) 

+e -((x-2)2 +(Y-4)2 +10z2) + e -((x-4)2 +(Y-4)2 +10z2) = 0.56 

12.1.11 

Figure 12.1.11a Ordered arrangement of 
vesicles. 

Figure 12.1.11b Vesicles are made to 
meet as ellipsoids and form a double 
membrane. 

12.2 Hyperbolic Polyhedra, Long Cones, Cylinders and Catenoids 

The first function we select to study is the addition of GD-terms as in 
equation 12.2.1. 

_x 2 e + e -y2 + e -z2 - C 12.2.1 

For a constant of C=2 there is the hyperbolic octahedron shown in figure 
12.2.1. 

We shall now do the simple mathematics behind this function which we 
have partly done before. As this is important for the things to come we do 
it in some further detail here. The GD-functions in 12.2.2 represent pair- 
wise double planes that become closer when C approaches unity. 
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_x 2 
e - C  

_y2 
e - C  

_z 2 
e - C  

12.2.2 

Figure 12.2.1 The beautiful hyperbolic octahedron. 

In 12.2.3 the planes from these functions collaborate pair-wise,  and give 
cylinders as shown in figure 12.2.2a-e. 

_x 2 
e + e - y 2  - 1.9 

_x 2 e + e - z 2  - 1.9 12.2.3 

_y2 
e + e - z 2  - 1.9 
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Figure 12.2.2a 
GD-cylinder. 

Figure 12.2.2b GD- 
cylinder. 

Figure 12.2.2c GD-cylinder. 

Figure 12.2.3 GD-polyhedron after equation 12.2.1 for a constant 
of C=2. 
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We now add these three rods after equation 12.2.1 with C=1.9 and obtain 
_ Z  2 

figure 12.2.3. We realise that if we for example make z=4 the term e is 
about 10 -9 and this is the reason that the function well outside origin 
consists of cylinders as in figure 12.2.3. And for a constant of 2 the 
cylinders become infinitely thin as in figure 12.2.1. 

We may create a variety of structures with these mathematics. First we 
may put two of these hyperbolic octahedra together and get four, because 
of the periodicity, always with spikes as in figure 12.2.4 and equation 
12.2.4. 

_x 2 z 2 e-(X-2.5)2 e-(Y-2.5) 2 e-(Z-2.5)2 e + e -y2 + e-  + + + = 1.98 12.2.4 

Figure 12.2.4 Two GD-polyhedra develop periodicity and multiply to eight. 

We can also take these polyhedra apart after equation 12.2.5. 

_x 2 e_(X_8)2 2 e_(Z_8)2 e + e -y2 + e -z2 + + e -(y-8) + = 1.98 12.2.5 
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Figure 12.2.5 Periodic GD-polyhedra 
after equation 12.2.5. 

Figure 12.2.6 Periodic cosine 
polyhedra after equation 12.2. 6. 

Figure 12.2.7 Spikes from a plane after equation 12.2. 7. 
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(cos nx) 8 + (cos r~,)8 + (cos ~z) 8 = 1.98 12.2.6 

We get very similar results using cosine as in equation 12.2.6 which is due 
to the link between the GD-function and the circular functions we have 
discussed before. The two functions are shown in figures 12.2.5 (GD) and 
12.2.6 (cos). 

It is also possible to pull out spikes from a plane, and we do so with 12.2. 7, 
which is shown in figure 12.2.7. An example of this is the type of structure 
found in lamellipodia where the micro-spikes engage in a movement called 
ruffling, cf. [3]. 

_x 2 2 e + e -y2 + e -(x-4) + e -(y-4)2 + e -z  - 1.95 12.2.7 

12.3 Cylinder Division and Cylinder Fusion - Cylinder Growth 

Branching structures, such as growth of trees and the pattern of rivers, 
represent irregular repetition of three connectors, and are common. They 
have been described in our time as fractal patterns. 

We shall describe branching here as a phenomenon 
division or cell fusion. 

much related to cell 

So far we have produced one type of geometry for making axons, in the 
form of cones, cylinders, or catenoids, with the periodic GD-function. 
When we now continue, we switch to a related type of geometry using 
'handmade' cylinders of finite extension. This means that we control the 
length, and we can also move them. These are exactly the same 
mathematics we used for making filaments in section 10.2. 

Our first equation is 12.3.1. 

e-  10(y2 +z2)+e-2X +e2(X-1 l )  = 0.9 12.3.1 

In equation 12.3.1, the factor 10 in the term 10(y2+z 2) helps to make the 
cylinder thin. With e2X+e 2Cx'll) the length of the cylinder is decided, and the 
factor 2 makes the ends less sharp. The rod is plotted in figure 12.3.1a-b, 
in b just the tip of the rod is shown. 
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Figure 12.3.1a A cylinder of f'mite length after equation 12.3.1. 

Figure 12.3.1b The tip. 

Figure 12.3.2 A model of a cell with an axon. 
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We shall now put a sphere at the end of the rod, like an axon coming out 
from a cell. This is done in equation 12.3.2 and plotted in figure 12.3.2. Of 
course we can put any number of axons in any direction from the cell. And 
we can make each one of them go to another cell, establishing 
communication between cells. 

e-10(y2 +z2)+e-(X+2) +e(X- 11) -(x2+y2+z 2 ) 
+e =0.9 12.3.2 

The cylinder has a central role in forming structures in biology. In what 
may be called the hierarchy of growth - the cylinder is on the top of the 
organisation. For example the trunk between the roots and the branches of 
a tree. Or the joining of chirality, the left and the right. For the last case 
we give the function in 12.3.3 which gives the remarkable figure in 12.3.3 
where a left-handed screw is joined to a right-handed screw via a cylinder, 
serving as the mirror. This is also a picture from biology, the left arm is to 
the left and the right arm to the right, with the shoulders in between. 

e xc~ +e x2+y2 = 1.95 12.3.3 

Figure 12.3.3 Left joined to right via a cylinder. 

We will now return to the tree, which we will describe as a mathematical 
operation analogous to cell division. The branches stem from the trunk, 
which we regard as the arch branch. This means that after a number, n, 
divisions, there are 2 n individs, for n=0 there is just the trunk, for n=l there 
has been a division so there are two branches of which one may still look 
like the trunk. However, this resemblance will disappear with increasing n. 
We call this connectivity three, the same as we had for the gyroid surface. 
Connectivity four or higher is of course possible, but does not seem to be 
common, and will therefore not be discussed here. 

So we proceed with the branch division (grafting corresponds to fusion) and 
design an equation in analogy with cell division in 12.3.4. The first term is 
a cylinder, the trunk, to which we have added two identical pieces of 
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cylinders. The structure is shown in figure 12.3.4a. In equation 12.3.5 we 
have made the two cylinders unequal by giving them opposite slopes. We 
have also given the trunk a terminal. We give now biological motion to the 
structure by making a running through the values 1, 4, 6, and 10 in figures 
12.3.4b-e. In f, one of the branches has been on the sunny side and grown, 
an effect obtained by changing the value of y from 15 to 20, as shown in 
equation 12. 3. 6. 

10 -x2 +2.10 -(x2+lOy-15+lO-(y-lO)) =0.1 12.3.4 

10-(x2+lO(y-11)) + lO-[(x+ 1~ y-a)2+lOy-15 +IO-(y-IO))] 

_ [(_x+ l_~Y_a)2 + 10 y- 15 + 10 - ( y -  10))] 
+10 =0.1 

12.3.5 

10-(x2+lO(y-11)) + lO-[(x+ 1-~ y-a)2+IOy-15+IO-(y-IO))] 

+ 10 - [(-x+ 1-~y-a) 2 + 10 y-20 + 10 -(y-10))] 
=0.1 

12.3.6 

This might be applied as a mathematical description of a nerve cell with 
synapses. In equation 12.3. 7 we have reinforced the two extra cylinders and 
added two small vesicles, one has left the terminal axon, the other is about 
to, as shown in figure 12.3.5. In the equation a has the value of 2. One can 
say that instead of continuing growing with new branches, the axon stops 
and uses the branch division mechanism to form the synapse. 

10 -(x2+lO(y-11)) + 2.10 -[(x+ 1-~y-a)2+IOy-15+IO-(y-IO))] 

+2.10 -[(-x+ 1-~y-a)2 +10y-15+10-(y-10))] 

+0.12.10 -[x2+(y-15"7)2] +0.12.10 -[(x+2)2+(y-15"4)2] = 0.1 

12.3.7 
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Figure 12.3.4a Two identical pieces of 
cylinders of identical length. 
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Figure 12.3.4b The two cylinders are 
unequal by having opposite slopes. 
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-7.5-5-2.50 2.5 5 7.5 

Figure 12.3.4e After equation 
12.3.5 with a=4. 

Figure 12.3.4d a=6. 
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12.5 

i0 
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5 I[ 
-7.5-5-2.50 2.5 5 7.5 

Figure 12.3.4e a =l 0. 
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Figure 12.3.4f One branch 
has been on the sunny side. 
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Figure 12.3.5 The branch division mechanism for modelling a synapse. 

10 -(x2 +10 y-6+10 -(y+6)) 

+0.2.10 - [(-x-0"9y-5) 2 + 10 -(y + 15) + 10 (y +4) ] 

+0.2.10 - [(x-0"4y-2) 2 + 10 -(y + 15) + 10 (y +4) ] 

+0.2-10 -[(0" l x - y - 4 ) 2  +10-x +10(x-10) ] 

+0.12.10 -[(x-0"2y-7"5)2 +10-(y+2~ +10(Y+ 10)] 

+0.15.10 -[(-0" l x - y -  10) 2 + 10 -(x+ 12) + 10 (x+ 2)] 

+ 10 -[(x+0"4y-2) 2 + 10 -(y-5)  + 10 (y-  19)] 

+ 10 - [(- x+0"4y-2) 2 + 10 -(y-5) + 10 (y-  17) ] 

+ 10 - [(x+2y-25) 2 + 10 - ( y -  15) + 10 (y-  21) ] 

+ 10 - [(-x+ y-8)2 + 10 - ( y -  12) + 10 (y-  22) ] 

+10 -[(x+ 1"5y-27)2 +1 o-(Y- 17) +lO(Y-21) ] 

+ 10 - [ ( -x+y-16)2  + 10 - (y -  13) + 10 (y-24) ] _ O. 1 

12.3.8 
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From this it is now easy to continue with the tree. We build further on with 
equations to 12.3.8 and notice that we have made roots at the lower part of 
figure 12.3.6, as well as branches. 

20 

I0 

0 

-i0 

20 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , , , , | o 

-15 -i0 -5 0 5 i0 15 

Figure 12.3.6 The tree after equation 12. 3.8. 

12.4 Solitary Waves, Solitons and Finite Periodicity 

The nerve axon transmission of nerve pulses involves motion, which we 
will describe in chapter 13 with mathematics similar to what we use for 
solitary waves, or solitons. The commonly used, complicated, soliton 
mathematics will first be shortly reviewed. 

A travelling wave, a running wave or a solitary wave, may for example 
originate from an earthquake at the bottom of the ocean that gives a giant 
surface wave. A solitary wave is described as a single wave that propagates 
continuously with symmetric shape and uniform speed. The term soliton 
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has been used for a solitary wave when it can interact with other solitons 
and retain form, and is then said to be 'particle like' [5]. The profile of a 
wave is given by equation 12.4.1. 

u -  f(x)  

u - f ( x -  vt) 12.4.1 

at t =0 at time t 

u -  f(x)  u -  f ( x - v t )  

u 
1 

0.5 
o 

-0.5 
i , 

-2 0 

> velocity v 

Figure 12.4.1 A solitary wave. 

, | , i , , , , i i , , i , | , , 

2 i 6 ; x 

The classic wave equation that gives a solitary wave is the Korteweg-de 
Vries (KdV) equation: 

~u Ou O3u 
= 6 u ~ -  

Ot Ox ~)x 3 
12.4.2 

The equation is a description of running water waves - cnoidal periodic 
waves [4], which tend to a solitary wave in the limiting case of long wave 
lengths, and a solution for a moving solitary wave is found in equation 
12.4.3. U is a constant, and the wave moves in the +x direction with a 
speed of v. 

u(x, t) - - U  sec h 2 ( x -  vt) 12.4.3 

Not long ago an initial solution of the KdV was set as potential in the time- 
independent Schr6dinger equation [2], which we show below in equation 
12.4.4. 

d2gt 

dx 2 
- ~  + u ~  - ~ ,~  12 .4 .  4 



We choose an initial solution 

u(x) - - U  sec h2x 12.4.5 

and transform the Schr6dinger equation 

d2~ 

dx 

cosh = 

- ~  + (~ - U sec h2x)~ - 0 12.4.6 

with initial values of the form 

u ( x ) - - N ( N  + 1)sec h2x 12.4.7 

12.4.7 may be called a Schr6dinger potential with N bound states. To some 
surprise, N=2 showed up to correspond to two solitons (for which we give 
the solution below)and N=3 gives three solitons. The N-soliton solution 
found, is given in equation 12.4.8 for two solitons, or N=2. And the 
equations quickly get more complicated with increasing N. After ref. [5]. 

3 + 4 cosh(2x-  8t) + cosh(4x-  64t) 
y = 1 2  12.4.8 

[3 cosh(x-  28t)+ cosh(3x- 36t)] 2 

i0 

e x + e -x  
, and sec hx = 1 / cosh x 

For t=0.5 there is figure 12.4.2a and for t=0.2 figure 12.4.2b. The solitons 
are moving, the bigger faster than the smaller. 

i0 

8 

6 
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0 

-5-2.5 0 2.5 5 7.5 i0 

Figure 12.4.2a Two solitons. Figure 12.4.2b The two solitons have moved 
with different speeds. 
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With N, a cascade of solitons may be constructed but the mathematics turn 
very complicated. 

This remarkable soliton theory is difficult. The possibility for varying 
amplitudes and speeds for a chain of solitons is not present, for example if 
you want to model the dynamics created when a stone is dropped into 
water. Such a pulse train we can instead obtain by damping a cosine 
function with the GD-function. 

We find that the GD-function has the properties we need. And it is a much 
shorter way than the Korteweg-de Vries (KdV) approach. 

The function sech2x looks like a GD-function, e -x2 ,  in figure 12.1.3a, 
and we can move it as a GD-function as shown in 12.1.3b. The equations 
are found in 12.4.9-11. 

y - 6sech2x 12.4.9 

y - 6 sec h 2 (x + Ax) 12.4.10 

Ax corresponds to time and is set to 8. 

y - 6 s e c h 2 ( x -  8) 12.4.11 
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Figure 12.4.3a The solitary 
wave from KdV. 

-5-2.5 0 2.5 5 7.5 i0 

Figure 12.4.3b Motion of the KdV 
wave like a soliton. 

We can add two solitons to one mathematical function, and one of them 
with double amplitude, as in figure 12.4.4a and equation 12.4.12. 

y = 4 sec h 2 x + 8 sec h 2 (x - 8 ) 12.4.12 



Icosahedral Symmetry, Clathrin, Spikes, Axons, the lree, and Solitary Waves 309 

_/k 
-4 -2 0 2 4 6 8 i0 

Figure 12.4.4a Two solitons in 
one function after equation 12.4.12. 

- - - _ . . . . _ _ . _ . _  

-4 -2 0 2 4 6 8 I0 

Figure 12.4.4b The two solitons 
move independently after 12.4.13. 

We can of course also move them independently of  each other as seen in 
figure 12.4.4b-d. The equations are in 12.4.13-15, and the solitons move 
through each other at the end. 

y = 4sec h2x + 8 s e c h 2 ( x -  4) 12.4.13 

y = 4 sec h2x + 8 sec h2x 12.4.14 

y = 4 sec h 2 (x - 1) + 8 sec h 2 (x + 4) 12.4.15 
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Figure 12.4.4e The two solitons 
move independently after 12.4.14. 

Figure 12.4.4d The two solitons move 
independently after 12.4.15. 

This is in analogy with what was done above, solving the Schr6dinger-KdV- 
equation. And we can easily add more solitons and change speed and 
amplitudes. 

Thus we can use this soliton function to make many things - the 
periodicity, the nodal surfaces, the cubosomes, the hyperbolic polyhedra or 
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DNA. Just like we did with the GD-function. We demonstrate the similarity 
with the GD-function below. 

sec hx = 1 / cosh x 

and 

1 x e-X cosh x - ~ (e + ) 

which means 

sec h2x - 4 12.4.16 
(e x + e-X)2 

We plot the two functions, on top of each others, after the equations 
12.4.17-18, and this is shown in figure 12.4.5. The GD function is the one 
with the deepest valleys. 

y - sec h2x + sec h2(x - 3)+ sec h 2 ( x -  6) + sec h 2 ( x -  9) 12.4.17 

- x  2 e-(X-3)2 e-(X-6)2 - (x -9 )  2 
y - e  + + +e 12.4.18 

Figure 12.4.5 The sech and GD-functions compared. 

What we see is a surprising similarity, this is a wave train of solitons, and 
the train from equation 12.4.17 may be regarded as a number of 
consecutive solutions to the KdV-equation, and put together to one 
mathematical function. We see that the KdV-solution is very close to the 
GD-function. 

In their original work Korteweg-de Vries obtained periodic waves -  called 
cnoidal by them - which they made to a solitary wave by the limiting case 
of long wavelength. We have earlier described the connection between 
cosine and the GD-function. Equation 12.4.19 gives a cosine function 
which becomes identical with the GD-function when n goes to infinity. It 
behaves like the cnoidal waves, which is shown in figure 12.4.6 for n-50 in 
the equation 12.4.19. 
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cos2 n x _x  2 ~ n  :=~ e , n ---> oo 12.4.19 

Figure 12.4.6 

Bloch walls are examples in solid state physics which are described as 
stationary solitary waves or solitons, and which continuously separate 
magnetic domains in a crystal, as shown in figure 12.4.7. 

Figure 12.4.7 The structure of a Bloch wall separating domains. In metals the 
thickness of the region is about 1000 A. Reproduced with permission from [6]. 
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13 Axon Membranes and Synapses - A Role of Lipid 
Bilayer Structure in Nerve Signals 

In a lecture in 1932 on limitations of physical measurements on living 
organisms, Niels Bohr said [1]: "...the thought is close at hand that the least 
freedom we in this respect can give the organism is still big enough to let it 
hide its last secret." 

A puzzling feature observed to accompany the action potential conduction 
along the axon membrane is a phase transition in the bilayer. We provide 
evidence for a two-dimensional analogue to a three-dimensional transition 
lamellar <-> periodically curved bilayer. It is demonstrated how such a 
transition can be induced by changes in the hydrocarbon chain packing 
pressure, determining the elastic properties of the bilayer. We argue that 
such an electro/mechanical coupling makes the action-potential more 
robust towards interference. The co-operative vesicle fusion at the synaptic 
signal transmission seems to involve a similar bilayer phase transition. 
Finally, some neuro-biological phenomena, which might be related to this 
model, such as effects of mechanical waves on neurons are considered. 

13.1 The  Nerve  Impulse  

The electrical nature of nerve signal conduction was revealed more than 
two hundred years ago through the famous experiments on frog legs by 
Galvani in Bologna. All living cells are characterised by a potential across 
the membranes, but the nerve cells are also able to change this potential 
and generate electrical signals. The nerve cell, the neuron, is usually 
elongated into a so-called axon. An axon can conduct signals over long 
distances; it can for example start in the brain and end in a foot. The axon 
ends with a synapse where the signal is transferred by transmitter molecules 
to another neuron or to an effector cell, such as a muscle cell. 

The membrane potential is due to concentration differences between inside 
and outside of sodium ions and potassium ions. Sodium and potassium ion 
concentration gradients determines the trans-membrane potential. The 
sodium concentration is ten times higher outside the nerve cells, and the 
potassium concentration is higher inside the cells by a factor of about 35. 
In some nerve cells calcium has an important role in the signalling events. 
The potential difference is due to potassium sodium leak-channels and the 
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sodium-potassium pump. When there is no signal activity (resting 
potential), the potential measured over the cell membrane in a human 
neuron is about-90 mV from outside to inside surface. 

The signal in a nerve cell starts with an excitation, which can be induced at 
a synaptic contact with another neuron or by stimulation of the neuron 
itself (e.g. a sensory cell), results in opening (or "activation") of voltage- 
gated sodium channels. Within a tenth of a millisecond the influx of sodium 
ions have depolarised the membrane, and the potential shifts to + 35 mV 
(cell imerior surface transiently becomes positive). The activation of these 
channels is induced by a reduction in potential to about -50 mV. A few 
tenths of a millisecond after depolarisation, the sodium-channels are closed 
(or "inactivated"). The membrane then retums to the resting potential, 
and this repolarisation takes another tenth of a ms. 

The voltage-sensitive sodium channels are considered to consist of four 
sub-units, which together form the pore. Each sub-unit consists of six (or in 
one model eight) transmembrane helices. There is one transmembrane 
helix in these sub-units which is considered to have a major role in channel 
opening and closing. That is the helix termed $4, with every third amino 
acid residue positively charged (arginine or lysine). Increase of the positive 
potential at the inside of the axon membrane, which takes place via the 
sodium ion influx at depolarisation, means that the $4 helix will tend to 
move inwards (by translation and rotation within the membrane). Such 
motion must also have some influence on the lipid bilayer structure, 
something we will consider later in this chapter. 

Activation and inactivation of the voltage-gated sodium channels represent 
the increase and the decrease respectively of the probability that a channel 
will open a short time (0.7 ms.). The gating current is the sum of these 
events. The charge movement precedes the opening, which means that 
first there is a conformational change in the channel protein associated 
with ion movement, then there is a conformation change resulting in 
opening. There are at least three conformational states of the channel 
leading to activation. These can be regarded as stepwise structural changes 
in the submits due to ion movement, with one or two altemative steps 
resulting in inactivation. It is known that the final steps in the opening and 
closing need not to be voltage dependent. It therefore seems reasonable to 
assume that the lipid bilayer structure can be involved in these 
conformational steps. The model proposed below includes the 
experimentally known dynamic changes of the lipid bilayer at the 
depolarisation region, which earlier have been neglected. 

The voltage-gated potassium channels primarily play a role in the 
repolarisation, when the transmembrane potential approaches zero, these 
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slow channels start to open, and when the sodium channels are inactivated, 
the potassium channels are fully open. As the potassium ions move out 
along their gradient in concert with the action of the sodium-potassium 
pump, repolarisation to the resting potential is achieved. Voltage-gated 
calcium channels mainly plays a part in the synaptic region of neurons. 
Also, in certain types of muscle there are almost no sodium channels and 
the action potential is caused mainly by the action of calcium ions. 

The potential differences we have described correspond to changes at a 
particular point at an axon membrane. Signal propagation is a result of 
lateral movement of the excess of sodium ions from the site of the action 
potential along the inside membrane surface. The laterally situated voltage- 
gated sodium channels will therefore become activated. The lateral part of 
the membrane will become depolarised, and as this process continues along 
the whole membrane; we get a nerve impulse. After excitation the sodium 
channels have a so-called refractory period, a couple of milliseconds, during 
which the neuron cannot be triggered again. This refractory period makes 
the nerve impulse travel in only one direction along the neuron. 

The propagation speed is proportional to the axon diameter. The fastest 
conduction, about 100 m/s, is reached in nerve-fibres that are thick and 
covered by a myelin sheath (myelinated). The myelin sheath is formed by 
multilayers of lipid bilayers from Schwann-cells and Oligodendrocytes (in 
the peripheral nervous system and the central nervous system 
respectively). This provides electrical isolation for the ion currents 
involved in the action potential. The myelin sheath covers the axon 
membrane in bands about 1-2 mm wide. Between these bands the axon 
membrane is "naked" (nodes of Ranvier). The signal passively spans the 
myelin isolation as no voltage-gated channels can be activated. There is a 
reduction in signal amplitude, but at the end of the myelin sheath (at a 
Ranvier node), the signal is strong enough to induce an new action 
potential. This means that the signal will "jump" along the nodes between 
the regularly distributed bands of myelin isolation, increasing the speed of 
the nerve impulse significantly. 

13.2 At the Action Potential Region of the Membrane there is a 
Phase Transition in the Lipid Bilayer 

Numerous studies have demonstrated changes in the physical properties of 
the axon membrane at depolarisation which have been interpreted as a 
phase transition in the bilayer. Orientation measurements of fluorescent 
probes indicated early that there is a more rigid orientation of the probe at 
depolarisation [2]. Kinnunen have reported that there is "conclusive 
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evidence for a depolarisation-induced phopholipid phase transition" based 
on enthalpy changes, ANS-fluorescence, IR-spectroscopy, fluidity, light 
scattering and birefringence [3]. 

There are really only two alternative phase transitions that can occur in 
the bilayer of the nerve membrane. The first involves crystallisation of the 
hydrocarbon chains, and corresponds to transitions between a lamellar 
liquid-crystalline phase and a gel-phase in three-dimensional lipid-water 
systems. This transition is proposed by Kinnunen [3] to take place at 
depolarisation. Considering the diversity of lipids and the large proportion 
of very long and polyunsaturated acyl chains in the nerve membrane lipid 
bilayer, however, crystallisation into the gel state of the chains seems 
unlikely to us. Furthermore it would be very slow in such a complex 
hydrocarbon chain mixture in relation to the kinetics required at 
depolarisation. The transition between a liquid-crystalline phase and a gel 
phase in all known lipid-water phase diagrams takes place at a specific 
temperature, and the nerve signal can be conducted at varying 
temperatures. 

The other alternative of a phase transition along a separate bilayer 
corresponds to cub i c ->  lamellar liquid-crystalline phase in three- 
dimensional systems. Physical properties (such as enthalpy, fluidity and 
birefringence) at the transition cubic lipid bilayer to lamellar change in the 
same direction as those at the transition liquid crystalline (lamellar) -> gel. 
phase. This transition, contrary to the transition between a liquid- 
crystalline phase and a gel phase, according to known phase diagrams can 
be induced by changes in the water medium and can take place at various 
temperatures. We therefore propose here that this is the transition that 
takes place at depolarisation. 

Periodically curved membrane bilayers were described in chapter 8. We can 
term this bilayer conformation C(2d), and the bilayer conformation 
corresponding to that of the Lt~-phase in a similar way Lct(2d). The 
kinetics of this transition is discussed below. 

The inner monolayer of the axon membrane is dominated by 
phophatidylethanolamine and by the C22:6 acyl chains. Such a lipid 
mixture will tend to form reverse structures, such as cubic types, due to the 
high inner packing pressure of the bilayer. The outer monolayer is 
dominated by sphingomyelin and phophatidylcholine, favouring the Let- 
type of structure. The periodic curvature is related to a high packing 
pressure in the hydrocarbon chain core contrary to the situation in the Ltx- 
conformation. The axon membrane like membranes in general, as 
demonstrated in chapter 8, is assumed to exist on a borderline between the 
C(2d) and the Lt~(2d) conformations. An Lc~ (2d) conformation is related 
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to a hydrocarbon chain inner packing pressure, which is about equal to that 
of the outside. This situation is characteristic for a bilayer that lacks 
elasticity (neglecting influence from the polar heads). When the inside 
packing pressure of the bilayer is higher than that of the outside, however, 
there is also an elastic rigidity of the bilayer. A high inner pressure and 
asymmetry over the mid-surface should therefore be expected to result in 
curvature variation along the bilayer surface. Periodicity of curvature 
variations is a consequence of the general structure properties of bilayers 
described in chapter 8. 

We would like to summarise these structural principles in the following 
way: 

�9 High inner bilayer packing pressure -> elastic rigidity -> periodically 
curved bilayer 

�9 Inside packing pressure about equal to that of the outside -> lack of 
elastic rigidity of the bilayer - > planar (lamellar) type of  bilayer. 

An important effect of periodicity is the coupling of  thermal vibrations in 
time, generating standing waves. 

Experimental evidence of the involvement of different bilayer 
conformations in the signal transmission is provided by the effect of 
general anaesthetic agents, see section 13.6. 

We will now consider a C(2d) -> L~(2d) phase transition in the axon 
membrane coupled to the depolarisation. 

13.3 A Model of a Phase-Transition/Electric Signal Coupling at 
Depolarisation and its Physiological Significance 

The action potential propagating along the axon membrane is based on 
ionic transport through the bilayer, and there is a phase transition at the 
depolarised region of the axon membrane. Any transition within a lipid 
bilayer at constant temperature and pressure must be due to conformational 
changes of the lipid molecules and/or embedded proteins. Phase transitions 
induced by changes in local pH or in counter ions are common in lipid- 
water systems. Conformational changes of membrane embedded proteins is 
an alternative mechanism which can cause a bilayer transition. We will 
consider both altematives, beginning with the membrane proteins. It seems 
reasonable to focus on the voltage-gated sodium channels, as they in some 
myelinated neurons alone are responsible for the depolarisation process. 
Let us assume that the transition into the open activation gate 
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conformation of the voltage-gated sodium channels and the transition from 
the C(2d) bilayer into the L~(2d) bilayer phase are results of a co-operative 
process, involving the $4 helix movements as described above. After a 
certain time delay, the channel will adapt the closed inactivation gate 
conformation, which might initiate reversal of the bilayer transition. 

The other alternative which could induce the bilayer phase transition at 
depolarisation might be some threshold value in counter ion concentration 
at the bilayer surface (and the reversal of the transition in a similar way 
during repolarisation). Calcium ion concentration changes at a very low 
concentration range can induce such transitions. The fact that some action 
potentials propagate with almost no involvement of calcium ions, does 
however indicate that the sodium channel conformational transitions is the 
mechanism behind the bilayer transition. 

The phase transition is illustrated schematically in figure 13.3.2. Knowing 
the speed of the action potential, the time of depolarisation and the 
wavelength being about 1000 .A (cf. chapter 8) means that the Lct(2d) 
structure will have a real length corresponding to about 1000 periods of the 
C(2d) bilayer structure. 

We have earlier shown the link between the GD-function and the circular 
functions, and as we need finite periodicity we design the equation 13.3.1 
below. The addition of a cylinder gives figure 13.3.1 which may be 
described as a periodically curved cylinder, or membrane. 

Figure 13.3.1 Periodically curved cylinder membrane. 
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e-8X 2 _e-8(x-1)2 + e-8(x-2) 2 _e-8(x-3)2 + e-8(x-4) 2 _ e-8(x-5)2 

+e-8(x-6)2 _ e-8(x-7)2 + e-8(x-8)2 _ e-8(x-9)2 + e-8(x-lO) 2 

-e  -8(x-11)2 + e -8(x-12)2 - e -8(x-13)2 +e x2+y2 - 3 .5=0  

13.3.1 

In this curved cylindrical surface of a membrane we want to introduce a flat 
region which we do by weighting after equation 13.3.2. 

e-8X 2 _e-8(x-1)2 + e-8(x-2) 2 _e-8(x-3)2 

+A[e-8(x-4)2 _ e-8(x-5)2 + e-8(x-6) 2 ] 

_B[e-8(x-7) 2 + e-8(x-8) 2 e-8(x-9)2 - ] 

+C[e-8(x-10)2 e-8(x-l l )2  e-8(x-12)2 - + ] 

-e  -8(x-13)2 +e x2+y2 - 3.5 - 0 

13.3.2 

For A =0.1, B=I, and C=I the shape shown in figure 13.3.2 is obtained. As 
we use finite periodicity it is possible to operate locally as we have done by 
reducing the amplitude with A, B or C. We have thus a flat extended 
structure that can propagate along the cylinder via a bilayer phase 
transition. In figure 13.3.3 A - l ,  B-0.1, and C-1 and in figure 13.3.4 A - l ,  
B - l ,  and C=0.1. The flat region (it is cylindrical so the Gaussian curvature 
is zero) has moved a distance corresponding to three terms in the complete 
equation. 

Figure 13.3.2 A==0.1, B=I, and C=I after equation 13.3.2. 
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Figure 13.3.3 A =1, B=0.1, and C-1 after equation 13.3.2. 

Figure 13.3.4 A -1, B=I, and C-0.1 after equation 13.3.2. 

This motion may equally well be described as a propagating phase transition 
as the flat region has an extension of its own. In chapter 8 we introduced 
oscillating wave conformations along a membrane due to bilayer elasticity. 
Loss of elasticity will result in a phase transition towards a flat membrane. 
When such a transition occur locally along an axon membrane, it will 
appear as a flat wave travelling in a curved membrane space. 
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There is another possibility of a bilayer transition in the axon membrane at 
depolarisation; a transition between different conformations of the periodic 
curvature of the bilayer. This alternative seems less likely, but is still shown 
below. It can be regarded as a martensitic transition along a cylindrical 
membrane. 

We take the P-surface and add it to a cylinder, and do also put a stop to the 
infinite function so it only exists for values below x as in 13.3.3. 

cos ztx + cos 7zy + cos 7zz +e  x +e  (y2+z2) 13.3.3 

We do the same for the gyroid surface, so it only exists for values above x. 

cos rrx sin rye + cos rtz sin ~x + cos zvy sin 7zz + e -x  + e (y2 + z2 ) 13.3.4 

We lift both surfaces, separately, up on the exponential scale to protect 
them as in 13.3.5 and 13.3.6. 

l x  2 e - [~e  + (cosz~x+coszw+cosgz)+e y2 + z2 ] 1 

20 
13.3.5 

e-[ le- (X)  +l(cos xx sin Try+cos ~z sin xx+cos 7vy sin ~z)+e y2+z2 ] 1 
- - - ' m  

20 
13.3.6 

We do each of the surfaces and show this in figures 13.3.5 and 13.3.6. 

Figure 13.3.5 Cylindrical membrane with a P-type of surface curvature. 



322 Chapter 13 

Figure 13.3.6 Cylindrical membrane with curvature according to the Gyroid surface. 

We then add the two to get a transition phase boundary between the P- and 
the G-surfaces as in 13.3.7. 

1 2+z2 
-[ e x-A+ (cos~;x+cosT~j+cos~z)+e y ] 

e + 

1 2+z2 
_[ e-(X-A)+ (cos~xsin~y+cos~zsinr~x+cosT~]sinrcz)+e y 

e 
] 1 

- - - m  

20 

13.3.7 

Figure 13.3.7 Phase transition in a cylindrical membrane between 
curvature according to the P- and the G-surfaces at x=0. 
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For A=0 the boundary is at x=0, as in figure 13.3.7. 

We have earlier proposed that phase transitions of lipid bilayers can be 
martensitic, which means that there is no nucleation, and therefore the 
transition speed can approach that of sound [5]. The transition between 
the L~-phase and the gel phase (crystalline chains) in 
phosphatidylethanolamine bilayers have been analysed and assumed to be 
martensitic with a rate of transition less than 1 ms [6]. The transition 
proposed should be even faster, as it does not involve chain crystallisation 
The propagation of the signal will, due to cooperativity, be driven by both 
the electrical conduction with activation of adjacent ion channels and by 
the phase transition. 

Any phase transition in a membrane is related to the mechanical properties 
of the bilayer. We repeat that thermal excitations will result in standing 
wave oscillations in a periodically curved elastic membrane, and an Let-type 
of bilayer is formed when the elasticity becomes very small. It is important 
in this connection to realise that the resistance against deformations within 
such a bilayer is much smaller than in periodically curved bilayers (due to 
the high inner packing pressure). The phase transition we have shown 
above into an L~-bilayer structure might therefore be needed in order to 
allow the conformational changes of the voltage-gated sodium channels. 
Sodium channels opened by some kind of excitation may even reduce the 
inner packing pressure enough to induce a bilayer transition into an L~- 
conformation. This in turn may simplify the opening of adjacent channels. 
Such parallel functions of voltage-gating and a bilayer transition is further 
developed below. 

In considering the conformation of the C(2d)-bilayer, the axon diameter 
should also be taken into account. This diameter can vary from about 1000 
A up to extremes in the cm range. Undulations in the erythrocyte 
membrane have a wave-length of about 1000 A (and an amplitude of about 
100 A) [7], and it seems reasonable to assume similar dimensions of the 
curvature periodicity in neuronal membranes. Therefore the curvature of a 
very thin axon will probably only show periodicity in the length direction. 
An example of such a bilayer is shown in figure 13.3.8a. It was obtained by 
equation 13.3.8. 

x 2 + y2 + 0.5 cos z - 12 13.3.8 
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Figure 13.3.8a A periodically curved cylindrical surface 
according to 13.3.8. 

Figure 13.3.8b Cylindrical surface curved according to 
13.3.9 applying a P-type of function. 
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Figure 13.3.8c Cylindrical surface curved according to 
13.3.10 applying a G-type of function. 

Thicker axons should be expected to show periodicity, also perpendicular 
to the axon direction. Such conformations can be calculated by adding the 
D-, G - o r  P-surface curvature with some weight factor to a cylinder. 
Examples involving the P- and G-surface are shown in figures 13.3.8b and 
13.3.8c respectively using equations 13.3.9 and 13.3.10. 

x 2 + y2 + cosrrx+ cosrry + c o s r r z -  12 13.3.9 

x 2 + y2 + 6 [ c o s  rrxsinrr z + cos 7vy sin rrx + cos rrzsinrry] - 12 13.3.10 

A nerve of a higher animal usually consists of numerous nerve cells in a 
close-packed arrangement. An example is illustrated in figure 13.3.9. The 
inter-neuronal distances are even shorter in the brain. 
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Figure 13.3.9 A section through a nerve trunk showing both myelinated 
(thick envelope)and unmyelinated axons, reproduced with permission from 
[4]. 

It seems likely that the electrical fields involved in the signal conduction 
along one axon membrane could cause disturbances in the signalling of an 
adjacent nerve cell, for example by inducing a false signal by triggering 
some voltage sensitive sodium channels. A dual mechanism, the proposed 
coupling between electrical and mechanical signal, would reduce the risk of 
conductance interference significantly. 

Evidence for a phase transition occurring concomitantly with the action 
potential at depolarisation is given in the paragraphs 13.5 and 13.6 above. 
The conformation of a membrane protein, such as a voltage-gated channel, 
might be influenced by the conformation of the surrounding bilayer. This 
can lead to an increased excitability of the sodium channels during the 
phase transition from the C(2d)-bilayer into the Lt~(2d)-bilayer phase (e.g. 
a synergistic effect between bilayer transition and channel conformational 
change). If so, nature would have devised a system in which the nerve signal 
itself would be fool-proof. The electrical interference from neighbouring 
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neurons would not have any major effect, whereas an electrical pulse 
initiated by the neuron itself would be propagated as the phase-transition 
and the action potential will be coupled in time and space. Other 
physiological consequences of a mechanical wave component of the action 
potential is further discussed in the last paragraph of this chapter. 

13.4 Transmission of the Nerve Signal at the Terminal  Membrane 
of the Neurons - Synaptic Transmission 

When the nerve impulse reaches the terminal region of the axon 
membrane, it is transmitted chemically to another neuron or to an effector 
cell, such as a muscle cell. This chemical coupling region is a chemical 
synapse. Transmitter molecules are released through the presynaptic region 
into the synaptic cleft. These molecules will diffuse over this narrow space 
and reach receptors specific to the transmitter at the postsynaptic 
membrane (of another neuron or an effector cell). The activation of the 
postsynaptic receptors by the chemical signal will change the ion 
permeability at the postsynaptic membrane which can lead to excitation or 
inhibition of the postsynaptic neuron or effector cell. 

There are also electrical synapses, where the ions conducting the electrical 
signal can pass from one cell to another through gap junctions. In this way 
the signal is conducted by ions from one cell to another, e.g. in cardiac 
muscle cells. Sometimes electrical and chemical synaptic transmission can 
take place in the same synapse. 

Gap junctions couple adjacent cells electrically or biochemically and have a 
wide range of applications. The channels are formed by hexameric proteins 
called connexons. Two connexons join across the intercellular gap and 
form the channel. The connexons tend to form a hexagonal pattem in 
each of the opposing membranes. The opening and closing of gap junctions 
is in general gated, but transitions between closed and open conformations 
occur less frequent than in other ion channels, and the regulation is not well 
understood. 

An interesting feature of gap junction is the clustering of the connexons, 
which links the apposing membranes. This results in formation of two- 
dimensional crystalline order in the membranes, as is evident from the 
morphology of these clusters. An example of hexagon shape and truncated 
triangular shape is shown in figure 13.4.1. 

The consequence of this crystallographical organisation is that also the 
lipid bilayer is a part of the two-dimensional crystal. Therefore like in 
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"ordinary" crystals, the motions should be coupled and follow the rules of 
standing waves. Thus the bilayer must move accordingly. A direct 
consequence of this is cooperativity in motions. Thus the opening or 
closing of one ion channel in a crystallographically perfect gap junction 
will be coupled with the same transition in neighbouring channels. 

Figure 13.4.1 Gap junctions between cultured fibroblasts. Each 
intramembrane particle is a connexon, reproduced with permission 
from [ 16]. The text within the electron micrograph is "aggregates of 
intramembrane particles forming gap junctions". 

An example of a chemical synapse is the neuromuscular junction shown in 
figure 13.4.2. It is characterised by an extended systems of terminals at the 
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end of the axon, and each terminal presynaptic membrane is exposed 
towards a strongly expanded postsynaptic membrane. 

The transmitter molecules, acetylcholine in this case, are stored in vesicles 
located near the presynaptic membrane. Each vesicle contains thousands of 
molecules. Influx of calcium ions at the synaptic terminal triggers the 
exocytosis of the vesicles loaded with transmitter molecules at the 
presynaptic membrane. The release takes place at certain "release sites". 
The whole transfer process of chemical signals at the synapse is very 
efficient. Hundreds of signals can be transmitted within a second. 

Figure 13.4.2 Illustration of the extended synaptic region at a human muscle end 
plate, reproduced by permission from [4]. Good electron micrographs showing the 
same texture can be found in [8]. 

The central nervous systems (CNS)use many different types of molecules 
in the synaptic transmission, although one neuron normally releases only 
one type of transmitter beside neuropeptides. Neuropeptides are a special 
group of transmitters in the brain. They are much more potent than small- 
molecule transmitters, and often they give long-term effects, such as 
prolonged closing of calcium channels. They are transported very slowly by 
streaming along the axon from the ribosomes where they are synthesised. 
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Ordinary transmitter molecules are synthesised in the cytosol at the 
synapse. 

Signal transmission in the CNS also involves inhibitory synapses. These 
synapses open potassium and/or chloride channels, and cause an increase in 
potential negativity so that the signal amplitude needed to reach the 
threshold value for excitation is increased. Brain signalling involves many 
complex features but the main principles of synaptic transmission are the 
same in the whole nervous system. 

Textbooks discussing the synaptic transmission usually ignore the lipid 
bilayer structure of the vesicles and the presynaptic membrane, and 
mechanisms controlling their fusion. In the well-known book FROM 
NEURON TO BRAIN, [19], it is stated that "... how the fusion occurs and 
the role played by calcium is not known". We propose here that the mass- 
co-operative fusion of vesicles is a local bilayer phase transition induced by 
calcium ions. It is well known that membrane lipid curvature is sensitive to 
variations in calcium ion concentration, and the bilayer curvature tend to 
change towards the reverse type of structure (cf. chapter 8) by addition of 
calcium ions. Experimental evidence for the involvement of a phase 
transition is also given here, based on the effect on membrane lipid phase 
behaviour by general anaesthetic agents. It is therefore natural to model the 
fusion process in the way as follows. 

We will consider 12 vesicles regularly arranged at the presynaptic 
membrane (with somewhat different weighting to give to them the same 
size). The following equation gives the synaptic structure as shown in cross- 
section in figure 13.4.3a. 

e-[e 2(x+2) + 0.2(y 2 + z 2)] + e-[e -2(x-2) + 0.2(y 2 + z 2)] 

_e-2[(y- 1)2 +(x+3) 2 +(z)2-0.5] _ e-6[(y-1)2 +(x+3) 2 +(z-2)2-0.5] 

_e-6[(y- 1) 2 +(x + 3) 2 +(z + 2) 2 -0.5] _ e-Z[(y + 1) 2 +(x + 3) 2 +(z) 2 -0.5] 

_e-6[(y+ 1) 2 +(x+3) 2 +(z-2)2-0.5] _ e-6[(y+ 1)2 +(x+3)2 +(z+2)2_0.5] 

_e-Z[(y- 1)2 +(x+5) 2 +(z)2-0.5] _ e-6[(y-1)2 +(x+5) 2 +(z-2)2-0.5] 

_e-6[(y-1)2 +(x+5) 2 +(z+2)2-0.5] _ e-Z[(Y+l) 2 +(x+5) 2 +(z)2-0.5] 

_e-6 [(y + 1) 2 +(x + 5) 2 +(z_2) 2 -0.5] _ e-6 [(y + 1) 2 +(x + 5) 2 +(z+ 2) 2 -0.5] 

13.4.1 

-0.4 = 0 
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Figure 13.4.3a Vesicles at the presynaptic membrane according to 13.4.1. 

From a mathematical point of view, vesicle-vesicle fusion as well as 
vesicle-synaptic membrane fusion may be obtained with change of 
constants, or with collective motion of the vesicles (mathematically 
similar). In the equation below we have moved the synaptic vesicles in this 
way. The result is a bilayer transition which leads to exocytosis of 
transmitter molecules into the synaptic cleft, see figure 13.4.2b. 

e-[e 2(x+2) + 0.2(y 2 + z 2)] + e-[e -2(x-2) + 0.2(y 2 + z 2)] 

_e-Z[(y-1)2 +(x+2.75) 2 +(z)2-0.5] _ e-6[(y-1)2 +(x+2.75) 2 +(z-2)2-0.5] 

_e-6[(y-1)2 +(x+2.75) 2 +(z+2)2-0.5] _ e-2[(y+ 1) 2 +(x+2.75) 2 +(z)2-0.5] 

-e  -6[(y+1)2 +(x+2"75)2 +(z-2)2-0"5] - e -6[(y+1)2 +(x+2"75)2 +(z+2)2-0"5] 13.4.2 

_e-Z[(y-1)2 +(x+4.5) 2 +(z)2-0.5] _ e-6[(y-1)2 +(x+4.5) 2 +(z-2)2-0.5] 

_e-6 [(y- 1) 2 +(x+ 4.5) 2 +(z+2) 2 -0.5] _ e-2 [(y + 1) 2 +(x+ 4.5) 2 +(z) 2 -0.5] 

_e-6[(y+ 1) 2 +(x+ 4.5) 2 +(z-2) 2 -0.5] _ e-6 [(y+ 1) 2 +(x+ 4.5) 2 +(z+2) 2 -0.5] 

-0.4 = 0 
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Figure 13.4.3b Illustration of co-operative fusion of synaptic 
vesicles with the presynaptic membrane according to 13.4.2. 

Evidence for such a phase transition mechanism is provided by the effects 
of general anaesthetic agents, described below. In low concentrations they 
induce fusion of membrane lipid vesicles in model systems into a cubic 
phase, see paragraph 13.6. This transition can be reversed by pressure, just 
like the anaesthetic effect. 

The vesicles are recycled in the presynaptic membrane. These cycles may 
also involve a bilayer phase transition. In principle this transition is the 
reversal of the transition shown in figure 13.4.3. 

An additional feature of a phase transition wave, propagating with the 
electrical pulse along the axon, is the possibility of a direct coupling of 
events involved in the synaptic transmission. In chemical synapses an 
arriving action potential may via its adjoining bilayer transition induce the 
influx of calcium ions and vesicle fusion. In electrical synapses it may link 
the action potential to opening of connexons at gap junctions. 

Release of transmitter molecules also involves proteins coating the vesicles 
(clathrins) controlling vesicle dynamics. Syntaxins are proteins with a 
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general function as receptors to provide specificity at docking and fusion of 
vesicles. One of them, syntaxin 5, controls transport between ER and Golgi 
[9]. Another, Syntaxin 1, is present at the synapse, both in the vesicles and 
the presynaptic membrane [10]. The specific traffic-controlling proteins 
and the bilayer transition might be mechanisms working in parallel, 
providing redundancy for control and safety, analogously to the wave 
transition coupled to the electrical signal in the action potential. 

13.5 Synchronisation of Muscle Cell Activation 

The functional unit of skeletal muscles is a motor neuron linked to the 
muscle cell via the muscle end plate, see figure 13.4.1. Acetylcholine 
molecules are transmitted to the muscle cell membrane (the sarcolemma), 
where an action potential is fired. The contraction mechanism is activated 
by calcium ion flux from the endoplasmatic reticulum of the muscle cell 
(termed sarcoplasmatic reticulum (SR)) to  the T-tubuli system. This 
membrane system penetrates the muscle cell. It was shown in chapter 8 
how it under pathological conditions can form cubosomes. 

For control of movement of a skeletal muscle, the contraction of each 
individual muscle cell must take place simultaneously. This requires 
synchronisation of both action potentials and contraction. We discuss this 
question also in chapter 11, in relation to the crystallographic order within 
the actin-myosin complex. 

The calcium release channels in the SR-membrane consist of a complex of 
four ryanodine receptor channels (RyR-1). This complex is stabilised by 
four molecules of a small protein molecule FKB 12, which also co-ordinates 
the opening and closing of the RyR-l-units of the tetrameric calcium 
channel. The channels are arranged in rows, separated by a short distance 
or in contact. Every second of these channels are associated to receptors 
termed DHPR in the T-tubuli membrane. 

It has been assumed that surface membrane depolarisation, sensed by 
DHPR, triggers calcium ion release through the RyR-l-channels due to a 
mechanical coupling between the channel proteins and DHPR. Adjacent 
channels (that means every second channel which is not linked to DHPR) 
are assumed to open by the released calcium ions. 

An interesting study has recently proposed that all the calcium channels 
release calcium simultaneously [11] due to a lateral mechanical link. Such 
co-ordinated channel opening contrary to stochastic opening would provide 
a fast calcium release. 
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Figure 13.5.1 The coordinated (left)and the stochastic gating 
mechanisms (right) of calcium ion release into the T-tubuli 
system, modified after [ 12]. 

It also provides a mechanism for opening of the channels not associated to 
DHPR. The coupled opening is proposed to provide a "safety margin for 
excitation-contraction coupling" [12]. The two mechanisms are illustrated 
in figure 13.5.1. 

A phase transition in the lipid bilayer, as described in connection with the 
action potential and synaptic signal conduction, can achieve the proposed 
mechanical coupling between the RyR-1 channels. The driving force for a 
phase transition switching all channels to open can be provided by the 
bilayer curvature changes at one channel. We therefore propose that the 
co-ordinating mechanism of the RyR-1 channel opening, like that of the 
voltage-gated sodium channel opening at the action potential propagation, 
involves a membrane bilayer phase transition. 
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13.6 The General Anaesthetic Effect 

Ethyl ether was used by William Mortimer to reduce pain in tooth 
extraction, and he suggested to the surgeon Warren at Massachusetts 
General hospital to try it in surgery. The first operation seen by a large 
audience took place in October 1846, and it was a success. A year later, 
James Simpson in Glasgow started to use chloroform in childbirth. 

General anaesthetic agents have their main effect on the central nervous 
system and block the sensory nerve impulses coming from peripheral 
nerves. These molecules inhibit the transmission of the nerve signal at the 
synapses. At higher concentrations (not used clinically though), they also 
block conduction of the electrical signal along axons. 

A wide range of small molecules exhibit anaesthetic effects. Even the 
atomic state can block the nerve signal transmission; the noble gas xenon 
has been used clinically. Ethyl ether and chloroform have been used for a 
long time. Today methoxyflurane and halothane dominate. Other 
anaesthetic agents are nitrous oxide and fluroxene. A common feature is 
their lipophilic character. 

The first theory of the effect was presented about a hundred years ago by 
Overton and Meyer. They demonstrated a direct relation between the 
anaesthetic potency (the critical concentration in order to reach an 
anaesthetic state) and the partition coefficient between olive oil and water. 

In the 60's Pauling and Miller proposed that the anaesthetic agent formed 
hydrates which immobilised water at the membrane surface as a mechanism 
behind their physiological effect. Later it has been found that there are 
compounds with good anaesthetic effect which do not form hydrates, for 
example sulphur hexafluoride. 

A third theory based on conformational changes of protein molecules was 
presented by Frank and Lieb in 1982 [13]. A protein used as a model for 
neuron membrane proteins, the enzyme~ luciferase, is inhibited by 
anaesthetic agents with no lipids present.. 

In connection with our work on curvature and periodicity in lipid-water 
systems and in membranes, it was natural to examine the effect of general 
anaesthetic agents on aqueous phase behaviour of lipids, cf. [13]. When 
chloroform, ethyl ether or halothane were added to an aqueous dispersion 
of a phospholipid Lc~-phase (forming liposomes or vesicles), the bilayers 
fused and formed a cubic phase. Concentrations of chloroform below 0 . 1 %  



336 Chapter 13 

(w/w) in the water medium were enough to induce a transition of a 
dispersion of 5 % phospholipids in water. 

Based on this work it was proposed that the anaesthetic effect is due to a 
favouring of a periodically curved conformation in the nerve membrane 
bilayer where the conformation is balancing between an Lct(2d) and a C(2d) 
state. Such conformational effects would block the phase transition 
proposed above to be involved in the synaptic transmission and in the 
action potential propagation. A simple model for the influence of 
membrane curvature on the conformation of an ion channel is shown in 
figure 13.6.1. 

Figure 13.6.1 Schematic illustration of the axon membrane conformation 
favoured by general anaesthetic agents, and the proposed blocking effect of 
the state of ion channels, reproduced with permission from [ 18]. 

The well known pressure reversal of the anaesthetic effect can be explained 
by favouring of the planar (Lcz-type) conformation on behalf of the 
periodically curved bilayer. Pressure can be applied to achieve a phase 
transition from a lamellar (Lcz) phase into a cubic phase (C). Analogously 
in two dimensions, pressure should be expected to favour a C(2d) 
conformation in relation to the Lct(2d) conformation. 

As mentioned initially, the clinical application of anaesthetic agents use 
concentrations that only block the signal at the synaptic transmission, 
whereas the action potential conduction is not influenced. The change of 
the Lcz(2d)/C(2d) balance at the presynaptic region will tend to block the 
transition shown in figure 13.4.2 by stabilising the fused "cubic" related 
conformation of the bilayer. 

It was explained in chapter 8 how the formation of a periodically curved 
bilayer is related to the existence of a high inner packing pressure in the 
hydrocarbon chain core. A mechanism of general anaesthesia has been 
proposed recently based on "lateral pressure profile in membranes" [15]. 
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Needless to say this is just another way of describing the favouring of 
periodic curvature or L~-type of conformation. 

Local anaesthetic activity is provided by a group of molecules which are 
weak bases (thus cationic) and contain an aromatic group. Lidocain was the 
first agent, which became widely used in clinical practice. They work by 
specific blocking of the sodium channels, and they have also some non- 
specific effect on the lipid bilayer. Their effect can thus be reversed by 
hydrostatic pressure (although only partly) like effects of general 
anaesthetic agents, indicating some influence on phase transitions in the 
neuron bilayer. Local anaesthetic agents are all amphiphilic and will 
therefore be solubilised in the lipid bilayers. 

13.7 Physiological Significance of Involvement of a Lipid Bilayer 
Phase Transition in Nerve Signal Conduction 

It may seem obvious that if a mechanical wave is involved in the 
conduction of nerve signals, as proposed above, a mechanical disturbance in 
the surrounding tissue can influence the signal. We believe that there is one 
such phenomenon, which we call mechanical anaesthesia. 

The possibility to transfer mechanical energy over distances in a controlled 
way exists in animals living under water. Whales and dolphins have 
developed an advanced sonar system with high output-levels (over 200 dB) 
and a broad frequency range (40 to 140 kHz). There are increasing 
evidence that many whales and dolphins use the sonar system as an 
offensive weapon to paralyse its prey [20]. Applying our proposed model 
involving a mechanical component of the nervous signal, the mechanism 
where the high intensity mechanical pulses disturbs the nervous system may 
be understood. It is debated whether the "debilitation" of the prey is 
achieved by one acoustic pulse or by a train of sound waves. In both 
altematives, such influence on the nerve system by mechanical waves 
seems natural if there is a mechanical component involved in the nerve 
impulse conduction. 

A mechanical/electrical coupling may also extend the sensitivity of sensory 
neurons, as indicated by the following observation. A shark is able to detect 
a fish hidden in the sand from the gill movement, even though the 
electrical field from these nerve signals and muscle movements are much 
weaker than the electrical background noise [17]. A resonance 
amplification in the shark's electrical sensors might be obtained by tuning 
their bilayer oscillations in phase with the neuron pulse train controlling 
the gill motion in the prey. 
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Experiments on the effects of ultrasound on the CNS of mammals have 
shown that pulse-trains of ultrasound administered at a rate of 4 to 10 
pulses/second induce reversible effects on brain function and nerve 
conduction [21]. The energy intensities applied were considered to be non- 
thermal (10-50 mW/cm2). The frequencies of the administered signals is in 
the same range as we consider the "standing waves" of neuronal membranes 
to be in (see chapter 8), as based on the oscillation frequency of 
erythrocyte membrane undulations. 

Another interesting phenomenon is the effects of magnetic fields on brain 
functions. It has been documented that extremely weak oscillating 
magnetic fields can influence the human brain [22]. Alternating fields with 
complex waveforms with a frequency of 4Hz and a strength of about 1 
microtesla were used. As currents pass through the ion channels in the 
neuronal cell membrane, an applied magnetic field will result in a 
mechanical force perpendicular to the applied field and to the current 
passing through the ion channels. If there are wave motions at the neuronal 
membranes one should therefore expect that the resulting mechanical force 
will affect these motions, especially if the signal is administered at a 
resonant frequency in phase or out of phase with the neuronal membrane 
oscillations. The net result would be a disturbance of the "mechanical" 
component of the nerve signal thus affecting neuron function. 
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14 The Lung Surface Structure and Respiration 

Dum spiro spero (as long as I breathe I hope). 
An interpretation of Cicero's Epistolae ad Atticum. 

There is a highly organised structure at the alveolar surface called tubular 
myelin, which has been considered to provide a depot for a lipid-protein 
monolayer towards air. Tubular myelin was earlier assumed to consist of 
intersecting bilayers. We give evidence for a quite different structure of 
tubular myelin, with the bilayer forming an intersection-free classical 
minimal surface, the tetragonal CLP-surface. It is demonstrated how this 
CLP-structure forms a coherent surface phase, which rules out the generally 
accepted monolayer model of the alveolar surface. The CLP-bilayer of this 
surface phase forms the interface towards air simply by opening up along 
the methyl end group planes of the bilayer. The mathematics introduced in 
this book have been a prerequisite for describing the dynamics of this 
alveolar surface structure during respiration. 

14.1 The Alveolar Surface 

Terrestrial organisms, birds and insects exchange gases needed in their 
metabolism with surrounding air. Plants consume carbon dioxide and expire 
oxygen whereas land-living animals and whales survive through the reverse 
gas exchange. The gas transport at the surface takes place by diffusion. 
Larger animals need ventilation to increase the gas transport; they breathe. 
The lungs take care of this gas exchange, the respiration, involving both 
convection and diffusion. 

The lungfish is considered to be the first animal breathing air. Next in the 
evolution came amphibia with better developed lungs but still they needed 
an additional gas exchange through their wet skin. 

Our lungs expose the surface of a tennis court towards air, with millions of 
mm. size vesicles, the alveoli, forming the endings of the bronchial tree. 
The alveoli are located at the pulmonary capillaries, where oxygen- 
deficient blood from peripheral tissues takes up oxygen and leaves its load 
of carbon dioxide. 
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The oxygen consumption at rest is about 0.3 litre/minute, whereas the 
carbon dioxide excess is about 0.25 litre/minute. The air that reaches the 
alveoli has reached body temperature and is fully saturated by water after 
the transport through the respiratory system. 

To fill air into the lungs it is necessary to overcome the surface tension in 
each alveolus. The pressure difference across the interface is proportional 
to the surface tension, and it is also related to the curvature (for spheres 
like alveoli defined by their radius r) according to Laplace's law; 

6p = 2 y / r  

where 6p is the pressure gradient over the surface and y is the interfacial 
tension. 

We will describe how the dynamic interfacial tension of the alveolar surface 
is controlled by a lipid-protein, liquid-crystalline "surface phase", cf. [1]. 

14.2 Lung Surfactant 

The term lung surfactant is used for the lipid-protein complex excreted 
from type II epithelial cells. The pathway for the surfactant to the alveolar 
surface is illustrated in figure 14.2.1. The surfactant complex form 
liposome-like structures called lamellar bodies (LB), which are rearranged 
into so-called tubular myelin (TM). TM is highly organised, and is 
considered to serve as a precursor for a surfactant monolayer at the 
interface towards air. This has been the generally accepted model of the 
surface of pulmonary alveoli for a long time. 

There are, however, experimental observations which contradict the 
monolayer theory although they seldom are discussed (probably due to lack 
of an alternative model). One example is a study where a rabbit lung was 
filled with hexadecane in order to better preserve the surface film. A 
multilayer lining of the alveolar surface was then observed [3] as shown in 
figure 14.2.2. 

The surfactant in its native form is a lipid bilayer containing about 10% 
(w/w) proteins. The lipids are dominated by dipalmitoyl- 
phosphatidylcholine (DPPC) (about 80%), and the second most abundant 
lipid (about 10%) is phoshatidylglycerol (PG). In premature mammals, 
most of the phosphatidylglycerol is replaced by phophatidylinositol. This 
lipid is also anionic and should be expected to exhibit similar structural 
behaviour. 
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Figure 14.2.1 Diagram illustrating the traditional monolayer model of the 
alveolar surface and the pathways of lung surfactant, reproduced with permission 
from [2]. The aggregate structures are explained in the text. The numbers 1-3 
indicate surfactant transport to the surface and 4,5 illustrate circulation back. 

The proteins are dominated by the four surfactants proteins A-D (SP-A, 
SP-B, SP-C, SP-D). SP-A and SP-D are hydrophilic, and form well-defined 
micelle-like oligomers [4]. Thus six trimers of the SP-A monomer (28-36 
kD depending on degree of glycosylation) form a funnel-shaped aggregate, 
whereas four trimers of SP-D associate into a symmetric oligomer. The 
proteins SP-B and SP-C are extremely hydrophobic. 

The surfactant proteins determines the structure of the surfactant bilayer. 
The addition of SP-B to DPPC/PG mixtures yield structures similar to TM. 
The morphological changes of the bilayer into TM, as shown in figure 
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14.2.1, are induced by calcium ions. It can also be mentioned that the 
surfactant proteins have immunological functions, such as stimulating 
macrophage chemotaxis. 

Figure 14.2.2 Rabbit lung fixed by vascular perfusion after filling the lung 
with hexane, reproduced with permission from [3]. Scale marker 1 micron. 
AH alveoli after contact with hexane, S multilayer of surfactant lining the 
surface, Efedemafluid, Ep epithelial cell layer, Bm basement membrane, 
C capillary lumen and End endothelial cell layer. 

Hills [5] has in his book described the fascinating history behind the 
discovery of surfactant at the surface of alveoli. The most important step 
was measurements of the surface tension of water when samples from lung 
washings were added, proving the existence of a surface-active material. 
Even today, however, the exact value of the surface tension reduction is 
under debate (cf. [5]) ranging from values close to zero up to about 20 
mN/m. 

14.3 Structure of Tubular Myelin - A Bilayer arranged as the 

Classical CLP-Surface 

The schematic structure of TM indicated in figure 14.2.1 is based on 
numerous electron microscopy studies. The name was chosen due to some 
resemblance with the so-called myelin figures, a term used to describe the 
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texture in the polarising microscope of myelin and later used for similar 
optical textures of phospholipid samples dispersed in water. The optical 
birefringence in such samples, however, has no direct relation to electron 
microscopy textures. 

Typical electron microscopy textures of TM are shown in figures 14.3.1 
and 14.3.2. 

Figure 14.3.1 A transmission electron micrograph of an 
ultrathin section of tubular myelin from a fetal rat lung, 
reproduced by permission from [7]. 

The diameters of the TM aggregates are 2-3 microns. The closing of the 
bilayer towards an outside water phase seen in figure 14.3.1 is also a 
characteristic feature, which has been observed in many other studies. 

Interpretations of the observed TM texture assumes that the lipid bilayers 
are parallel to two perpendicular planes, which intersect so that the cross- 
section form a square pattern. Deviations from that, as seen for example in 
figure 14.3.2, have been interpreted as deformations of the square pattern. 
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Figure 14.3.2 Tubular myelin near a dissociating lamellar body. 
Electron micrograph of a rat lung sample, after [6]. The two sides 
of the bilayer are seen, and at some locations (arrows) it can be 
observed how the bilayers appear to cross each other but there is 
no intersection. 

A different structure was recently proposed based on a cryo transmission 
electron microscopy study [1]. Furthermore the surface lining was observed 
to consist of a uniform and coherent phase. This surface phase model was 
derived by the mathematics we describe in this book, and we will therefore 
describe it in detail in order to illustrate the potential of our approach. 

First it was concluded from the EM data that TM consists of a lipid-protein 
bilayer according to the classic CLP-surface. Weierstrass parametrisation of 
this minimal surface was first derived by Lidin and Hyde [8]. Characteristic 
features of this structure are: 

The bilayers can cross each other without intersection. 
bilayers, as in the earlier structure interpretation, have 
observed in any lipid-water system. 

Intersecting 
never been 
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This structure is a minimal surface, which we know is a common 
structure principle of lipid bilayers. 

This structure is able to explain several physiological phenomena 
previously not understood, such as: 

�9 Hysteresis during tidal breathing. 
�9 Ultra low surface tension. 
�9 The dry/wet alveolus debate. 
�9 Release kinetics of pulmonary administered pharmaceuticals. 

Applying a nodal surface approach, we derived the 
mathematical function of the CLP-surface [1]: 

following simple 

1 
- -  c o s  7 ~ z  

c o s - - ( x - y ) e  40 - c o s - - ( x + y ) -  0 14.3.1 
4 4 

Figure 14.3.3. A part of the CLP-surface calculated according to formula 
14.3.1, defining the structure of TM. 
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Figure 14.3.4 The characteristic electron microscopy square 
net texture reproduced from Young et al. [7] is shown (lower 
fig.) together with a cross-section of a thin slice of the 
calculated surface shown in figure 14.3.3. 

The CLP-surface is shown in figure 14.3.3. A slice of the structure 
projected along the c-axis forms the characteristic square pattern. The size 
and the shape of the openings between the tubular units can be varied by 
variation of a constant in the equation. The value 40 was used in equation 
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14.3.1 in order to obtain circular openings. A tendency to favour a circular 
shape compared to an elliptic one under relaxed conditions seems likely 
with regard to the liquid character of the bilayer. As usual, the surface 
represents the centre of the bilayer. Obviously it is one single bilayer free 
from self-intersections and curved to form a tetragonal structure. Two sets 
of planes can go through each other via saddles. The average curvature is 
zero everywhere whereas the Gaussian curvature varies between near zero at 
the dominating planar (or almost planar) regions to maxima (of the 
absolute values) at the openings between the tubular structure units. 

The relation between the calculated structure according to our CLP-bilayer 
model and an observed cross-section of TM is shown in figure 14.3.4. 

The possibility of intersection-free crossing of the bilayers is also 
confirmed in certain electron micrographs. One such crossing can be 
observed in figure 14.3.2, showing both surfaces of the bilayer (marked by 
arrows). 

ix 

14.4 The Existence of a Coherent Surface Phase Lining the Alveoli 

By depositing the surface layer of freshly opened and blood free rabbit lung 
directly on the electron microscopy grid, it was shown that the TM 
structure forms a coherent phase lining the lung alveoli [1]. In order to 
reduce the risk of artefact formation we used cryo transmission electron 
microscopy (cryo-TEM). The grid with the deposited surface film is 
plunged into liquid ethane and frozen so rapidly that the water does not 
crystallise but forms amorphous ice, also called vitrification. The 
microscopy sample is kept at a temperature below-160~ and the water is 
present during the recording of the micrographs. The natural contrast of 
the sample is utilised, thus no staining of the samples is required, cf. [10]. 

A deposited alveolar surface sample is shown in figure 14.4.1. The distance 
between the layers is in good agreement with earlier reported values of 
about 40-60 nm. 

Important independent evidence comes from another technique with 
reduced risks for artefacts; freeze-fracture electron microscopy, cf. [9]. 
The occurrence of some pattern at the surface is characteristic for a phase 
with a certain organisation, like a liquid crystal, contrary to a true liquid 
(water covered by a monolayer). Such patterns were observed. 

An en face freeze fracture replica of the alveolar surface from a rat lung is 
shown in figure 14.4.2a. 
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Figure 14.4.1 The cryo-TEM texture of the deposited alveolar surface layer observed to 
form a coherent phase. The tubuli are mainly oriented in parallel with the surface plane, 
after[l]. 

The linear grooves are 60 to 100 nm apart. This texture is also consistent 
with the ordered array of bilayers seen in figure 14.4.1, although the 
bilayers appear to be somewhat more disordered here (maybe a consequence 
of the replication technique). The important feature of the observed 
texture is that the surface is not smooth, but shows hills and valleys, with 
distances related to the periodicity seen in figure 14.4.1. Thus also this 
work supports the proposed existence of a surface phase. A "free" 
monolayer on an aqueous phase would be expected to show a smooth 
surface texture. 

It should be mentioned that the author behind this study [9] even states 
"the walls of tubular myelin seem to constitute the surface film" in the 
comments to a micrograph of a fracture through the alveolar lining, which 
is shown in figure 14.4.2b. 
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Figure 14.4.2a Electron micrograph of a replica of the alveolar surface, 
reproduced with permission from [9]. 

Figure 14.4.2b Fracture through the alveolar surface layer (freeze-fracture)Hypophase (H), 
Surface film (SF) Tubular myelin (tin), reproduced with permission from [9]. 
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Figure 14.4.3 An alternative of interface structure formation by opening of the CLP- 
bilayer structure at the methyl end group surface when it becomes exposed to air ( the 
polar head groups of the lipid molecules are indicated by circles and the two attached 
hydrocarbon chains are shown by their chain axes). 

There are many ultrastructural studies in the literature on TM 
demonstrating the square pattern formed by the bilayers. Most samples 
have been prepared from lung washings, which means that a surface phase 
has been dispersed. Still, some of the samples show structurally 
homogeneous regions extending up to several microns (see for example 
figure 14.3.1). Available data are thus consistent with a uniform phase 
lining the alveolar surface which has a CLP-bilayer structure. 
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The surface phase is a liquid-crystalline type of lipid bilayer phase with 
water on each side of the bilayer. The bilayer, curved as a CLP-surface, has 
a general resemblance with the cubosome-types of structure we have seen 
earlier in this book. This phase can easily and fast open up an interface 
towards air. It can also form a closed bilayer towards a water phase 
underneath. We will see below that this structure is ideal for forming such 
interfaces. 

The general occurrence of phases at interfaces in lipid-water systems is a 
neglected phenomenon. Emulsion stability is often due to a lamellar liquid- 
crystalline phase between oil droplets and outside water. The cubosomes 
also illustrates this. "Synthetic" cubosomes of high kinetic stability can be 
prepared in systems of pure lipids provided that three phases exist in 
equilibrium; a cubic phase, a lamellar phase and water. Mechanically it is 
possible to prepare colloidal particles from such a three-phase mixture, 
with the lamellar phase forming an envelope on a cubic phase core. 

We will now demonstrate how the CLP-bilayer structure can form an 
interface towards air outwards and an aqueous phase inwards. We will 
describe two alternatives of interface formation towards air. The driving 
force for reorganisation of the lipid bilayer into a monolayer towards air is 
the reduction in free surface energy. The CLP-bilayer may open up along 
the mid-surface, to give an interface towards air consisting of the methyl 
end groups of the lipid acyl chains. 

Figure 14.4.3 shows one possibility of how an interface towards air can be 
formed by opening up the lipid bilayer at the gap between the methyl end 
groups. Let us assume that the phase flows up through the water medium 
surrounding the lamellar bodies, from which the structure is formed, and 
reaches the surface towards air. The two regions on each side of the air 
medium (see figure 14.4.3) can spread laterally along the alveolar surface. 

Whether or not there exists "free" water together with the surface phase in 
the alveolus is further considered below. If free water is present it must 
correspond to water which can not be accommodated into the bilayer-water 
structure. The surface phase with the lipid bilayer CLP-surface swells to a 
maximum water content of about 90% (w/w), and if more water is present 
it will coexist in equilibrium with the surface phase. The structure formed in 
the case that there is a water phase underneath must consist of a closed 
bilayer. Figure 14.4.4 illustrates how the surface phase can form the 
complete lining of the alveolar surface. This surface structure towards an 
outside water phase is consistent with results from experimental 
ultrastructural studies of lung washings, of. figure 14.3.1. 
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The "flat" interface towards air in figure 14.4.4 is one of two principal 
possibilities. The second alternative of surface phase interface towards air 
involves the formation of a curved surface, like the surface towards an 
outside water phase shown in figure 14.4.4. This surface structure 
alternative is shown in figure 14.4.5. We consider the occurrence of "hills 
and valleys" as seen in freeze fracture images of the alveolar surface (cf. 
figure 14.4.2) as evidence supporting this surface structure alternative. 

Figure 14.4.4 The alveolar surface phase and its structure 
towards air above (one of two alternatives, cf. figure 14.4.5) and 
water or a hydrophilic medium underneath. 

A dynamic model indicating how the produced TM from lamellar bodies 
(LB) is condensed to form the surface phase is illustrated in figure 14.4.6. 
An important aspect is the occurrence or not of "free" water. We believe 
that a normal lung has very small (thin) regions where a water phase exists 
between the epithelial cells and the CLP-surface phase (tubular myelin). 
Lamellar bodies, macrophages and cell residues occurring in this zone 
require an aqueous environment. These regions are of course hydrophilic. 
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Figure 14.4.5 Schematic illustration of an alternative organisation compared to that 
in figure 14.4.4 towards air. A cross-section through the surface phase is shown at a 
fixed z-value of the CLP-structure, where the surface structure towards air is closed in 
the similar way as the surface towards an outside water phase (as shown in figure 
14.4.4). Sections above or below in the z-direction will show the bilayer tilted in 
the opposite direction, and when these two orientations overlap we get the TM 
square pattern. 

Figure 14.4.6 Illustration of flow of TM from type II cells via lamellar bodies (LB) to form a 
coherent surface phase. The shaded regions show the localisation of a hydrophilic medium, 
which in the case of edema (cf. figure 14.4.2) is a "free" water phase (coexisting in 
equilibrium with a maximally swollen surface phase). 
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Figure 14.4.7 The alternatives of free surface energy (E) relations at the air/water 
interface (A/W) the surface phase/air (SP/A) interface and the surface phase/water 
(SP/W) interface, which determine if spreading takes place (below) or lens-shaped 
droplets are formed (above). At the alveolar surface the conditions for spreading are 
fulfilled. 

The controversy in the literature whether the surface in the lungs are "dry" 
or "wet", cf. [5], is resolved by our present structure model. A water 
droplet deposited on a fully swollen surface phase will not be taken up but 
stay outside; the surface will therefore appear dry. If the alveolar surface 
phase is not fully swollen, a deposited water droplet will just be absorbed. 
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One of us (M.L.) has observed in rabbit lung experiments how the surface 
phase is drawn up in a glass capillary which is brought in contact with the 
alveolar surface. The surface phase forms a well-defined layer above and in 
equilibrium with a water phase, which originates from an edema (obtained 
under such traumatic conditions). It was also seen that the surface phase is 
birefringent, which proves that it is a liquid-crystalline phase (with lower 
symmetry than cubic). 

Whether or not one liquid phase will spread on the surface of another liquid 
or float as lens-shaped droplets (if its density is lower) is determined by the 
tendency to reduce the free surface (interfacial) energy. The two 
altematives are shown in figure 14.4.7 applied on the alveolar surface 
phase and water. 

A controversial question for a long time has been if the alveolar surface is 
wet or dry, cf. [5]. This question is the same as asking whether or not there 
is a free water phase at the alveolar surface. It should be pointed out that a 
water phase at the surface is required in the traditional structure models 
involving a lipid monolayer on water, see figure 14.2.2. According to our 
model the alveolar surface is dry under normal conditions. It might even be 
possible that the production and secretion of surfactant is controlled by 
some physical factor, for example by the occurrence of "free" water. If 
there is free water, more LB will be secreted, and induced by calcium ions 
they will via TM produce more surface phase. The water content of TM 
and the surface phase (about 90% (w/w))is several times higher than that 
of LB, which is reported to contain about 20%(w/w) [11]. Therefore a 
transition from LB to TM means that any "free" water can immediately be 
taken up. If an excess of water enters the alveolus, the surface phase will 
foam, and expand through the lung lumen. This is a well known 
characteristic of lung edema. 

14.5 Respiration 

We will now show the dynamics of the surface phase structure involved in 
breathing. 

In order to calculate the structure of a thin layer of the surface phase, the 
exponential description can be applied. Applying planar boundaries along 
the y-direction as indicated by EM data we obtain the equation 14.5.1. 
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1 
COS ~ Z  

[cos4(x_y)e 20 _cos4(x+y)] _(y_8)2 _(y+8)2 
e +e  +e - 1 - 0  14.5.1 

A section of this closed structure is shown in figure 14. 5.1. A part of the 
same structure was shown in figure 14.4.3 and 14.4.4. It should be 
mentioned that the size of the "holes" between the tubular units shown 
here is twice the size of those shown in figure 14.3.3 (the corresponding 
constant in the equation was changed from 40 to 20). 

Figure 14.5.1 A thin layer of a closed CLP-structure proposed to form 
the surface phase of the alveoli, calculated according to the equation 
14.5.1. 

How fast is the spreading process at the surface towards air of this surface 
phase? We know from surface balance that spreading of an amphiphilic 
solvent over a water surface (e.g. n-butanol) takes place within fractions 
of a second. The CLP-surface phase, however, will spread slower due to its 
high viscosity. Our observations of the physical properties of the alveolar 
surface phase obtained from the glass capillary showed that the viscosity is 
comparable to that of lamellar liquid-crystalline phases with a similar water 
content. Spreading of the surface phase, involving "opening" of the surface 
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as indicated in figures 14.4.4 and 14.4.5, is proposed to account for 
expansions during the respiration cycle. In addition to that, there will 
certainly be transitory deformations, which we show below. The surface 
transformation processes during the compression phase of the respiration is 
just the reversal of these structural changes. 

14.6 Physiological Significance of the Existence of an Organised 
Surface Phase at the Alveolar Surface 

The existence of an organised surface phase has important implications. 
Most important is that there is no separate monolayer lining the surface. 
The surface towards air is just an inner surface of this organised phase 
(exposing the lipid methyl end groups as indicated in figures 14.3.3 and 
14.3.4). Such a surface structure is mechanically very robust as being part 
of a phase, contrary to a separate monolayer on water. Extensive studies of 
lipid monolayers on water in the surface balance have demonstrated the 
fragile character of such surface films. The highly ordered surface structure 
and the mechanical properties of the surface phase explain the ultra-low 
surface tension, even under rapid variations in surface area. 

The surface phase structure also allows variations in water content; the 
surface phase swells according to the amount of water available. Above its 
limit of swelling a water phase can coexist in thermodynamic equilibrium. 
Furthermore the occurrence of "free" water may control surface phase 
formation as pointed out above. 

A characteristic feature of the CLP-surface phase structure is the possibility 
of free flow of the bilayer within the phase with a minor need of 
mechanical energy. Such flow can rapidly account for changes of outer 
shape, such as increasing the surface area inducing thinning of a layer of 
this phase. During the respiration cycle there is a need for expansion and 
compression of the surface phase, which require changes in surface area. 
This can thus be obtained by flow of bilayer material. It can also be 
achieved, however, by a rectangular deformation of the square cross-section 
of the tubular units. By replacing (x-y) in (2) by (3/4x-y) and (x+y) by 
(3/4x+y) the surface area is increased, and by replacing (x-y) by (x-3/4y) 
and (x+y) by (x+3/4y) the surface area is reduced. The calculated changes 
are demonstrated in figure 14.6.1. Thus the structure of this surface phase 
provides a mechanism for surface area changes similar to that of a 
concertina. This property of the structure is consistent with the low energy 
requirement for tidal breathing. The orthogonal bilayer cross-section 
pattem and its outer closed conformation are consistent with numerous 
ultrastructure textures. 
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Figure 14.6.1 Calculated thin slices of cross-sections of the CLP-surface seen along 
the c-axis; deformed so as to give a compression and expansion of the surface area 
required by the respiratory cycle. The surface towards air (A) formed by the methyl 
end groups, and the lipid bilayer exposed to water (W) on each side are also 
illustrated. The bilayer also has junctions downwards to the liposome-like 
structures from which tubular myelin is formed. 

We have pointed out two mechanisms for surface area changes here. How 
are they related? It seems likely that only deformation is fast enough to 
account for surface area changes at a fast breathe. Then comes the flow of 
lipid bilayer through the surface phase with a slower kinetic, which allows 
relaxation of the deformed structure towards the ideal CLP-conformation 
of the bilayer. 

Oxygen and carbon dioxide have much higher solubilities in hydrocarbon 
chain regions of lipid bilayers than in water. Therefore the existence of a 
lipid bilayer continuum from the epithelial cells to the air surface of the 
alveoli means that there is an additional transportation route of the 
respiration gases beside the aqueous medium. Also this feature demonstrates 
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the major difference between this surface phase model of the alveolar lining 
and the earlier model with a separate monolayer outside a water phase. 

Knowledge on the lung surfactant system and its structure is fundamental in 
order to understand normal lung function as well as pathological conditions. 
Functional aspects were discussed above. The surface phase model also 
provides a basis for development of new therapies. A well known lung 
dysfunction condition, hyaline membrane disease (respiratory distress 
syndrome), is caused by a lack of surfactant. Synthetic surfactant systems 
for pulmonary administration in order to cure this condition should take 
the CLP-bilayer structure into account, and ideally an artificial surfactant 
should result in a tetragonal structure at the alveolar surface. 

A successful new principle for pulmonary drug delivery of proteins is under 
clinical evaluation at present. If the protein is delivered as particles about 
20 microns in size, they are too large to immediately be consumed by the 
alveolar macrophages. Insulin for example can be administered in this way. 
The kinetics is very slow; absorption takes a couple of days. This is 
probably a consequence of the location of the insulin particles within the 
surface phase, which in effect becomes a controlled-release system. 

The resistance of the lungs against pollution of dust particles and microbes 
is impressive. Alveolar macrophage activity can partly account for this, but 
much is due to the efficient ciliary transport system removing 
contaminants up along the bronchial tree, the Pater Noster apparatus. 
There seems to be a flow of surface phase up along the bronchial tree 
(surfactant has been identified there, [5]). The existence of a surface phase 
in the alveolus means that particles can be trapped in this phase, keeping 
e.g. a virus particle well away from the alveolar cell surface until the phase 
domain containing the particle is ingested by a macrophage. Or the phase 
may "flow" outside the alveoli, and the phase as a whole will be transported 
by ciliary movement up through the bronchial tree. 
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15 Epilogue 

For the harmony of the worm is made manifest in Form and Number, and 
the heart and soul of all the poetry of Natural Philosophy are embodied in 
the concept of mathematic beauty [D'Arcy Thompson, 1]. 

Some general aspects of shape in biology is discussed here on the basis of 
the material presented earlier in this book. The role of biomembranes and 
transformations of lipid bilayer structures has been a major theme, and the 
significance in the evolution of lipid-like molecules self-assembled into 
bilayers is considered. Finally we speculate on application possibilities of 
the biomathematical approach introduced here. 

The universality of biological shapes is demonstrated in D'Arcy 
Thompson's classical work from 1917 "On Growth and Form" [1]. 
Morphologies such as the logarithmic spiral and the honeycomb pattern 
occur in a wide diversity of organisms. The common phylum (i.e. body 
plan) through the animal kingdom is an elongated body with a head and a 
tail. The same organisation can be found in unicellular organisms. The 
sperm is one example and we calculated its shape and dynamics in chapter 
10. The same shape can be recognised in individual biomolecules, for 
example in myelin which also was considered in chapter 10. 

The mathematics we have introduced can thus be applied at quite different 
scales, but it is obviously most fruitful when the shape is described with a 
resolution of atomic distances. Shape and motion can then be related to 
known atomic, molecular and colloidal forces. This approach may under 
such conditions reveal new functional mechanisms. The lipid bilayer 
dynamics of cell membranes (chapter 8), the wave conformation model in 
order to explain the axon membrane phase transition involved in nerve 
signal conduction (chapter 13), and the surface phase proposed to line lung 
alveoli (chapter 14) are examples of new structural descriptions made 
possible by this new mathematics. Conformation and dynamics of cell 
membranes provide universal functions in biology. We will briefly consider 
a lipid-controlled structure in order to illustrate this universality of 
membrane conformations. 

The back of the eye is lined with photoreceptor cells; neurons specialised 
to become excited by light. Each neuron can produce an electrical signal by 
the excitation induced by a single quantum of light; by one photon. The 
signals from different photoreceptor cells are then added in the retina and 



364 Chapter 15 

processed in the brain. Vertebrates have two kinds of photoreceptor cells- 
rods and cones. Both are dominated by a lipid membrane system that forms 
a pile of membrane discs (cf. figure 15.1). The distribution of ions and the 
membrane potential of these neurons follow the general properties of 
neurons described in chapter 13. In darkness the sodium pores are kept 
open by cyclic guanosine monophosphate (cGMP). The flow of sodium 
ions inwards keeps an "equilibrium" value of the membrane potential of-40 
mV (the sodium pumps keep transporting these ions out ). When such a 
receptor is exposed to light, 11-cis retinal activates pigment molecules in 
the membrane, and via a complex reaction chain cGMP is cleaved. The 
reduction in cGMP concentration results in closing of sodium pores, and 
the negative value of the potential increases therefore. When it reaches 
about -65 mV, the cell becomes hyperpolarised and an electrical signal is 
conducted to the synaptic terminal. 

The photoreceptor membrane systems must be organised perfectly from a 
crystallographic point of view, in order to reach the optical efficiency level 
of individual photons. A part of the outer segment of the rod membranes is 
modelled in figure 15.1. The equation for calculation of membrane discs 
and the surface membrane is given in equation 15.1. 

e_[e xl0 +e-(Y-1)_2.8] _ e-[10(x4 +(5(y+0.5))4-0.1)] 

_e-[10(x4 +(5(y+0.1)) 4 -0.5)] _ e-[10(x 4 +(5(y-0.3)) 4-0.7)] 

_e-[10(x 4 +(5(y-0.7))4-0.8)] _ e-[10(x 4 +(5(y-1.1))4-0.8)] 

-e  -[10(x4 +(5(y-1"5))4-0"8)] - e  -[10(x4 +(5(y-1"9))4-0"8)] = 0.02 

15.1 

These discs are located inside a surface membrane. The cones have similar 
piles of membrane discs but there they are part of the same membrane. 

A quite similar membrane system is found in the chloroplasts of plants, the 
organelles specialised for harvesting light in order to drive the 
photosynthesis. The thylacoid membrane system in chloroplasts form piles 
of membrane discs, which are very similar to those in the photoreceptor 
cells. Like the membrane discs in cones they consist of a single lipid 
membrane. Both these two types of membrane systems have evolved in 
order to utilise light efficiently. The similarity in shapes reflect this 
functional relation. It is remarkable, however, that the chemical 
compositions are quite different. Not only the light harvesting lipids and 
the pigment molecules are different but also the membrane lipids. The 
photoreceptor cell membranes are dominated by phospholipids, whereas 
the thylacoid membranes consist mainly of galactolipids. The fact that 
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closely related physical structures are formed in systems with so different 
chemical compositions indicates that enzyme systems for 
synthesis/modification of these lipid species are controlled by some 
physical property related to shape, as discussed in chapter 8. 
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Figure 15.1 The calculated pile of membrane discs forming the 
outer segment of a rod photoreceptor cell. A schematic illustration 
according to ultrastructural studies of this part of a cone is shown 
below, reconstructed after [2]. 
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The general mechanisms behind shapes in the plant, and the animal 
kingdom are still unknown. D'Arcy Thompson questioned natural selection 
according to Darwin in this respect. Based on numerous examples he 
concluded that shape can be determined in a direct way by laws of physics 
without having to be selected. Even with our present knowledge of the 
genetic mechanisms, many questions on biologic shape remain open. Philip 
Ball has recently published a beautiful book [3], extending ideas from 
D'Arcy Thompson towards the knowledge of biological pattern formation 
and morphology of today. 

We would like to cite what he writes on the origin of shape: 

"I don't think we know very much yet about whether natural selection has 
the power to modify or suppress certain pattern-forming principles that 
occur in nature. But I would suggest that, in the here and how, such 
principles undoubtedly exist - and do so in sharp distinction from the idea 
that genes are like a deus ex machina that holds all biological processes in 
thrall, building organisms in a laborious, brick-by-brick manner." 

Another very interesting book on the same theme was published by Ian 
Stewart [4] almost simultaneously as Philip Ball's book. The title of 
Stewart's book: "Life's other secret" refers to DNA as being the first 
secret. In his preface he writes: 

"The mathematical control of the growing organism is the other secret - 
the second secret, if you will- of life. Without it we will never solve the 
secrets of the living world-  for life is a partnership between genes and 
mathematics, and we must take proper account of the role of both 
partners." 

Needless to say we have also been inspired by the thinking of D'Arcy 
Thompson; in "Language of Shape", [5], as well as in the present book. 

In the introduction to this book we mentioned the obvious significance in 
the first form of life of a lipid membrane. Archaebacteria existing today 
represent a very primitive form of life. Their membrane lipids are quite 
different from those of other living organisms. A most interesting property 
of these lipids is that they under a wide variety of physiological conditions 
exhibit a cubic structure which exist in equilibrium with excess of water [5]. 
We have earlier speculated on the advantages of cubosomes in early forms 
of life [6]. In the introduction we discussed the fundamental need early in 
the evolution to encapsulate and protect the genetic material. Lipid-like 
molecules which were able to self-assemble into bilayer structures were 
certainly around, cf. [5]. We will just illustrate here how molecular 
interaction might lead to such encapsulation. 
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In figure 15.2a we show how a cubosome-like membrane may form an 
envelope to protect genetic/catalytic molecules like RNA. The bilayer can 
be formed from the different types of the lipid structures we have become 
aquatinted with in this book. Here we use a chiral unit of a D-surface 
"cubosome"; uniaxially compressed, according to equation 15.2. 

e-[(x+l) 2 +(y+l) 2 +(z-0.6) 2 ] + e-[(x-1) 2 +(y+l) 2 +(z-l.2) 2 ] 

+e-[(x-1) 2 +(y-l) 2 +(z-l.8) 2 ] + e-[(x+l) 2 +(y-l) 2 +(z-2.4) 2 ] 

+e-[(x+l) 2 +(y+l) 2 +(z-3) 2 ] + e-[(x-1) 2 +(y+l) 2 +(z-3.6) 2 ] 
15.2 

+e -[(x-l)2 +(Y-l)2 +(z-4"2)2 ] - 0.4 - 0 

Figure 15.2a Helical arrangement of vesicles according to the D-surface. 

This structure after fusion of the vesicles forms a spiral tube as shown in 
figure 15.2b. It can have any periodicity allowed by the shape of the lipid 
molecules, and it will end with half-spheres. 
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Figure 15.2b Helical membrane structure 
formed from figure 15.2a by vesicle fusion. 

Primitive lipid-like molecules can be assumed to build the vesicles that 
condense to this chiral membrane (as usual only the mid-surface is shown in 
figure 15.2b). Parts of the inside surface along every pitch can have a 
curvature that fit an RNA-helix. Interaction between "content" and 
"container" may have had a profound effect on the choice and structure of 
the material used for the genetic code. 

In this context it should also be mentioned that membrane lipids in 
mammalian cells are involved in control of gene expression. Enzymatically 
produced fatty acids from membrane phospholipids can up-regulate or 
suppress gene expression via the so-called peroxisome proliferator 
activated receptor in the nucleus. 

The breaking of symmetry in dividing cells, and the principles behind 
pattern formation were proposed to originate from competition between 
diffusion and autocatalytic processes by Alan Turing in the fifties. This 
field is very well described in the two recent books by Philip Ball [3] and 
Ian Stewart [4] mentioned earlier. The colour patterns of living organisms, 
for example, can be explained by Turing's diffusion-reaction equations. 

Simple organisms have a low degree of differentiation and therefore high 
symmetry. Many genes behind differentiation have now been mapped. The 
formation of limbs, such as our arms or the wings of a bird, is an illustrative 
example. Certain proteins have been identified - called Sonic hedgehog 
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proteins [7] - that are secreted from the cells in the embryo just where the 
limb will grow out. The growth process is related to the concentration of 
these proteins (morphogens). It is most interesting that the same proteins 
also are responsible for other patterns in the differentiation. Thus these 
proteins determines whether a neuron will develop into a sensory or a 
motor nerve cell. They are also involved in the bilateral organisation of 
the brain [6]. 

Going backwards in evolution we reduce the degree of differentiation. Our 
earliest ancestors, the first animals, lived in the precambrian sea. During 
the first stage of the precambrian period, 700 to 570 million years ago, 
only a few species seemed to have existed [8]. They were soft-bodied 
creatures, and one called Pteridinum is shown in figure 15.3. 

Figure 15.3 A fossil of Pteridinium, mid- 
part of the body reconstructed after [8]. 

These animals were filter-feeding, and they had to be flat due to the 
limitations of diffusion of nutrients. There is a clear resemblance between 
the body shape in figure 15.3, and planes crossing one another without 
intersections. The alternatives of two and three such crossing planes are 
shown in our earlier book [9]. Two planes corresponds to Scherk's classical 
minimal surface, shown in figure 15.4. Such a shape can be determined by a 
simple frame network, the rest will be the result of physical forces (e.g. 
surface tension). 
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Figure 15.4 An illustration of a minimal surface formed by 
two planes crossing one another without intersections. 
This tower surface is derived in appendix 6. 

Figure 15.5 Helical deformation of the minimal surface 
shown in figure 15.4. 
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If the angles between the quadrants are allowed to vary, for example by 
some oscillation around 90 ~ , water will be forced to move through the 
openings. In a filter-feeding animal this might be an ideal mechanism for 
uptake of nutrients. 

There is also a possibility for helical deformation of this surface as 
demonstrated in appendix 5, and shown in figure 15.5. 

This deformation and its reversal, done under varying speed, can provide a 
propelling function for swimming. 

Figure 15.6 Anatomic description of a leech with special attention to the neurons, 
reproduced with permission from [10]. 
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We will finally consider another primitive animal. The anatomy of the 
leech has been known for a long time as they have been used in medical 
practice for many hundred years. They are even used today in connection 
with advanced hand surgery. An illustration is given in figure 15.6. Each 
segment is controlled by a ganglion; an aggregate of neurons. These ganglia, 
also those in the head and the tail each consist of only about 400 neurons 
[10]. Their geometry is well defined with axons -"connectives"- along the 
body direction, and perpendicular to them a set of "roots" - axons going 
out to the body wall. We would like to cite a comment on these ganglia 
from the book "From Neurons to Brain" [10]: "As one looks at these 
limited aggregates of cells laid out in an orderly pattern, one cannot but 
marvel at how they, on their own, being the brain of the creature, are 
responsible for all its movements, hesitations, avoidance, mating, feeding, 
and sensations." The general mechanisms governing the geometry of the 
neural projections and the synaptic connections are probably significant 
features in order to understand brain function. Maybe a simple neuron 
organisation as this would be fruitful to describe, using the biomathematical 
approach we have introduced in this book. 
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Appendix 1 - The Plane, the Cylinder and the Sphere 

The geometry for the plane, the cylinder, and the sphere is fundamental in 
the mathematics we develop in this book. We here give the equations and 
show the relationships, and different orientations in space. 

In chemistry we need to do experiments - to "cook" and see what happens. 
Every biological phenomenon is also chemistry, as it can be traced back to 
certain molecules. But most of this chemistry has a complexity beyond 
what can be defined by traditional mathematics. As mentioned earlier, the 
theme of this book is new mathematics which are able to describe structures 
in biology and changes of these structures. In the hurdle of understanding 
we do experimental mathematics. 

For readers lacking a mathematical background, we will in the different 
appendix present some basic concepts needed to apply this analytical 
description of structure and dynamics. The reader is recommended to 
perform some of these calculations, using Mathematica as shown in 
appendix 9. 

The realisation that the laws of Nature could be described with differential 
equations has dominated the scene for very long. We use such mathematics 
to model motion, and have commonly accepted the notion of force and 
acceleration. 

Calculus was a tremendous achievement in the history of science. One 
example is the minimal surface, which describes a very simple physical 
phenomenon which is believed to be important for such diverse structures 
as lipid membranes in biology and surface chemistry based industrial 
application. The problem with the minimal surface mathematics is that you 
immediately run into deep difficulties. Take a copper wire, bend it 
arbitrarily and join the ends. Then dip it in soap water and when bringing it 
up there is a beautiful surface formed in fractions of a second, which is the 
true minimal surface. The tragedy is that you cannot do these mathematics 
with calculus. It is too difficult. 

We cannot do these mathematics either. But we can calculate related 
surfaces that appear to be more relevant, both to biomembranes and 
technology; nodal surfaces of standing wave oscillating surfaces. And we 
can construct other surfaces which we know are important. So we leave the 
soap problem for now, but return to it later in the appendix. 
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Mathematics was invented by man to describe subtle ways of thinking, and 
this is still why we use mathematics. It is used to give models for how space 
is curved and what time really is, and to describe what electrons are doing in 
superconductors. It is used to give models for what things look like with our 
eyes and with our way of thinking. There exists 'a language of shape' or 'an 
aesthetic measure'. 

We believe biology can be described with another, entirely different, branch 
of mathematics, which is called topology. Topology is difficult to define or 
describe, but it has been said that it is mathematics without equations. We 
have developed a type of mathematics which gives topology with 
equations. Of course it is then obvious to apply calculus to these methods, 
but we are not going to do that. We shall just do the mathematics, because 
we think that great parts of these mathematics can be applied directly to 
biology. 

We have found that all the mathematics we shall use may be described by 
planes, cylinders and spheres. And that cylinders and spheres may also be 
described by planes. 

We begin by formulating simple equations, and see what they mean in 
space. The equations in 1.1a-d represent different planes, and are plotted 
in the corresponding figures 1.1a-d. 

x =0 1.1a 
x = l  1.1b 
y =0 1.1c 

z = 0  1.1d 

Figure 1.1a The plane x=O. Figure 1.1b The plane has been 
shifted and is now x = 1. 
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Figure 1.1c The plane y=0. 

Figure 1.1d The plane z=0. 

These planes are of course infinite, and we 
show only a part of them in these figures by restricting the values of x,y,z 
to the range from-1 to 1. 

Planes may be tilted by adding different planes together, 
equations 1.2a-d, and illustrated in figures 1.2a-d. 

as is done in 

x + y = 0 1.2a 

x + 0 . 8 y = 0  1.2b 

x + z = 0  1.2c 
y + z = 0  1.2d 

YO 
01 

-0 

0.5 

z 0 

-0.5 

, 

O x ( 

Figure 1.2a The plane x+y=0. 

1 
YO. 

0.5 

z 0 

--0. 

-0-5 0"~. ~ 

x 0. b "-- 

Figure 1.2b The plane x+0.8y=0. 
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Figure 1.2e The plane x+z=0. Figure 1.2d The plane y+z=0. 

The general case with addition of all three variables is given in equation 
1.3, and creates a plane perpendicular to the space diagonal axis, as shown 
in figure 1.3. 

x + y + z = 0  1.3 

Figure 1.3 The plane x+y+z=0. ' 
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So far we have been studying addition of  planes. Next is to study the simple 
products given in equation 1.4a-d, which each generate two planes, one on 
each side of  the origin. We see that we again have infinite planes, and with 
the boundaries chosen, the square products are shown in figures 1.4a-d. 

x 2 - 1 1.4a 

( x -  0.2y) 2 - 1 1.4b 

y2 _ 1 1.4c 

z 2 - 1 1.4d 

Figure 1.4a The planes are x+l-0 and 

x-l=0, or x 2 - 1 =0.  

Figure 1.4b The planes are 

( x -  0.2y) 2 = 1. 

Figure 1.4c The planes are 

y2 -1  =0.  

Figure 1.4d The planes are 

z 2 - 1 =0.  
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Three sets of squared planes added together  as in equation 1.5a, gives a 
sphere as shown in figure 1.Sa, which is plotted for the constant C=I. 
Changing the constant as in equation 1.5b, changes the size of the sphere, 
as in figure 1.Sb. 

x 2 + y2 + z 2 _ 1 1.5a 

x 2 + y2 + z 2 _ 1/5 1.5b 

Figure 1.Sa Three pairs of perpendicular 
planes give a sphere. 

Figure 1.Sb Lower constant. 

If we add the squares pairwise as in the equations 1.6a-d, the planes 
collaborate to form infinite cylinders as illustrated in figure 1.6a-d. 

x 2 + y2 _ 1 1.6a 

x 2 + z 2 - 1 1.6b 

z 2 +y2  _ 1 1.6c 

(x+  0.2z) 2 + (y  + 0.2z) 2 = 1 1.6d 
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Figure 1.6a Two pairs of planes 

after equation x 2 + y2 = 1. 

Figure 1.6b Two pairs of planes 

after equation x 2 + z 2 = 1. 

Figure 1.6c Two pairs of planes after 

equation z 2 + y2 = 1. 

Figure 1.6d Cylinder tired after equation 

(x + 0.2z) 2 + (y + 0.2z) 2 = 1. 

We shall now make cylinders parallel with the cubic space diagonals. The 
equations for these four cylinders are built up by tilted planes, and have 
been derived in ref. [1]. The equations are given in 1.7a-d. 

(x - z) 2 + (y - z) 2 + ( x -  y)2 _ 1 

(x + z) 2 + ( y  + z) 2 + ( x - y ) 2  _ 1 

( x -  z) 2 + (y + z) 2 + (x + y)2 _ 1 

(x + z) 2 + (y - z) 2 + (x + y)2 _ 1 

1.7a 

1.7b 

1.7c 

1.7d 
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If we in equation 17 above, plot each term, like for example ( x - z )  2 -  1, 
we will find a pair of planes again, and all three terms build six planes, 
which together build a cylinder, as in figure 1.Ta-h. The planes are from 
equation 1.2. Each figure to the right is a projection of the figure to the 
left. 

Figure 1.7a Cylinder after equation 
1.7a. 

Figure 1.7b Different orientation. 

Figure 1.7e Cylinder after equation 
1.7b. 

Figure 1.7d Different orientation. 
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Figure 1.7e Cylinder after equation 1.7c. Figure 1.7f Different orientation. 

Figure 1.7g Cylinder after equation 
1.7d. 

Figure 1.7h Different orientation. 
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A p p e n d i x  2 - Per iodic i ty  

The roots of periodicity in the algebra is described The infinite repetition of 
planes, cylinders and spheres using the circular functions is shown to give 
the surface structures. 

Many things in biology are periodic, both in structure and in motion, as we 
can see in this book. So here we will study the fundaments of periodicity. 

What we do is a part of algebra that is of interest in geometry. We begin 
with the simplest of  roots and come to the equation of products below. 

The function x 2 - 1 can be written x 2 - 1 - 0, or 

(x- 1)(x + 1) = 0 

We continue with an important equation (2.1), which is a part 
fundamental theorem of algebra, and contains more roots. 

of the 

x ( x -  1 ) (x -  2 ) ( x -  3 ) ( x -  4 ) ( x -  5) = 0 2.1 

Figure 2.1 Finite algebraic periodicity. 
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We plot this algebraic equation in figure 2.1 and see that roots in 3D are 
infinite planes, and that the periodicity is finite. This is very important and 
we shall return to it later. If we make this product to have an infinite 
number of roots, we have the definition of a circular function (like cosine) 
as discussed in chapter 2. 

We plot sinxx=0 in figure 2.2. The function of course consists of an 
infinite number of planes along x, but is for comparison here plotted with 
the same borders as used in figure 2.1. 

Figure 2.2 Periodicity after sine. 

Now we know how cosine describes periodicity, and we can add planes 
periodically, similar to what we did earlier. We shall get cylinders and 
spheres again, but since we now use periodical functions, bundles of them 
are created, and they will therefore form periodic structures. 

We have the bundles of planes in equations in 2.2a-c, and the plots in 
figures 2.3a-e. 

cos zcx = 0 2.2a 
cosxy = 0  2.2b 
cos nz - 0 2.2c 
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Figure 2.3a Planes after 
COS ~ X  = 0 .  

Figure 2.3b Planes after 
cos 7cy = 0. 

Figure 2.3c Planes after 
COS ~ Z  = 0 .  

First we use the cylinder equations 1.6 and 1.7 to get the circular equations 
for periodic packing of  cylinders in 2.3 and 2.4. The plots are in figure 2.4 
and 2.5a-b.  

cos rtx + cos 7zy - 1 = 0 2.3 

cos rt(x - y )  + cos 7t(x - z) + cos rt(y - z) - 2 = 0 2.4 

Figure 2.4 The pairwise adding of planes 
after equation 2.3 give cylinders. 
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Figure 2.5a The adding of planes 
after equation 2.4 give cylinders. 

Figure 2.5b Different projection. 

Many phenomena in molecular biology involve periodic surfaces which can 
be seen as the result of vesicle fusion, and we shall derive some of them 
accordingly (a vesicle is a spherical shell formed by a biological membrane). 

We make vesicles or spheres by combining planes, and since we need many 
vesicles for the periodic aggregations, we use the circular functions. The 
functions cosx, cosy and cosz are three sets of infinite planes, shown in 
figures 2.3a-c. If we add them together with the isovalue constant C=1.25 
in equation 2.5, spheres are formed as  in figure 2.6. We see that each 
sphere is surrounded by six others, which means that seven vesicles have to 
meet in fixed geometry to form a surface. The connectivity is said to be 
six. 

cos ~zx + cos rty + cos rtz = C 2.5 

Changing the constant to C=0.8 
catenoids, as shown in figure 2.7. 

makes the vesicles meet and form 

At zero constant after equation 2.6 there is the famous P-surface in figure 
2.8. 

cos %x + cos xy + cos ~z = 0 2.6 
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Figure 2.6 Planes from a circular function make vesicles. 

Figure 2.7 Vesicles are made to meet. 
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Figure 2.8 The nodal P-surface. 

Next is the permutation of planes in space, taken from equation 1.2 in 
appendix 1, and shown here in equation 2. 7 for C=2. 

cos ~t(x + y) + cos 7z(x- y) + cos 7z(x + z) 

+ cos ~:(z - x) + cos ~:(y + z) + cos ~:(y - z) = 2 
2.7 

The plot is shown in figure 2.9 and shows spheres or vesicles in a packing 
called a body centred arrangement (see appendix 6). The same packing is 
found in the atomic arrangements in many metals, and in stainless steel. 
Eight atoms here surround a ninth, and the connectivity is therefore eight. 
The structure is, however, not of great importance in biology. Still, we 
have it here to complete the picture of the symmetry that is derived from 
these permutation in space. We make the spheres approach each other, and 
at a constant of-0 .2  there are catenoids between the bodies, which now 
have become cubic as shown in figure 2.10. Finally there is figure 2.11 for a 
constant of-0.5 and with smaller boundaries. 



Periodicity 391 

Figure 2.9 Permutations in space of equations for 
planes give a body centred structure of vesicles. 

Figure 2.10 Spheres meet and form catenoids. 
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Figure 2.11 The connectivity is eight. 

Figure 2.12a The connectivity is 
three. 

Figure 2.12b Different projection 

The same plane permutation as above, put together with a phase shift (sine 
in stead of cosine) after equation 2.8, gives bodies of a shape considerably 
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different from spherical. This is because only three bodies surround a 
fourth, as shown in the plot in figure 2.12a and the projection in b. The 
connectivity is said to be three. 

sin rc(x + y ) + sin rc(x - y ) + sin rc(x + z) 

+ sin 7t(z - x) + sin rc(y + z) + sin rc(y - z) = 2.8 
2.8 

And for a constant of 2.7 there is figure 2.13, which is a part of the famous 
gyroid surface (after gyrate, which means moving around in circles or 
spirals), which was described in figures 4.1.2, 5, 6. 

Figure 2.13 Part of the gyroid surface showing repeated three-connectivity. 

The general case in 3D with x+y+z has four planes, of which one was 
shown with a phase shift in figures 1.3a-b. The permutations are in 
equation 2.9, and the plot is shown for C=I in figure 2.14a. The phase shift 
from cosine to sine in 2.14b, after equation 2.10 with C=I,  which shifts the 
structure. 

cos ~:(x + y + z) + cos n(x  - y - z) 

+ cos ~ ( - x -  y + z) + cos ~;(-x + y - z) = C 
2.9 
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1 
cos rt(x + y + z - 1 ) +  cos r t ( x - y  - z - ~ )  

+cos r t ( - x - y  + z - 1 ) +  cos ~:(-x + y - z -  1 ) -  C 

2.10 

Figure 2.14a Cubeoctahedron of 
spheres in cubic close packing. 

Figure 2.14b Phase shift. 

Figure 2.15 Magnetospirillum magnetotacticum with a 
string of Fe304 magnetite crystals [3]. 
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The spheres are located at the vertices of a cubeoctahedron, which gives 
cubic close packing. Such packing of atoms is not common in biology but 
occurs for example for the Fe304 magnetite crystals in the bacterium 
Magnetospirillum magnetotacticum. The morphology of the particles is 
cube octahedral as here, with the space diagonal [111] axes oriented along 
the linear chain as shown in figure 2.15, ref. [3]. 

A smaller constant makes the spheres approach each other, and finally the 
perpendicular planes intersect. 

Adding equations 2.9 and 2.10 gives the well known formula for the D 
surface as shown in chapter 2 and 8. 

In chapter 2 we also carried out a discussion from the foundations of our 
biomathematics, where we showed that these fundamental surfaces grew out 
from infinite products of planes, or roots. The position of the individual 
planes determine the roots in the algebraic products, and the phase in the 
circular equations determines the positions of the infinitely repeated roots. 
The simplest formula for the D-surface seems to be the one given in 
equation 2.11, which is the one that will be used in the description of the 
structure of the D-surface below. 

1 1 
cos 7t(x + y + z + -~) + cos ~:(x- y - z + -~) 

+ c o s g ( - x -  y + z + 1 )  +cosr t ( -x+ y -  z + 1 )  = C 

2.11 

Figure 2.16a Vesicles in a diamond 
arrangement. 

Figure 2.16b Vesicles meet to show 
the connectivity that is four. 
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Figure 2.16e The D-surface. Figure 2.17 Bigger part of the D-surface. 

We select a constant of 2.3 to show the sphere-like tetrahedra in space in 
figure 2.16a. The ordered structure of these bodies is that of the carbon 
atoms in diamond, and by changing the constant to 1.9 and 1.5 there are 
figures 2.16b-c, which show the development of catenoids between vesicles. 
There are four bodies around a fifth, and the connectivity is said to be four. 
Finally there is the complete structure of the D-surface at a constant of 0 
in figure 2.17. 

Figure 2.18a Boundaries to give the 
characteristic catenoid in the D- 
surface. 

Figure 2.18b Different projection. 
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Figure 2.18c Monkey saddle in the 
D-surface. 

Figure 2.18d Typical part of the D- 
surface. 

Figure 2.18e Different kinds of monkey saddles 
in the D-surface. 

We have selected certain important parts of this surface by using 
appropriate boundaries, and show them in figure 2.18a-e. They clearly 
show the relationship to the D-minimal surface. Metal wires following the 
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boundaries of these surfaces will, when dipped into soap water and lifted out 
again, generate the D-minimal surface, which is topologically identical to 
the nodal D-surface. The nodal surfaces are very similar to the minimal 
surface analogues. 

Of the surfaces discussed above, the ones with the lowest connectivity are 
of importance in biology. This means the G-, the D- and the P-surfaces. 
The nodal surfaces are the three dimensional correspondences to the two 
dimensional nodal lines, which are the curves along which a membrane 
remains at rest during eigenvibrations [2]. We have kept the original names 
of the minimal surfaces to describe the nodal surfaces, as these names 
reflect the symmetries common to the two types of surfaces. P stands for 
primitive, D stands for diamond, and G for gyroid. 

We have used these surfaces to describe finite crystal shapes, or giant 
molecular phenomena like cubosomes (colloidal particles of bilayers with 
periodicity according to the D', G-, or P-surfaces). As these have 
boundaries as ordinary molecules, a minimal surface description is 
impossible. An obvious description is of course the nodal description of 
standing wave character. 

Some of the minimal surfaces represent, as special cases, groups of 
important surfaces or functions. We have done the most important ones in 
form of some periodic examples related to the nodal surfaces. When we 
later review differential geometry and curvature in appendix 8, some other 
minimal surfaces appear for mainly historical reasons, as type 
representatives. Their chemical or physical importance is very limited. 
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Appendix 3 -  The Exponential Scale, the 
Cylinder and Sphere Fusion 

GD function, 

The GD function is used to demonstrate the properties of  the exponential 
scale. Via the formation of catenoids, cylinders and spheres are brought 
together into structures. 

We have shown how to make a plane, a cylinder, or a sphere, and we have 
made bundles of them by going periodic. We have seen how planes interact 
and collaborate in space to form spheres, which collaborate to build some 
very fundamental surfaces. 

We shall now learn how to find a function that makes it possible to put two 
spheres next to each other in space. We will then bring them together, so 
they interact or react. The same can also be performed with planes, 
cylinders, or virtually any function. To do this we need the exponential 
scale. 

The Gauss distribution (GD)function is famous for describing all kind of 
variations of properties in biology (see chapter 15). It is also known as the 
error function, and as the initial solution to the diffusion equation. We give 
the function in 3.1. 

_x 2 
y = e  3.1 

In three dimensions, this function is built of infinite planes as shown in the 
equations 3.2a-c. The constant, -1/2, controls the distance between the 
planes. 

_x 2 1 
e - - -  = 0  3.2a 

2 
_y2 1 

e - - - 0  3.2b 
2 

_z 2 1 
e - -  =0  3.2c 

2 
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Figure 3.1a-e From the equations in 3.2 respectively. 

If we add these equations pairwise, as in equation 3.3, we get cylinders as 
shown in figures 3.2a-c. 

e_(X2 +y 2) _ 1  =0 3.3a 
2 

e_(X2 +z 2) _ 1  =0 3.3b 
2 

e_(Z2 +y 2) _ 1  =0 3.3c 
2 

Figure 3.2a-c From the equations in 3.3. 

We make an experiment. From above, we know that the each of the two 
individual equations in 3.4 gives a cylinder. If we add the two cylinders, we 
have equation 3.5, in which they fuse together to an ellipsoid, as in figure 
3.3. 
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x 2 + y2 _ 1 3.4a 

x 2 +z  2 - 1  3.4b 

2x 2 +y2 +z  2 _ 2  3.5 

Figure 3.3 Ellipsoid after equation 3.5. 

We know from earlier that we can move and tilt planes and cylinders. We 
add the two cylinders on an exponential scale, and give one of them a shift, 
as in equation 3.6, and figure 3.4. 

e_(X 2 + y2) + e_((x_4.5) 2 + z 2) _ 0.5 = 0 3.6 

We see that the two cylinders are perfectly separated after equation 3.6. As 
we will learn, the exponential scale represents a wonderful method to 
extend mathematics of structures far beyond what earlier was possible. In 
equation 3.7 we let Ax take the values 2.5, 2 and 0, and find the 
corresponding figures in 3.5a-e. 

e_(X 2 +y2) + e_((x_Ax)2 +z 2) -0 .5  = 0 3. 7 
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Figure 3.4 Two cylinders in 
space after exponential scale. 

Figure 3.5a Rods are moved 
after equation 3.7. Ax= 2.5. 

Figure 3.5b Ax=2. Figure 3.5c Ax=0. 
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Figure 3.6 Three non-intersecting rods after equation 3.8. 

Figure 3.7a Two different kinds of 
rods. 

Figure 3.7b One rod is made 
smaller after equation 3.10. 

Finally, in equation 3.8 we have three rods in space as shown in figure 3.6. 

e_(X 2 +y2) + e_((x_2)2 +z 2) + e_((z_2)2 +(y_2)2) _ 0.5 - 0 3.8 
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We may add one of the rods from above to a rod parallel to a cubic space 
diagonal (after 1.7), as in equation 3.9 and figure 3.7a. 

e_((x_2.5)2 +y2) + e_((x_z)2 +(y_z)2)+(x_y)2 -0 .5  - 0 3.9 

We change the size of the first rod in figure 3.7b after equation 3.10. 

e -2((x-2"5)2+y2) +e -((x-z)2+(y-z)2)+(x-y)2 - 0 . 5 - 0  3.10 

We move the first rod so the two intersect in figure 3.8 after equation 
3.11. 

e_2((x)2 +y2) +(y_z)2)+(x_y)2 + e -((x-z)2 - 0.5 - 0 3.11 

Figure 3.8 The two rods intersect. 

Minimal surfaces are common in Nature, but we have learnt that 
general minimal surfaces were difficult to handle mathematically. 

the 

As many shapes are determined by surface tension (cf. chapter 14), the 
implicit functions here are excellent for many things, and we will show a 
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couple of simple examples. We have studied the cylinders, and will now 
move on to look at the spheres. 

We will show mathematically based "attraction" 
experimental knowledge of vesicle fusion. 

which agrees with our 

We start by putting two spheres well apart by using the exponential scale in 
equation 3.12. We make the equation symmetric to be able to analyse it, 
and plot it for C=0.95 in figure 3.9. 

e -((x-l '5)2+y2+z2) +e -((x+l'5)2+y2+z2) - C  - 0 
3.12 

Figure 3.9 Two spheres well apart after equation 3.12. 

Figure 3.10 The planes instead of the spheres, to show the roots. 
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We then study the function along x by making y=z=O, which simplifies the 
equation, as in 3.13. 

e -(x-1"5)2 + e -(x+1"5)2 - C  - 0 3.13 

This is plotted in figure 3.10 for C=0.5, and we see that it has four roots 
where the planes (earlier spheres)cut the x-axis. We come to an important 
property of these exponential functions, and show this by getting the roots 
out explicitly. It is easily realised from equation 3.13, that for x values 
close to 1.5, the second term is much smaller than the first term; 

e -(1"5+1"5)2 = e -(3)2 = 10 -4 

This means we put 

e -(x-1"5)2 = C 

- ( x -  1.5) 2 - lnC 

x -  1.5 •  

and the other pair of roots 

x -  -1.5 __ ~/- lnC. 

For C=0.5 the roots are ___0.67 and +_2.33, which was shown in figure 3.10. 

Changing x 2 in the exponent back to x2+y2Wz 2, we 
become infinitely small when C approaches unity, since ew 

spheres which 
and lnC < O. 

With C becoming smaller, the spheres become larger. 

We plot the function for C=0.5 in equation 3.12 in figure 3.11. 

The spheres approach each other as they grow in size. They meet at 
x=y=z=0, and the constant is determined by the calculation below, which is 
used in equation 3.12 to give figure 3.12a-b. 

C - e (-1"5)2 + e (1"5)2 - 2e -2"25 
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Figure 3.11 The spheres are closer because they 
are bigger. 

Figure 3.12 A constant of2e 225 in equation 3.12 makes the spheres just meet. 

The catenoid between the two spheres is developed for a constant of 0.15 
in figure 3.13. 

We changed the size of the spheres to make them meet in a combined 
function on the exponential scale. We now move the spheres towards each 
other by changing their coordinates, which is done with the equation 3.14, 
which is very similar to 3.12. 

e_((x_Ax)2 +y2 +z 2) + e_((x+Ax)2 +y2 +z 2) _ 0.5 - 0 3.14 

We go along x again and make x-0,  and obtain a simple expression when 
the spheres meet; 

e -  (AX) 2 + e-  (z~) 2 _ 0.5 - 0 



408 Appendix 3 

A x -  ~ n 4  

Ax takes the values 1.8, 1.2, ~ n 4 ,  and 1.1 below in figures 3.14a-d. 

Figure 3.13 Still smaller constant, and a catenoid is developed. 

Figure 3.14a Spheres are moved 
after equation 3.13. Ax = 1.8. 

Figure 3.14b Ax =1.2. 

Figure 3.14c Ax = ~ 4 .  Figure 3.14d Ax = 1.1. 
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Appendix 4 - The Exponential Scale, the Planes and the 
Natural Function, Addition and Subtraction 

The natural exponential is used to develop the exponential scale to make a 
polyhedron like the cube, or to make closed cylinders by using lids, or 
catenoids between planes, or spikes coming out from a plane. 

The method of putting lids on cylinders and joining them in 2D- or 3D- 
space is used frequently in this book. We refer especially to the description 
of a mitochondrion and its division, and to the description of a muscle 
sarcomere and its motion of contraction, which both are in 2D. We also 
refer to the description of the dynamics of filaments and the Golgi machine 
in 3D. And to the flagella and the tree, in 2D. 

We will now start to make planes on the exponential scale. We use the 
natural function, which is also called the Euler function after its inventor. 

y = e  x 4.1 

In one or two dimensions, this explicit function is very important for the 
fundaments of mathematics. One application is the exponential growth. 

Figure 4.1a Exponential comer after 
equation 4.2. 

Figure 4.1b Exponential comer 
after equation 4.3. 
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The three dimensional implicit form is of great importance in geometry, as 
we have shown in section 5.2, which also is shown in refs. [1,2,3,4,5,6,7]. 
Here we show the geometry of equation 4.2 in figure 4.1a. In figures 4.1-3, 
the constant for equations 4.2-7 is set to C=100. 

e x +e  y +e  z - C  4.2 

And we show the geometry for equation 4.3 in figure 4.1b, which is a 
symmetrically equivalent version of 4.2. 

e -x  +e  - y  +e  - z - C  4.3 

We construct a cube by putting all these planes together in equation 4.4 and 
figure 4.2a. 

e x +e  y +e  z +e  - x  +e  -y  +e  - z - C  4.4 

We can move one of the cube-planes to elongate the cube, as shown in 
equation 4.5, and figure 4.2b. 

e x -4  +e  y +e  z +e  -x  +e  -y  +e  - z  - C  4.5 

The position of the moved plane is now around eight in x. 

Figure 4.2a Cube after equation 4. 4. Figure 4.2b A plane moved in the cube 
after 4.5, creating a tetragonal polyhedron. 
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If we take away the cube-face, or plane, which is given by the term e -y  in 
equation 4.6, and shown in figure 4.3a, we get a square cylinder with one 
end closed. 

e x +e  y +e  z +e  -x  +e  - z - C  4.6 

By removing two of the planes from equation 4.4, we obtain the square 
cylinder in equation 4. 7 and figure 4.3b. 

e x +e  z +e  -x  +e  - z - C  4.7 

Figure 4.3a One plane missing 
from the cube, after equation 4. 6. 

Figure 4.3b Two planes 
missing from the cube, after 
equation 4. 7. 

We now want to use this knowledge to put an end or two to a cylinder. We 
do that in line with above with the equations 4.8 and 4.9. The signs in the 
exponents are in accordance with the signs of the planes in the cube above. 
All is shown in figures 4.4a-b. 

x 2 + y2 + e(Z-4) = 10 4.8 

x 2 + y2 + e(Z-4) + e-(Z+6) = 10 4.9 

Next, we wish to join different cylinders in space, which may correspond to 
a peptide chain. We then need to go to the GD-related functions of the 
exponential scale. 
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Figure 4.4a An end to a cylinder 
after 4.8. 

Figure 4.4b Two ends to a cylinder 
after 4.9. 

Figure 4.5a Single closed 
cylinder after equation 
4.10. 

Figure 4.5b Double closed 
cylinder after equation 4.11. 

Figure 4.5c Single closed 
cylinder after equation 4.12. 
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We make three cylinders of different orientations in space. To do this we 
design the equations 4.10-12. 

e_(X 2 +y2 +e-Z) = 0.5 4.10 

e_(Z 2 +y2 +e-X +eX-5) = 0.5 4.11 

e -((x-5)2 +z2 +eY) = 0.5 4.12 

These cylinders are shown in figures 4.5a-c. We add them together in the 
equation 4.13, and the result is given in two different projections in figure 
4.6a-b. 

e_(X 2 +y2 +e-Z) + e_(Z 2 +y2 +e-X +eX-5) + e_((x_5)2 +z 2 +ey) = 0.6 
4.13 

Figure 4.6a The three cylinders 
added together at the closed ends, 
after equation 4.13. 

Figure 4.6b Different projection of a. 

Here we have seen various effects of omitting planes, for example opening 
one face of a cube. Next we will see what happens when a plane is 
subtracted from this cube. We make a cube where we have changed the sign 
for one of the terms, i.e. the e z plane is subtracted, in equation 4.14. The 
result is dramatic as shown in figure 4.7. 

e x +e y - e  z +e -x  +e -y  +e - z -  100 4.14 
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Figure 4.7 A plane is subtracted from a cube after 4.14. 

We do the same with the closed cylinder of equation 4.9 and figure 4.4b, 
and get equation 4.15. 

x 2 + y2 _e  z _e -Z  _ 0 4.15 

This is shown in figure 4.8 which is the famous catenoid, which is a 
minimal surface. 

Figure 4.8 Two planes subtracted from a cylinder after 4.15. 
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Figure 4.9 Extended borders to show the catenoid minimal 
surface of figure 4.8. 

Extended borders in figure 4.9 show where the planes are. 

There are several ways to make catenoids, and our favourite is the one with 
the GD-function, since it can be moved around, and multiples can be made. 
We show this with the equations 4.16-18 and figures 4.10-12. 

In these equations, e z2 represents two parallel planes, and the GD-type 

e-(X2+y2)-function is the cylinder. 

e -(x2+y2) +e  z2 - 1.5 4.16 

With equation 4.17 we can change the distance between the planes, by 
moving the first z-term. 

e_(X 2 +y2) + eZ_2 + e-  z _ 1.5 4.17 

In equation 4.18 there are two catenoids, which are shown in figure 4.12, 
and of course these can also be moved around. 

e -(x2+y2) +e -(x2+(y-4)2) +e z +e -z  - 2.5 4.18 
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Figure 4.10 This is the structure of 
holes in a lamellar liquid crystalline 
phase, or the pore structure of cell 
nuclear membranes (the surfaces 
shown corresponds to the polar head 
groups of the lipid bilayer). After 
equation 4.16. 

Figure 4.11 With a GD- 
description it is possible to change 
the distance between planes. 

Figure 4.12 With a GD-description it is possible to make 
two, or more catenoids between planes. 

With just one plane in 4.19 we get a spike. This structure can however be 
changed with the constant. The topology in figure 4.13 is very similar to 
the structure of half the pseudo-sphere, which is famous for having 
constant negative Gaussian curvature. 
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e_(X 2 +y2) + e-  z = 1 4.19 

Figure 4.13 With one plane after 4.19 there is a spike. 
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Appendix 5-  Multiplication of Planes, Saddles and Spirals 

Saddles are derived from planes and used to derive important surfaces. 
Helicoids are derived from saddles, and via the exponential scale multiple 
spirals are described. Finally, the surface for the DNA-molecule is derived, 
also with the saddle-approach using the exponential scale. 

Multiplication of planes gives saddles as we will show in this appendix. The 
simple product xy in equation 5.1a is two intersecting planes, as shown in 
figure 5.1a. 

xy - 0  5.1a 

Figure 5.1.a Two intersecting planes. 

Adding a z-plane gives equation 5.1b, which gives the saddle in figure 5.lb. 

xy - z 5.1b 

Rotating the saddle 45 ~ after equation 5.2, gives figure 5.lb. 

( x + y ) ( x - y ) -  z 5.2 
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In figures 5.2a-b, the borders are extended, and it becomes clear that these 
saddles are derived from planes. 

Figure 5.1b A saddle after 5.1. Figure 5.1c The saddle is rotated 
45 ~ after equation 5.2. 

Figure 5.2a Extending the borders shows that the saddles are derived from planes. 

Using a circular function as in equation 5.3, the saddles are repeated along z 
to a beautiful tower surface in figure 5.3. This is the fundamental structure 
unit of the lipid-protein bilayer at the alveolar surface of lungs (see chapter 
14). 
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xy + cos~z = 0 5.3 

Figure 5.2b The saddle is rotated 45 ~ 

Figure 5.3 Saddles repeat along z to a beautiful tower surface 
after equation 5.3. 
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We also make three planes meet after 5.4, and the intersecting planes are 
shown in figure 5.4. 

y(~f3 1 ~ 1 
x + ~ y ) (  x - - y ) - 0  

2 2 2 
5.4 

Figure 5.4 Three intersecting planes. 

Figure 5.5a Bringing in z gives a 
monkey saddle after equation 5.5. 

Figure 5.5b Rotated after equation 
5.6. 
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Bringing in a z-plane gives a saddle as in equation 5.5, and the saddle is then 
rotated with equation 5.6. 

x ( ~ x +  2 y ) ( - - x + 2  2 y ) + z - 0  5.5 

y(af3 1 ~f3 1 
x + - y ) (  x - - y ) + z - 0  

2 2 2 2 
5.6 

We see the two saddles next to each other in figures 5.Sa-b. 

Extending the borders as in figure 5.5c shows how the monkey saddle really 
is built up by planes. 

Figure 5.5e Extended borders show that the monkey 
saddle is also built of planes. 

Finally, using a circular function as in equation 5. 7, the saddles are repeated 
along z to a beautiful tower surface in figure 5.6. 

x ( -  x + y ) ( - -  x + y) + cos ~:z - 0 
2 2 2 

5.7 

These tower surfaces in figures 5.3 and 5.6 are of course beautiful 
demonstrations of how planes can go through each other continuously 
without intersections. 
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Figure 5.6 The monkey saddle also builds a tower surface. 

Figure 5.7 Helicoid. 
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The chiral helicoid, or screw, or spiral surface, is a very important surface 
in chemistry, physics and mathematics. We start by giving its beautiful and 
simple equation in 5.8. 

xsin nz + y cos rcz = 0 5.8 

We have shown how to derive this surface from planes using the 
fundaments of mathematics, i.e. the algebra in chapter 2. We refer to that 
and just here say that we make the x and the y planes rotate by using the 
circular functions on the z terms. This helicoid surface is given in figure 
5.7. 

What was done above, can with the exponential scale be made finite or 
partly finite. We show beautiful applications of this below. 

The helicoid is made finite in its extension in the xy plane by adding a 
cylinder as in equation 5.9, which results in the spiral in figure 5.8. 

xcos ~z + y sin rtz + x 2 + y2 _ 0 5.9 

Figure 5.8 A helicoid and a cylinder makes a spiral. 

To create a double spiral, we bring in more planes, which we naturally get 
from the saddles above, as shown in equation 5.10. 



426 Appendix 5 

(x 2 _ y2)sinrtz eX2 +y2 
xy cos 7tz + + ~ = 0 5.10 

2 10 

Bringing in even more planes from the saddle equations in 5.5-6 we get a 
triple spiral in equation 5.11. 

1 ~ 1 
x(_-- x + y ) ( - -  x + ..... y)cos rtz 

~ 2 2 2 2 

+y(~f3 1 x/3 1 
x + - y ) (  x - - y ) s i n ~ z z  + 

2 2 2 2 20eX2 +y2 
=0 

5.11 

Figure 5.9a Equation with a 
saddle gives the double spiral. 

Figure 5.9b Equation with a monkey 
saddle gives the triple spiral. 

This was a couple of cases from the general spiral equation, as given by two 
of us in ref. [ 1 ]. 

The general equation for the multi-spiral of the DNA-type was derived by 
one of us via the so called helicoidal saddle tower surfaces [2]. Here we shall 
demonstrate this by showing the derivation of the DNA-surface itself. 

We start by deriving a tower surface, which is a hybrid of the two saddle 
orientations above, and is plotted below in figure 5.10 after equation 5.12. 

2(x 2 _ y 2 )  
+ xy - c o s n z  - 0 5.12 
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Figure 5.10 A tower surface after equation 5.12. 

Figure 5.11 A helicoidal tower surface after 5.13. 
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This tower surface is transformed in equation 5.13 to a helicoidal tower 
surface by applying the helicoid equation 5.8, which is illustrated in figure 
5.11. 

xyc~ ( x 2 - y 2 ) s i n (  - ~ ) - c o s ~ : z - 0  5.13 

The tower surface has now become a formidable screw. 

Figure 5.12 A part of an idealised DNA double helix (the 
DNA molecule) after equation 5.14, identical with the 
original in ref. [2]. 
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We then add the damping in form of an exponential cylinder, and change 
the saddle period to get the right number of hydrogen bond bridges in the 
pitch of the DNA. The equation for this saddle description of a part of an 
idealised DNA double helix (the DNA-molecule) is now identical to the 
original in ref. [2]. The equation is given in 5.14 and the formidable 
structure is shown in figure 5.12. 

1 _y2 sin(~-~)cos(~ -~) 3e(X2+y2)/10 cos(10 ) _  _rtz +~(x2 ) _ +-5 =0 xy 5.14 
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Appendix 6- Symmetry 

The concepts of  group, translation, unit cell and crystal classes are 
described Two-fold, six-fold, and four-foM axes of symmetry are defined Unit cells 
are described as parallelepipeds, made of  planes. These planes are repeated 
with circular functions to give crystal structures. 

By studying the interaction between vesicles, cylinders, and planes, we 
could in the earlier appendices show that structures of proper symmetry 
stemmed from a fundamental theorem of algebra. We have found that the 
implicit permutation of the variables in space give functions which seem to 
be synonyms with symmetry, ref. [1]. Below we give the traditional way of 
describing symmetries and simpler structures. 

As geometry can be described as 'earth measurement' (what we can measure 
with a ruler), symmetry may be explained as 'form measurement'. In the 
geometry of a triangle with equal sides there is a 3-fold axis of rotation, in 
a square there is a 4-fold axis, in a regular pentagon there is a 5-fold axis, 
and in a hexagon there is a 6-fold axis. And between your hands there is a 
mirror plane (bilateral symmetry) when they are oriented next to each 
other. Now you know the fundaments of symmetry, and we go directly to 
3D space. 

Structures in 3D can have all different types of order, ranging from 
completely disordered to completely ordered in all three directions. 
Structures that are periodic in one direction are for instance the actin 
filament and the DNA. There are also structures that are periodic in two 
directions, and one example is the structure of the surface lining in the 
alveolus, as discussed in chapter 14. Structures that are periodic in three 
dimensions are very common in biology, for example apatite in bone, 
cubosomes in cell membrane aggregates, and crystalline proteins in muscles. 

In all these cases a smallest unit of the structure is repeated in the x-, y-, 
and/or z-directions in a parallel manner. This unit cell is in three 
dimensions a parallelepiped, and it can have different symmetry ranging 
from triclinic to cubic, as shown below. The unit cell repetition is called 
translation. Periodic translation of a unit cell and its contents forms an 
infinite structure, and such a structure will also have a symmetry, which 
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depends on the form or symmetry of unit cell that is repeated. This is what 
we will discuss. 

In crystallography words like group, symmetry group and symmetry 
operations are frequently used. If we say a figure is symmetric, it means we 
can do symmetry operations which leave the whole figure unchanged while 
permuting its parts. The symmetry operations of any figure form a group, 
which is called the symmetry groups of the figure. If a figure is completely 
irregular, like the letter F, its symmetry group is of the order one, 
consisting of the identity only. The letter E has bilateral symmetry, the 
mirror plane being horizontal, and its symmetry group is of order two. The 
letter N is symmetrical by a half turn, which is a rotation of ~, a reflection 
in a point, or a central inversion. The symmetry group is still of order two, 
and the group is said to be cyclic. 

It was not until 1924 the famous mathematician George P61ya managed to 
show that there are only 17 plane groups in 2D - no more and no less. In 
3D there are 230 space groups. 

On the other hand, in the thirteenth century Spain, the Moors used all 
these seventeen plane groups in the art of filling a plane with a repeating 
pattern for their decoration of Alhambra. By trial and error of course. 
Another famous use of these seventeen groups is found in the work of 
Dutch artist M. C. Escher, who instead of the abstract patterns of the 
Moors, used animal shapes. 

There is much more to say about the theory of symmetry, space groups 
and the reciprocal lattice. We stop for the moment and concentrate on 
examples of structures and symmetry. 

The structures to come will all contain the periodic translation operation, 
which is of immense importance. Molecules order up after the translation 
to a crystal, and its structure may be studied with single crystal x-ray 
diffraction methods. Almost all our knowledge of protein structure, lipid 
self-assembly and DNA came through such studies. Some molecules can be 
studied in a high resolution electron microscope, and information is 
obtained via three dimensional reconstruction of the 2D images recorded. 
This is another important tool in modem molecular biology. 

There are seven coordinate systems used by crystallographers, which are 
called the crystal systems. There are the axes a, b, c and the angles between 
them are {~, 13, y (these are the lengths of the sides, and the angles between 
them, in the unit cell). Corresponding to x, y, z in our graphics here, these 
'a, b, c' are all unity, and they are all perpendicular to each other. We shall 
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not use the vector or tensor notation, we just use everyday crystallographic 
terminology. 

The seven crystallographic coordinate systems are listed below; 

Triclinic a ~ b r c and ~ r 13 r y 

Monoclinic a ~ b r c and 13 # 90 ~ 

Orthorhombic a ~ b ~ c and (z = 13 = 7 = 90 ~ 

Tetragonal a - b r c and ~ - 13 - 7 - 90 ~ 

Hexagonal a - b ~ c and c~ - [3 - 90~ Y - 120~ 

Trigonal (can be treated as hexagonal) 

Cubic a = b = c and c~ = 13 = y = 90 ~ 

It must  be said that the metric rules above do not describe the true 
symmetry,  but are rather conditions necessary, but not sufficient. Equalities 
may only be there within the experimental error. When a complete crystal 
structure determination has been carried out on a crystal, the symmetry is 
determined, and with this the coordinate system is also determined. 

So we determine the symmetry for a crystal and its structure, by making a 
structure analysis at lowest possible resolution. 

The simplest possible box is a cube, since all axes are of  equal size and 
perpendicular to each other. Cubes with rounded edges and vertices are 
shown in figure 6.1, and we have taken the opportunity to use the 
exponential scale and included one of  the three mutually perpendicular 4- 
fold axes in figure 6.1a, and one of  the six 2-fold axes in figure 6 . lb .  The 
equations are in 6.1 and 6.2. 

x 2 2 _(eX2 2 2 
e -2"4e +Y +e  +eY +ez -10)__0.08 6.1 

x 2 
e - l ' 2 ( e ( -x -y+z )2+e ( -x+y-z )2 )  +e  -(e +ey2+eZ2-10)  =0 .08  6.2 
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Figure 6.1a 4-fold axis in cubic 
symmetry. 

Figure 6.1b 2-fold axis in cubic 
symmetry. 

In a cubic crystal structure there is no requirement to have a 4-fold axis, but 
it is necessary to have the four 3-fold axes, for cubic symmetry, which are 
shown as cylinders in figure 6.2 after equation 6.3. 

_0.8(e(X+y) 2 +e(y+z) 2 +e(X-Z)2) 
e 

_0.8(e(X-Y) 2 +e(y+z) 2 +e(X+Z)2) 
+e 

+e -0"8(e(x-y)2 +e(Y-Z)2 +e(X-Z)2) 6.3 

_0.8(e(X+Y) 2 +e(Y-Z) 2 +e(X+Z)2) 
+e 

+e-(e x2 +e y2 +e z2 -20) = 0.08 

There are also plenty of mirror planes in the cube, as seen in for example 
figure 6.6. 

Next, we rum to the hexagonal class, and we demonstrate the important 
fold axis with a hexagonal prism in figure 6.3a after equation 6.4. 

_ 
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e (2y~f~/3)4 + e (x+ Y"V/-3/3)4 + e ( -x+  Y~f3/3)4 + e  z4 - 1  0 6 - 0 6.4 

Figure 6.2 Four 3-fold axes in cubic symmetry. 

Figure 6.3a 6-fold axis with a 
hexagonal prism. 

Figure 6.3b A third of the 
hexagonal prism. 
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The asymmetrical unit (smallest possible unit to repeat with symmetry) is a 
third of the hexagonal prism. This is also a picture of the hexagonal 
coordinate system with origin in an obtuse comer shown in figure 6.3b. 

e(2y~f3/3)4 e(X+y~f3/3)4 06 + +e z4 -1  - 0  6.5 

Going tetragonal we loose the 3-fold axes, and three of the four 4-fold axes 
from the cubic system. The picture is in 6.4 and the equation is 6. 6. 

x 2 _(eX4 4 4 
e -2"4e  +y2 +e +e y +6e z -20) _- 0.08 6.6 

Figure 6.4 The 4-fold axis in tetragonal symmetry. 

Next is the orthorhombic class, which only has 2-fold axes, as shown in 
figure 6.5. It also has mirror planes, which are not indicated. 
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x2+y 2 -2.5e -2.5e x 2 + z 
e +e 

2 
+e 

_2.5ey2+z 2 

+e-(e x6 +4e y6 +16e z6 -20) = 0.08 

6.7 

Figure 6.5 Three 2-fold axes in orthorhombic symmetry. 

We do not show the monoclinic or triclinic systems here. 

We have studied the symmetry of the crystal classes in form of the 
parallelepipeds of the coordinate systems, and will now give the structures 
when these aggregates are repeated with translation. We have earlier 
described translation as the roots of the polynom of counting, cf. equation 
6.8. 

( x -  1)(x- 2 ) (x -  3 ) (x -  4)... 6.8 

Making the product infinite, we have the circular functions (cf. chapter 3), 
and the repetition of the cube with translation is in equation 6.9. This is a 
solution to the wave equation. The surface consists of three sets of planes 
that intersect, and the periodicity with cubes are shown in figure 6.6a, 
where we clearly can see the symmetry elements. 
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Figure 6.6a Periodicity with cubes. 

Figure 6.6b Different projection of a. 
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cos rtx cos roy cos rtz = 0 6.9 

The hexagonal repetition of hexagons is described by equation 6.10 and is 
shown in figure 6.7. There are here four sets of planes that intersect. 

sin(rt 2 ~  ~f3 3 y) sin(rt(x + y--~-)) sin(rt(-x + y ))sin(rtz) - 0 6.10 

Figure 6.7 Hexagonal repetition. 

The equations for the tetragonal and orthorhombic structures of infinite 
extensions of boxes are shown in figures 6.8-9 from equations 6.11-12. 

3nz 
cos(nx) cos(ny)cos(--z-) - 0 

2 
6.11 

cos(zx)cos( -- )cos(3zz) = o 
2 2 

6.12 
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Figure 6.8 Tetragonal structure. Figure 6.90rthorhombic structure. 

In order to make complete atomic structures, the boxes are filled with 
atoms. In the case of the cube, we begin with one atom in each box, which 
results in the structure in figure 6.10. This structure is called primitive cubic 
packing. 

Figure 6.10 Primitive structure. Figure 6.11 Body centred structure. 

If the cube in figure 6.10 is filled with an atom in the centre, we get figure 
6.11, which is called a body centred structure (bcc = body centred cubic). 
We also fill the neighbouring cubes, and show a larger part of this structure 
in figure 6.12. The centre of the atoms are at the comers of a polyhedron 
called the rhombic dodecahedron. This structure is found in many metals 
and also in stainless steel. 
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Figure 6.12 Atoms sit at the comers of a rhombic dodecahedron. 

Figure 6.13 Cubic closest packing of atoms. 
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In the next structure, we fill the box in figure 6.10 with one atom at the 
centre of each face, as shown in figure 6.13. As each such atom is shared 
with another box (the face is common to two boxes) there are three atoms 
added to the box. This is called a face centred cubic arrangement of atoms 
(fcc), and as this is the closest packing of atoms in a cubic structure it is 
also called cubic close packing (ccp). Many metals adopt this structure. 

This geometrical picture in 6.13 as described in a way where the atoms 
represent the vertices of eight tetrahedra surrounding one octahedron, was 
first described by Kepler and is called stella octangula. 

Another piece of cubic close packing is shown in figure 6.14. The centre of 
each atom around the central is a comer of the polyhedron called the cube 
octahedron, which is the morphology of the Fe304 magnetite crystals in 
the bacterium Magnetospirillum magnetotacticum, which was shown in 
figure 2.15 in appendix 2. 

Figure 6.14 Another piece of cubic close packing - the cube octahedron. 

We also give a hexagonally close packed (hcp) arrangement of atoms in 
figure 6.15. As this is not a polyhedron, mathematically it has been given 
the name "isomer form of cube octahedron", or by chemists just the 
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"hexagonal form of a cube octahedron". Hcp is also a common structure 
for metals, titanium being one of them. 

The figures 6.10-15 are all from ref. [1]. 

Figure 6.15 Hexagonally close packed (hcp) arrangement of atoms. 

The structures above are simple, and are described with atomic positions 
and symmetry elements, where the symmetry elements create copies of the 
original atom in new positions. This means that if you have an atom in a 
general position (x ,y ,z) ,  it can be repeated by a body centred operation to 

( x + 1/2,y + 1/2,z + 1/2). Then we may have a centre of symmetry with 
(x,y,z)  repeated to ( - x , - y , - z ) .  We can also have a mirror plane with 
(x,y,z)  going to (x , -y , z ) .  Then this atom may be repeated by a 3-fold 

rotation axis to two more positions. Or by a 4-fold axis to three more 
positions, or by a 2-fold rotation to one more. And there can also be a 
chiral structure having a screw. We give this as another example below. 

A general point defining an atomic position is (x,y,z) .  The first screw 

operation we call 41 and it takes us to the point ( -y ,x ,1 /4  + z). The second 

screw operation is 412 and its point is ( - x , - y , 1 / 2  + z), and the third is 413 
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and the point is ( y , - x , 3 / 4  + z). All possible combinations of these 

symmetry operations in the seven crystal classes give the 230 groups in 
space. A general point in the cubic system may be repeated in various 
places in the unit cell up to 192 times, with only the three variables x,y,z 
for the general position. Hence, we can describe the position of 192 atoms 
only with the three variables x,y,z. If we had the lowest case possible, 
which is the triclinic without a centre of symmetry, 192 atoms in the unit 
cell would need 576 (3.192) variables or parameters to be determined in a 
crystal structure determination. This is a very difficult task indeed, so 
symmetry is very important for information reduction. 

The icosahedron and symmetrically related polyhedra have 2-fold, 3-fold, 
and 5-fold axes of symmetry (as shown in chapter 12), and several virus 
molecules have this symmetry. Molecules of any symmetry which 
crystallise to form a crystal may be studied with great detail with diffraction 
methods. The structure of giant particles such as virus (molecules) have 
been determined (except for the genome inside which is disordered relative 
to the surrounding protein molecules). The genome, as said, has no 3D 
translational periodic symmetry [2], and the immense amount of 
information collected from the complicated structure determination of 
such structures, only gives a part of the structure. 

Figure 6.16 A mathematical mirror plane. 
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Five-fold symmetry cannot be repeated with periodic translation - the so- 
called quasi crystals of certain alloys have dilatation symmetry [3]. In 
Nautilus and Turitella there is a characteristic piece which is repeated under 
dilatation (congruent), as the animal grows. The liposomes and Scwann cell 
are other another examples of dilatation. A more difficult one is the 
formidable two dimensional organisation of logarithmic spirals into 
Phyllotaxis in botany. 

The most famous symmetry operation is the mirror, which may be called 
the reflection or the bilateral operation. In crystals we often discuss the 
mirror plane although the actual plane is never there. But we have made it 
visible in a mathematical crystal with the equation 6.13, shown in figure 
6.16. 

sin rcz + z sin 7zx + z sin ~ ,  - 0 6.13 
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Appendix 7 -  The Complex Exponential, the Natural 
Exponential and the GD-Exponential- General Examples 
and Finite Periodicity 

The complex exponential and its relation to cosine is described More 
examples of the exponential scale is shown using higher exponentials. The 
GD function is used to build finite periodicity with several examples. 

In physics and also in chemistry it is very common to use the complex 

exponential, e ix. 

We shall shortly explain and use complex numbers. The number i is an 

imaginary number, it does not physically exist. The number i is ~ - 1 .  

From the expansions of  the circular functions, shown in equations 7.1-2 
and the expansion of the natural exponential in 7.3, 

x 3 x 5 
s i n x -  x - ~ + - - - . . .  7.1 

3! 5! 

c o s x - 1  x2 x4 - ~ + ~ - . . .  7.2 
2! 4! 

x x 2 x 3 x 4 x 5 
eX = 1 + - + ~ + ~ +  + ~ . . .  7.3 

1! 2! 3! 4! 5! 

ix x 2 ix 3 x 4 ix 5 
e ix - 1+ + + ~  

1! 2! 3! 4! 5! 

it is clear that e ix can be written 

e ix - cos x + i sin x.  7.5 

And it is easy to show that 
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1 _e-iX s i n x -  - i ( e  ix ) 
2 

7.6 

and 

cos x - 1 (eiX + e-iX). 7. 7 
2" 

These are the miracles in mathematics: The derivative of cos is sine and 

vice versa, the derivative of e x is e x, which is the natural function. The 

complex exponential is e ix, and its remarkable and strange relations with 
the circular functions are given in equations 7.6-7. We conclude by giving 
the most beautiful formula of all, as discovered by de Moivre in 7.8. 

e =i - -1  7.8 

Using e ix means that the real part is cosx and the imaginary part is sinx 
from 7. 5. Or, 

Re[e ix] - cos x 

and 

Im[e ix] - sinx. 

But the general function to use is the complex exponential" 

eniX + ertiY + ertiz 7. 9 

We write 

e ix - c o s x +  is inx 

and the real part of the complex exponential is 

Re[e rfix + e rfiy + e niz] - cos rex + cos gy + cos rcz. ZIO 

So when you see e ix, it is often understood that it is just cosx. And the 
complex exponential in 3D is an alternative for description of a cubosome 
structure in biology, or a primitive cubic structure in crystallography. 



The Complex Exponential the Natural Exponential and the GD-Exponential 449 

We may do a generalisation 
exponential. 

in 7.11, and come back to the natural 

Z n e xn +e yn +e =C 7.11 

For n odd we have the cube comer, which is shown in figure 7.1a for n=5. 
With increasing n there are sharper edges and comers. For n even there is 
the cube, which is shown in figure 7.1b for n=6. 

Figure 7.1a n odd in 7.11 is the 
cube corner. 

Figure 7.1b n even in 7.11 
generates the cube. 

We do the same generalisation with the complex exponential 
7.12. 

in equation 

n n 
e (ix) + e (iy)n + e (iz) = C 7.12 

With n=l we have the circular functions, and with n=2 the GD-function, 

since i2 - - 1 .  

A beautiful example of emerging periodicity is the double planes from the 
GD-function, which automatically create eight identical cube comers 
through cubic symmetry operations, from equation 7.13, and this is shown 
in figure 7.2. The sharp edges and comers come from the high exponent. 

_x 6 e +e -y6 +e  -z6 =0.01 7.13 
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Figure 7.2 Finite periodicity after equation 7.13. 

Figure 7.3 More f'mite periodicity after equation 7.14. 

Adding three more terms comaining translation as in equation 7.14, gives 
the full cubes in figure 7.3. 
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_x 6 6 z 6 e_(X_2)6 _(y_2)6 6 
e +e -y  + e -  + +e +e -(z-2)  =2.9 7.14 

Three terms in space after 7.15 give the 27 cubes in figure 7.4. 

-x  6 e-(X-2)6 e-(Y-2) 6 e + e -y6 + e -z6 + + 

+e -(x-4)6 + e - (y-4)6 + e -(z-4)6 = 2.9 

+ e-(Z-2)6 
7.15 

Figure 7.4 Three terms in space after 7.15 give 27 cubes. 

And four terms in space after 7.16 give the formidable repetition in figure 
7.5. 

_x 6 6 e_(Y_2)6 e_(Z_2)6 e + e -y6 + e -z6 + e - (x-2)  + + 

+e- (X-4)6+e- (Y-4)  6 e-(Z-4)6 e-(X-6)6 e-(Y-6) 6 + + + + e -(z-6)6 = 2.9 

7.16 
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Figure 7.5 Four terms in space after 7.16 give 64 cubes. 

The GD-function was used earlier to describe finite periodicity, which of 
course originates from the properties of the GD-function itself. This 
property of the GD-function has been used extensively in this book for the 
description of ordinary molecules, or giant molecular aggregates like the 
cubosomes. There is a special link between this GD-function and the square 
of cosine as we have shown in ref. [1]. 

The GD-function is very dynamic at change of constant, and in order to 
enlighten a comparison with a circular function, we go explicit and work at 
zero constant via sign shifts for every second term in equation 7.17a. 

y - e -x2 - e -(x-2)2 + e-(X-4)2 - e-(Z-6)2 + e -(x-8)2 - e-(Z-10)2 

+e-(X-12)2 _e-(z-14)2 +e-(X-16)2 _e-(Z-18)2 +e-(X-20)2 _e-(Z-22)2 
7.17.~ 
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We plot this together with the cosine function in 7.17.b 

~ x  
y - 0.957 cos 7.17. b 

2 

The two functions seem to overlap completely in figure 7.6. Changing base 
to make the factor unity instead of 0.957 would make the two functions 
very similar within the boundaries used, but they would still not be 
completely identical. 

In this way we have made a function of  terms in 3D with zero constant in 
7.18 and we seem to have a perfect P-surface in figure 7.6. 

_e_(X_6) 2 _ e_(Y_6 ) 2 _ e -  (z_6) 2 

+e- (X-4)  2 + e- (Y-4)  2 + e - (Z-4)  2 

_e_(X_2)2 2 _ e-(Y-2)  2 _ e-(Z-2)  

_x 2 _z 2 +e + e -y2  + e 

_e_(X+2)2 _ e_(Y+2 )2 _ e_(Z+2)2 

+e-(X+4) 2 + e-(Y+4) 2 + e-(Z+4) 2 

- e  -(x+6)2 - e -(y+6)2 - e -(z+6)2 = 0 

Z18 

- 0 . 5  

20 

-1  

0 . 5  

Figure 7.6 Two functions after equations 7.17.a and 7.17.b plotted 
together to show how similar they are. 
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Figure 7.7 P-surface after equation 7.18. 

Figure 7.8a C=I in equation 7.18. Figure 7.8b Different projection. 
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Using a constant of unity instead of zero in equation 7.18, we get figure 
7.8a-b. Despite the change of constant, the function is still very similar to 
a circular function [ 1]. 

We shall do one more example of this remarkable periodicity, and use the 
screw equation in 7.19. 

z cos(~--~)+ y s i n ( ~ ) -  0 7.19 

In constructing the analogous GD-equation, we make a simple translation 
which corresponds to the phase shift as in equation 7.20. Figure 7.9 is 
calculated with the GD-function, and figure 7.10 with the circular functions. 

y[e-(X-7) 2 _ e-(X-5)2 + e-(X-3)2 _ e-(X-1)2 + e-(X+l) 2 

_e-(X+3)2 e-(X+5)2 e-(X+7)2 + - ] 

- z [ - e - (X-8 )  2 + e-(X-6) 2 _ e-(X-4) 2 + e-(X-2) 2 _ e-(X) 2 

+e -(x+2)2 - e -(x+4)2 + e -(x+6)2 - e -(x+8)2 ] = 0 

Z20 

Figure 7.9 Helicoid calculated with GD-function. 
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Figure 7.10 Helicoid calculated with circular functions. 

Figure 7.11a Helicoid at~ercircular 
ftmctions plotted to show the ruling 
(straight lines). 

Figure 7.11b Helicoid after GD, 
plotted to show the ruling. 

The helicoid minimal surface is built of straight lines as shown in the 
Mathematica plot in 7.11a, and the same seems to be the case for the GD- 
helicoid in 7.1lb. The similarity is extraordinary, but still they are not 
identical. A calculation of curvature after ref. [1] shows that the GD- 
helicoid has non-zero mean curvature, while the other of course has not. 

We shall give more examples of how to use the exponential scale. In 
equation 7.21 a tetrahedron is described in the ordinary way, and in 
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equation 7.22 another tetrahedron of reverse orientation is given. The two 
tetrahedra are shown in figures 7.12a-b. A tetrahedron may be said to be 
built of every second plane in an octahedron, and if these equations are 
added in 7.21 and 7.22 there is the octahedron in equation 7.23, which is 
shown in figure 7.12c. 

e(X+y+z)3 +e(X-y-z)3 +e(-X-y+z)3 e(-X+y-z)3 + - 2 0 0 - 0  Z21 

e ( -x-y-z)3  +e (-x+y+z)3 +e (x+y-z)3 +e (x-y+z)3 - 2 0 0 - 0  Z22 

Figure 7.12a Tetrahedron built of 
planes after equation 7.21. 

Figure 7.12b Tetrahedron of 
reverse orientation built of planes 
after equation 7.22. 

e(X+Y+Z) 3 + e(X-Y-Z) 3 + e(-X-Y+Z) 3 +e(-X+y-z) 3 

+e(-X-y-z)3 e(-X+y+z)3 z) 3 z) 3 + + e (x+y- + e (x-y+ - 400 - 0 

7.23 

If we now add the tetrahedra and want to keep their shapes, we must go up 
in scale to a GD-similar function as in 7.24. This is shown in figure 7.12d. 

_(e(X+y+z)3 3 3 e +e(X-Y-Z) +e(-X-Y+Z) +e (-x+y-z)3 -200) 

+e_(e(-X-y-z)3 +e(-X+y+z)3 +e(X+y-z)3 +e(X-Y+Z)3 -200) =0.2 

7.24 

We recognise this beautiful geometry as Kepler's stella octangula. Or as a 
combination of two interpenetrating tetrahedra. 
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Figure 7.12c The planes of 7.21 and 7.22 collaborate 
in equation 7.23 to form an octahedron. 

Figure 7.12d Going up in scale with a GD- 
function after 7.24 means that the orientations of 
the tetrahedra are kept in this stella octangula. 



The Complex Exponential, the Natural Exponential and the GD-Exponential 459 

The simple topological relation between the icosahedron and the cube- 
octahedron has been rediscovered ever since Euclid. We use the icosahedral 
equation in 7.25 and turn it into 7.26, which means making the second set 
of terms cubic. By themselves these terms form a polyhedron which in 
structure is related to the rhombic dodecahedron, the pentagonal 
dodecahedron and the cube. The first set of terms are those of an 
octahedron. 

e~4(x+y+z) 4 +e'C4(-x+y+z) 4 +e'C4(x+y-z) 4 +e~4(x-y+z) 4 + 

e(X+~2y)4+e(-X+l;2y)4 e(Z+~2x)4 e(Z-,C2x) 4 e(y+~2z) 4 e(y-~2z) 4 
+ + + + =C 

7.25 

1: _ -~+.......~1 = 1 . 6 1 8  

1:2 - I :  + 1 -- 2.618 

1 
- - = z - 1 = 0 . 6 1 8  
17 

el;4(x+y+z) 4 +e'~ 4(-x+y+z) 4 +el; 4(x+y-z) 4 +el; 4(x-y+z) 4 

+e('r2Y) 4 + e('r2Y) 4 +e (x2x)4 +e (I;2x)4 + e (1:2z)4 + e (x2z)4 =400 
7.26 

Figure 7.13a Truncated octahedron 
as obtained from an icosahedral 
equation topologically transformed 
into 7.26 which gives this figure. 

Figure 7.13b The transformation 
is continued to give equation 7.27 
which is the cube octahedron. 
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This gives the truncated octahedron (truncated by the cube) in figure 7.13a. 
The topological path from the icosahedron is clear and could of course be 
done continuously by a stepwise change of the variable constants. 

e(X+Y+Z) 4 + e(-X+Y+Z) 4 + e(X+Y-Z) 4 + e(X-Y+Z) 4 

4 e(2X )4 z)4 e(2Z )4 +e(2Y) 4 + e(2Y) 4 + e (2x) + + e (2 + = 400 

7.27 

In 7.26 we change "c 4 to 1 for the octahedral terms, and z2 to 2 for the 
cubic terms, and have equation 7.27. The cube-octahedron is shown in 
figure 7.13b. 

Figure 7.14 A compound of the octahedron and the cube after equation 7.28. 

Finally, we make a compound which is between the octahedron and the 
cube by adding the equations from 7.27 higher up on the exponential scale, 
as in equation 7.28. We have the formidable polyhedron in figure 7.14. 
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e-[e (x+y + z)4 +e (-x+y + z)4 +e (x+y-z)4 +e (x-y +z)4 -200] 

_[e(2y)4 +e(2y)4 2x)4 2x)4 2z)4 )4 
+e +e ( +e ( +e ( +e (2z -200] _ 1 - 0 

Z28 

We conclude with a rule of thumb when working with the exponential scale. 
Using the natural exponential means that you often work with very large 
numbers and also with very small. The sum of the terms is the iso-surface 
constant, which often is very large. When subtracting exponential terms, 
the constant may be set to zero, but you still handle very large numbers. 

With GD-similar expressions you still handle very small or very large 
numbers. But the constant is small, or zero, due to the nature of the 
function. 

So you should keep in mind that you are using very large and very small 
numbers, and that there is a limit for what your graphic program can 
handle. 

It is well worth to remember that Nature uses billions and billions of atoms 
or molecules when making the shape of things to a scale or size. Like a cell. 
And the size of an atom is a fraction of billions and billions of the size of a 
thing the atoms or molecules are predestined to make. 
Nature uses very large numbers. And very small. 
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Appendix 8 -  Classical Differential Geometry and the 
Exponential Scale 

Important concepts like curvature, points, and the Bonnet transformation 
are discussed. Simple minimal surfaces are compared with nodal surfaces. 
Pretzels of  different genus, including a wheel, are described. 

Differential geometry means parametrisation and the use of curvilinear 
coordinates (coordinate system in the surface), curvature and non- 
Euclidean geometry. The language is the tensor analysis, and the tool is the 
complex analysis with Riemann surfaces. In 4D the applications are in the 
description of the amalgamation of space and time, and the general theory 
of relativity. Curvature is essential, and especially the Gaussian curvature 
which is independent of the space dimension. 

An application for calculus is the study of minimal surfaces, and in the 
calculus the Weierstrass machine of elliptic integrals was a tremendous 
achievement. Today it is very much used for the numerical solution of 
coordinates to many beautiful minimal surfaces. 

An important goal in the history of differential geometry was to transform 
a general implicit function f (x ,y , z )=0  into an explicit Monge-form 
z = f(x,y),  for practical reasons in the parametrisation and in the Riemann 
space. 

We have been doing a great deal of differential geometry using the 
exponential scale. And natUrally we must work with implicit functions 
then. We have invented surfaces that can be used to describe phenomena in 
biology. We have found that the surfaces we want are obtained by the 
addition, subtraction or multiplication of planes. Most of it possible 
through the use of the exponential scale. 

This will only deal with the part of differential geometry that is useful for 
us, which naturally will be a great part of the elementary mathematics of 
that geometry. In 3D we deal with surfaces, their description in shape and 
form, their properties like the mean and gaussian curvatures, and the 
relationships between surfaces and transformations to other surfaces. We 
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have introduced saddles, monkey saddles, nodal surfaces or 
surfaces, and we will now continue with the concept of curvature. 

minimal 

Take a surface and let a plane rotate through a surface point P in its 
normal n as shown in figure 8.1 from Hyde [4]. The section of this normal 
plane and the surface is a curve of curvature, k. During the rotation, k must 
attain one maximum and one minimum value, kl and k2. These are called 
principal curvatures, and the corresponding planar curves principal lines of 
curvature. These two curvatures are very useful in the description of the 
properties of surfaces. Their product is the Gaussian curvature (K), in 8.1, 
and the mean curvature (2 H) describes the sum as in 8.2. 

klk 2 = K  8.1 

k l + k2 = H 8.2 
2 

Figure 8.2 from Hyde [4] shows three surfaces with principal curvatures. 
The top picture has an elliptic point with positive Gaussian curvature, below 
there is a parabolic point with one principal curvature equal to zero. Which 
means that K=0. And in the bottom picture the principal curvatures are of 
opposite sign in the saddle point and the Gaussian curvature is negative. 
The plane has of course H=K=0. 

Figure 8.1 Normal vector and normal 
plane through a point P of a surface. 
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Figure 8.2 From top and down there is an 
elliptic, a parabolic and a saddle point. 

Figure 8.3 A saddle. Figure 8.4 A monkey saddle. 
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A simple example of a surface of negative Gaussian curvature is the saddle. 
One example of this is shown in figure 8.3, according to equation 8.3. 

x y - z = O  8.3 

A point on such a surface is called hyperbolic and the saddle point itself has 
maximum curvature. 

The monkey saddle in figure 8.4 is a very remarkable surface. Hilbert gave 
it the name since a monkey beside its two legs also has a tail. The monkey 
saddle has negative Gaussian curvature everywhere, except in the centre 
where it is zero. Such a point is called a flat point. We have used an 
equation (8.4) from the literature to show the monkey saddle in figure 8.4. 

x(x 2 - 3y 2 ) - z - 0 8. 4 

Next follows some important surfaces analysed and compared with the GD 
or nodal surfaces. Examples of surfaces built of saddles are the catenoid and 
the helicoid in equations 8.5 and 8.6. 

x 2 + y2 _ cosh 2 z - 0 (catenoid) 8.5 

xcos rtz + y sin rtz = 0 (helicoid) 8.6 

Figure 8.5 Catenoid minimal surface. Figure 8.6 Helicoid minimal surface. 
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As 
1 

cosh 2 z - - [ c o s h 2 z -  1] 
2 

and 

cosh2z - l[eZZ + e -2z] 
2 

we realise that the catenoid is built of two planes and a cylinder. We have 
earlier shown how the helicoid is described by planes. 

Both are minimal surfaces, or soap-water film surfaces. The minimal 
surfaces are well characterised, having H=0 everywhere and K <  0. These 
two surfaces are very special, they have the same Gaussian curvature on 
corresponding points. This means they are isometric and can be bent into 
each other without stretching, like a paper can be rolled into a cylinder. It 
is called the Bonnet transition and we show it in figure 8.7, after Hyde [4]. 
The helicoid is ruled, which means it is built of straight lines, some of which 
are easily seen in the plot of figure 8.6. During the Bonnet transition these 
straight lines become principle lines of curvature in the catenoid. 

Figure 8.7 The isometric Bonnet transition. 

Mathematically we have made a similar transformation 
periodic surfaces in chapter 4, section 4.4 in this book. 

on the nodal 
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We will continue and show how some classic surfaces may be described using 
our methods. Two famous minimal surfaces are the first and the fifth of the 
Scherk surfaces. 

Remembering that 

2 s i n h x -  e x - e  -x  8. 7 

we do our analysis of the fifth Scherk surface and start with 

s inhxsinhy - 0 ,  8.8 

which is two intersecting planes in figure 8.8. We continue with the 
equation 8.9 and obtain a saddle in figure 8.9. 

s i n h x s i n h y -  z = 0 8.9 

In figure 8.10 we have the minimal surface called Scherk's fifth surface 
after equation 8.10. With the equation xy = cos rtz there is what we call the 

'nodal' corespondent for this tower surface. 

sinh x sinh y - sin ~z - 0 8.10 

Figure 8.8 Two intersecting planes after 
8.8. 

Figure 8.9 Saddle after 8.9 which 
builds Scherk's fifth minimal surface. 
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Figure 8.10 Scherk's fifth surface after equation 
8.10, which also is a minimal surface. 

Scherk's first surface is given in equation 8.11. 

e z c o s n x -  cosn-y - 0 8.11 

We start the analysis with equation 8.12, which is a saddle like in figure 8.3, 
but with different orientation. We show it in figure 8.11. 

z x - y  = 0  8.12 

The saddle is repeated along y after equation 8.13 which is the tower 
surface, or nodal surface, variant of the minimal surface shown in figure 
8.10. They have different orientations, but are otherwise almost identical. 

z x -  cosrty = 0 8.13 

In figure 8.13 we show the surface that corresponds to the 
development in equation 8.14. 

further 

z c o s n x -  cosny = 0  8.14 
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Figure 8.11 Saddle after 8.12. Figure 8.12 Tower surface, topologically 
the same as Scherk's fifth surface. 

Figure 8.13 Surface after equation 8.14. 
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Finally, in the equation for the minimal surface we see that instead of z 

there is e z, which means that the term containing z is always positive. The 
resulting Scherk's first minimal surface is very simple and beautiful. A 
bundle of an infinite number of planes meet a bundle of perpendicular 
planes in a manner that occurs without intersections. 

Figure 8.14a. Scherk's first minimal 
surface with equation 8.11. 

Figure 8.14b Different 
projection. 

Figure 8.15a The nodal CLP-surface 
which builds the alveolar structure 
described in chapter 14. 

Figure 8.15b Differentprojection 
ofa. 
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We continue and go circular also in the last direction, z, with equation 8.15. 
Saddles now repeat along z, and we have the nodal correspondence to the 
CLP minimal surface, cf. 8.15ab. This tetragonal surface is built of two sets 
of planes that meet in a perpendicular manner without self intersections. 
This surface builds the alveolar structure as described in chapter 14. The 
Weierstrass parametrisation of this minimal surface was first derived by 
Lidin and Hyde [3]. 

e c ~  cosxx  - cosrty - 0 8.15 

Figure 8.16a After equation 8.17. Figure 8.16b After equation 8.18. 

A classic surface in differential geometry is the toms. Its equation is in 
8.16. 

((x 2 + y2 )0.5 _ 2)2 + z 2 = 1 8.16 

We have designed various ways to make a torus before [1]. In order to 
make the famous pretzels (the name is given by Hilbert [2]) we need a 
flexible way that also demonstrates the use of the exponential scale. We 
showed in equation 4.16-18 of this appendix how to make catenoids going 
through two parallel planes. We shall proceed accordingly. In equation 8.17 
we have added one cylinder with two planes, and obtain a closing of the 
cylinder as shown in figure 8.16a. Introducing a negative sign in the 
exponent opens up the structure, and with equation 8.18 there is the 
catenoid in figure 8.16b. 
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e(X 2 +y2) + eZ + e -  z = 25 8.17 

e -(x2+y2) +e z +e  - z  - 2.5 8.18 

In order to make a catenoid we need to close the planes, which we do by 
adding an exponential cylinder in equation 8.19, and the result is shown in 
figure 8.17. 

1 2 
e_(X2+y2) +e z +e -z  + e.i._6[x +y2] = 3.7 8.19 

Figure 8.17 A torus after 8.19. 

The catenoid in figure 8.16b is made with a GD-type cylinder, which means 
it can be moved or multiplied. We do the latter with equation 8.20 and in 
figure 8.18 there is the first pretzel. 

1 2 +(ly)2 
e-(X 2 +(y-2) 2) + e-(  x2 +(y+2) 2) + e z + e - z  + ei--o [x ] =3.7 8.20 

We continue with equation 8.21 t6 make a pretzel of genus three as shown 
in figure 8.19. 

e_(X 2 +(y_2)2) + e_((x_2)2 +(y)2) + e-(X 2 +(y+2)2 ) +e z +e -z +e 25--I [x2 +y2 ] 
=3.9 
8.21 
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Figure 8.18 A pretzel after 8.20. 

Figure 8.19 Another pretzel after 8.21. 
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Figure 8.20a The wheel after 8.22. 

Figure 8.20b Different projection. 
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And finally we make the wheel with equation 8.22 as shown in two 
projections in figure 8.20a-b. 

e -(x2 +(Y-2)2) + e -(x2 +(Y+2)2) +e-((x-2)2 +(y)2) 

+e_((x+2) 2 +(y)2) z z ~5[x 2 +y2 ] 
+e +e-  +e =3.9 

8.22 
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Appendix 9-  Mathematica 

We have been using Mathemat&a, and give here some examples. The 
subroutines ContourPlot3D and ImplicitPlot are for the implicit functions 
w e  u s e .  

ImplicitPlot[E^y^4+E^x^4--200000, {x,-2,2}, {y,-2,2},PlotPoints->200, 
Axes->False] 

Figure 9.1 Square after the plot above. 

ContourPlot3 D[x ̂  10+y ̂  10+z ̂  10-100, {x,2,-2 }, {y,2,-2 }, { z,2,-2 }, 
MaxRecursion>2,PlotPoints-> { {4,4 }, {4,4}, {4,4} },Boxed->False, 
Axes->True] 

Figure 9.2 Cube after the plot above. 
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Another  useful program is Plot, which is one-dimensional .  

First  is plot a Gauss error function and compare  it with an ordinary cosine 
function. 

Plot[{ 10^-(x^2)+ 10^-((x-2)^2)+ 10^-((x-4)^2)+ 
10^-((x-6)^2)-.  6, .4Cos [Pix] }, {x,-4,10 }, 
PlotPoints->200,Axes->False]  

if 
Figure 9.3 GD function and cosine after plot above. 

Mathematica Scripts Used 

The following is a compilation of the Mathematica scripts used to construct the surfaces 
illustrated in the figures in this book. 

Chapter 2 

Fig. 2.1.1: ContourPlot3D[(x-1)(x-2)(x-3)(x-4),{x,0,5},{y,-1,1},{z,-1,1},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Yrue] 

Fig. 2.1.2: ContourPlot3D[Sin[Pi x],{x,0,5},{y,-1,1},{z,-1,1},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Yrue] 

Fig. 2.2.1: ContourPlot3D[(x^2-1),{x,-2,2},{y,-1,1 },{z,-1,1 },MaxRecursion->2,PlotPoints-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.2.2: ContourPlot3D[(y^2-1),(x,-1,1},{y,-2,2},{z,-1,1},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Yrue] 

Fig. 2.2.3: ContourPlot3D[(z^2-1), {x,-1,1 },{y,-1,1 },{z,-2,2},MaxRecursion->2,PlotPoints-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },B oxed->False,Axes->True] 
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Fig. 2.2.4: ContourPlot3D[(xA2+yA2-1),{x,-2,2},{y,-1,1 },{z,-1,1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.2.5: ContourPlot3D[(xA2+yA2+zA2-1),{x,-2,2},{y,-1,1 },{z,-1,1 },MaxRecursion->2, 
PlotPoims-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.2.6: ContourPlot3D[(xA4+yA4-1),{x,-1,1 },{y,-1,1 },{z,-1,1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.2.7: ContourPlot3D[(x^4+y^4+z^4-1),{x,-2,2},{y,-1,1 },{z,-1,1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.2.8: ContourPlot3D[(x y)+ z ,{x,2,-2},{y,2,-2},{z,1,-1},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 2.2.9: ContourPlot3D[(x y)+ z ,{x,30,-30},{y,30,-30},{z,30,-30},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } } ,Boxed->False,Axes->True] Show [%,ViewPoint-> {-0.000, 
0.000, 3.384}] 

Fig. 2.2.10: ContourPlot3D[(x y )+ z (z-.5),{x,1,-1},{y,1,-1 },{z,1,-.5},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 2.2.11: ContourPlot3D[(x y )+ z (z-.5)(z-1),{x,1,-1 },{y,1,-1 },{z,2,-1},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 2.2.12: ContourPlot3D[(x y )+ z (z-.5)(z-1)(z-l.5),{x,1,-1 },{y,1,-1 },{z,2,-1 }, 
MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 2.2.13: ContourPlot3D[(x y )+ z(z-.5)(z-1)(z-l.5)(z-2)(z-2.5)(z-3),{x,2,-2},{y,2,-2}, 
{ z,2.5,0.5 } ,MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } } ,B oxed->False,Axes->True] 

Fig. 2.2.14: ContourPlot3D[x z+z y,{x,-1,1},{y,-1,1},{z,-1,1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.2.15: ComourPlot3D[(x z)+y (z-.5),{x,-1,1},{y,-1,1},{z,-3,3},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.2.16: ContourPlot3D[x z(z-1)+y (z-.5),{x,-1,1},{y,-1,1},{z,-3,3},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 2.2.17: ContourPlot3D[x z(z-1)+y (z-.5) (z-l.5),{x,-1,1},{y,-1,1},{z,3,-2}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 2.2.18: ContourPlot3D[x z(z-1) (z-2) (z-3) (z-4) (z-5) (z-6) (z-7) + y (z-.5) (z-l.5) (z-2.5) 
(z-3.5) (z-4.5) (z-5.5) (z-6.5),{x,-1,1},{y,-1,1},{z,2,6},MaxRecursion->2,PlotPoints-> 
{ { 4,4 }, { 4,4 }, { 6,4 } },B oxed->False,Axes->True] 

Fig. 2.2.19: Show[%, ViewPoint->{-0.012,-3.384, 0.042}] 

Fig. 2.2.20: ContourPlot3D[(x-4) (z-l) (z-2) (z-3) (z-4) (z-5) (z-6) + (y-4) (z-.5) (z-l.5) 
(z-2.5) (z-3.5) (z-4.5) (z-5.5),{x,4.6,3.4},{y,4.6,3.4},{z,2,4},MaxRecursion->2,PlotPoints-> 
{ {4,4},{4,4}, {4,4} },Boxed->False,Axes->True] 

Fig. 2.2.21: ContourPlot3D[(x-4) (z-5) (z-6) (z-7) (z-8) (z-9) (z-10) + (y-4) (z-4.5) (z-5.5) 
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(z-6.5) (z-7.5) (z-8.5) (z-9.5),{x,4.6,3.4},{y,4.6,3.4},{z,6,8},MaxRecursion->2,PlotPoints-> 
{ { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 2.3.1: ContourPlot3D[x(x-1)(x-2)(x-3),{x,-1,4},{y,-1,4},{z,-1,4},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.3.2: ContourPlot3D[y(y- 1)(y-2)(y-3), {x,- 1,4 }, {y,- 1,4 }, { z,- 1,4},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.3.3: ContourPlot3D[z(z-1)(z-2)(z-3),{x,-1,4},{y,-1,4},{z,-1,4},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.3.4: ContourPlot3D [x(x- 1)(x-2)(x-3)+y(y- 1)(y-2)(y-3)+z(z- 1)(z-2)(z-3)+ 1, {x,- 1,4}, 
{y,- 1,4 }, { z,- 1,4 },MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes-> 
True] 

Fig. 2.3.5: ContourPlot3D [(x-6)(x-7)(x-8)(x-9)+(y-6)(y-7)(y-8)(y-9)+(z-6)(z-7)(z-8)(z-9)+ 1, 
{x,5,10},{y,5,10}, {z,5,10},MaxRecursion->2,PlotPoints->{ {4,4},{4,4},{4,4} },Boxed-> 
False,Axes->True] 

Fig. 2.3.6: ContourPlot3D [x(x- 1)(x-2)(x-3)+y(y- 1)(y-2)(y-3)+z(z- 1)(z-2)(z-3), {x,- 1,3.3 }, 
{y,-1,3.3},{z,-1,2.75},MaxRecursion->2,PlotPoints->{ {4,4},{4,4},{4,4}},Boxed->False, 
Axes->True] 
Show[%, ViewPoint->{0.742,-1.370, 3.004}] 

Fig. 2.3.7: ContourPlot3D[ 
z (z-I) (z+l) (z+2) (z-2) (z+3) (z-3) (z+4) (z-4) (z+5) (z-5) (z+6) + 
x (x-I) (x-2) (x+l) (x+2) (x+3) (x-3) (x+4) (x-4) (x+5) (x-5) (x+6) + 
y (y-I) (y-2) (y+l) (y+2) (y+3) (y-3) (y+4) (y-4) (y+5) (y-5) (y+6)-20000, 
{ x,-3.8,2.6 }, {y,-3.8,2.6 }, { z,-3.8,2.6 } ,MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } }, 
Boxed->False,Axes->True] 

Fig. 2.3.8: ContourPlot3D[x y+x z+z y+l,{x,-5,5},{y,-5,5},{z,5,-5},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.3.9: Show[%, ViewPoint->{-1.930,-1.994,-1.937}] 

Fig. 2.3.10: ContourPlot3D[x y z ,{x,.25,-.25},{y,.25,-.25},{z,.25,-.25},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 2.3.11: ContourPlot3D[x y z + (z-.5)(y-.5)(x-.5),{x,-.25,.75},{y,-.25,.75},{z,-.25,.75}, 
MaxRecursion->2,PlotPoints->{{4,4},{4,4},{4,4}},Boxed->False,Axes->True] 

Fig. 2.3.12: ContourPlot3D[x y z(z-1)(y-1)(x-1) + (z-.5)(y-.5)(x-.5),{x,-.25,1.25}, 
{y,-.25,1.25 }, { z,-.25,1.25 },MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed-> 
False,Axes->True] 

Fig. 2.3.13: ContourPlot3D[x y z(z-1)(y-1)(x-1) + (z-.5)(y-.5)(x-.5)(z-l.5)(y-l.5)(x-l.5), 
{x,-.25,1.75 }, {y,-.25,1.75 }, {z,-.25,1.75 },MaxRecursion->2,PlotPoints-> { {4,4}, {4,4}, {4,4 } }, 
Boxed->False,Axes->True] 

Fig. 2.3.14: ContourPlot3D[x y z(z-1)(y-1)(x-1) + (z-.5)(y-.5)(x-.5)(z-l.5)(y-l.5)(x-l.5), 
{x,-2,4 }, {y,-2,4 }, { z,-2,4 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False, 
Axes->True] 
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Fig. 2.3.15: ContourPlot3D[x y z(z-.5)(y-.5)(x-.5),{x,-1,1.5},{y,-1,1.5},{z,-1,1.5}, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } } ,Boxed->False,Axes->True] 

Fig. 2.3.16: ContourPlot3D[x y z-1,{x,10,-10},{y,10,-10},{z,10,-10},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } } ,B oxed->False,Axes->True] 

Fig. 2.3.17: ContourPlot3D [Cos[Pi(y)]Cos[Pi(x)]Cos [Pi(z)]+ 
Sin[Pi(z)] Sin[Pi(y)] Sin[Pi(x)], { x, 1.05,- 1.05 }, {y, 1.05,- 1.05 }, { z, 1.05,- 1.05 },MaxRecursion-> 
2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 2.3.18: ContourPlot3D [Sin[Pi(x)]Cos[Pi(y)]+Cos[Pi(x)] Sin[Pi(z)]+ 
Cos [Pi(z)] Sin[Pi(y)], {x, 1,- 1 }, {y, 1 ,- 1 }, { z, 1,- 1 },MaxRecursion->2,PlotPoints-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },B oxed->False,Axes->True] 

Fig. 2.3.19: ContourPlot3D[Cos[Pi(x)]Cos[Pi(y)]+Cos[Pi(x)]Cos[Pi(z)]+ 
Cos [Pi(z)] Cos [Pi(y)], {x, 1 ,- 1 }, {y, 1,- 1 }, { z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 2.3.20: ContourPlot3D[x y z + z+y+x,{x,l.5,-1.5},{y,l.5,-1.5},{z,l.5,-1.5}, 
MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 2.3.21: ContourPlot3D[x y z + z+y+x,{x,10,-10},{y,10,-10},{z,10,-10},MaxRecursion-> 
2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 2.3.22: ContourPlot3D[2Cos[Pi x] Cos[ Pi y] Cos[ Pi z] + Cos[ Pi x]+ Cos[ Pi y]+ 
Cos[Pi z], {x,- 1.5,1.5 },{y,- 1.5,1.5 }, {z, 1.5,- 1.5 },MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Chapter 3 

Fig. 3.2.1: ContourPlot3D[Cos[Pi x] Cos[Pi y] -.2,{x,-1.5,1.5},{y,-1.5,1.5},{z,1,-1}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 3.2.2: ContourPlot3D[Cos[Pi x] Cos[Pi y],{x,-1,1},{y,-1,1},{z,1,-1},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 3.2.3: ContourPlot3D[Cos[Pi x] Cos[Pi y]-.1 Cos[2 Pi z]-.05,{x,-1.6,1.6},{y,-1.6,1.6}, 
{ z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } } ,Boxed->False,Axes->True] 

Fig. 3.2.4: ContourPlot3D[Cos[Pi x] Cos[Pi y]-.5 Cos[2 Pi z],{x,-1.5,1.5},{y,-1.5,1.5}, 
{ z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 3.2.5: Show[%, ViewPoint->{0.000, 0.000, 3.384}] 

Fig. 3.2.6: ContourPlot3D[Cos[Pi x] Cos[Pi y]- Cos[2 Pi z],{x,-1,1},{y,-1,1},{z,1,-1}, 
MaxRecursion->2,PlotPoints->{{4,4},{4,4},{4,4} },Boxed->False,Axes->True] 

Fig. 3.2.7: ContourPlot3D[x-y+x z,{x,-3,3},{y,-3,3},{z,5,-5},MaxRecursion->2,PlotPoints-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 3.2.8: Show[%, ViewPoint->{-0.012, -3.382, -0.093}] 
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Fig. 3.2.9: ContourPlot3D[Cos[Pi x]- Cos[Pi y]+ Cos[Pi x] Cos[Pi z],{x,-2,2},{y,-2,2}, 
{ z, 1.5,- 1.5 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 3.2.10: ContourPlot3D[Cos[Pi x]- Cos[Pi y]+ .1 Cos[Pi x] Cos[Pi z],{x,-2,2},{y,-2,2}, 
{ z, 1.5,- 1.5 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Fig. 3.2.11: ContourPlot3D[Cos[Pi x]-Cos[Pi y]+.l Cos[Pi x] Cos[Pi z]+.5,{x,-2,2}, 
{y,-2,2 }, { z, 1.5,- 1.5 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False, 
Axes-> True] 

Fig. 3.2.12: ContourPlot3D[y x (x-y)(y+x),{x,-2,2},{y,-2,2},{z,1,-1 },MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 5,3 } },Boxed->False,Axes->Yrue] 

Fig. 3.2.13: ContourPlot3D[6(Sin[Pi y] Sin[Pi x]) (Sin[ Pi(x-y)] Sin[ Pi(y+x)]),{x,-.9,.9}, 
{ y,-. 9,. 9 }, { z, 1,0 },MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 5,3 } } ,Boxed->False,Axes-> 
True] 

Fig. 3.2.14: ContourPlot3D[ y x (x-y)(y+x)-z,{x,-2,2},{y,-2,2},{z,1,-1 },MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 5,3 } },Boxed->False,Axes->Yrue] 

Fig. 3.2.15: ContourPlot3D[6(Sin[Pi y] Sin[Pi x]) (Sin[Pi(x-y)] Sin[Pi(y+x)]) 
+ .1 (Sin[2 Pi z]), {x,-.9,.9},{y,-.9,.9},{z,l.2,0},MaxRecursion->2,PlotPoints-> 
{ { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 3.2.16: ContourPlot3D[6(Sin[Pi y] Sin[Pi x]) (Sin[Pi(x-y)] Sin[Pi(y+x)]) 
+ ( Sin[2 Pi z]),{x,-.9,.9},{y,-.9,.9},{z,l.2,0},MaxRecursion->2,PlotPoints-> 
{ {4,4},{4,4},{4,4} },Boxed->False,Axes->Yrue] 

Fig. 3.2.17: Show[%, ViewPoint->{-0.000, -0.000, 3.384}] 

Fig. 3.3.1:ContourPlot3D[x(x+l.732 y)(-x+l.732 y),{x,-.5,.5},{y,-.6,.6},{z,.375,-.375}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },B oxed->False,Axes->True] 

Fig. 3.3.2:ContourPlot3D[x(x+l.732 y)(-x+l.732 y)-z,{x,-1,1},{y,-1,1},{z,.375,-.375}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 3.3.3:ContourPlot3D[x(x+l.732 y)(-x+l.732 y)-z,{x,-10,10},{y,-10,10},{z,10,-10}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 3.3.4: Show[%, ViewPoint->{0.000,-0.000, 3.384}] 

Fig. 3.3.5:ContourPlot3D[Cos[2 Pi x] Cos[Pi (x+1.732 y)] Cos[Pi (-x+1.732 y)]-.0000001, 
{ x,-. 5,. 5 }, { y,-. 5,.5 }, { z,.25,-. 25 } ,MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } } ,Boxed-> 
False,Axes->True] 

Fig. 3.3.6:ContourPlot3D[Cos[2 Pi x] Cos[Pi (x+1.732 y)] Cos[Pi (-x+1.732 y)]-.1, 
{ x,-. 75,.75 }, {y,-. 85,. 85 }, { z,.375,-. 375 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 3.3.7:ContourPlot3D[Cos[2 Pi x] Cos[ Pi (x+1.732 y)] Cos[ Pi (-x+1.732 y)]+.03, 
{ x,-.45,.45 }, { y,-.46,.46 }, { z,.375,-. 375 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 3.3.8:ContourPlot3D[Cos[2 Pi x] Cos[Pi (x+1.732 y)] Cos[Pi (-x+1.732 y)] 
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+.02 Cos[4 Pi z],{x,-.5,.5},{y,-.45,.45},{z,.5,-.5},MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Fig. 3.3.9:ContourPlot3D[Cos[2 Pi x] Cos[Pi (x+1.732 y)] Cos[Pi (-x+1.732 y)] 
+.1 Cos[4 Pi z],{x,-.5,.5},{y,-.45,.45},{z,.5,-.5},MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Fig. 3.3.10:ContourPlot3D[Sin[2 Pi x] Sin[Pi (x+1.732 y)] Sin[Pi (-x+1.732 y)], 
{ x,-. 5,. 45 }, { y,-. 6,. 6 }, { z,.375,-. 375 },MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } }, 
Boxed->False,Axes->True] 

Fig. 3.3.11:ContourPlot3D[Sin[2 Pi x] Sin[Pi (x+1.732 y)] Sin[Pi (-x+1.732 y)]-.1, 
{x,- 1,.4},{y,-.8,.8 }, {z,.375,-.375 },MaxRecursion->2,PlotPoints->{ {3,5},{3,5 }, {3,5} }, 
Boxed->False,Axes->True] 

Fig. 3.3.12a: ContourPlot3D[Sin[2 Pi x] Sin[Pi (x+1.732 y)] Sin[Pi (-x+1.732 y)]+ 
.025 Sin[4 Pi z],{x,-1.05,.45},{y,-.85,.85},{z,.375,-.375},MaxRecursion->2,PlotPoints-> 

{ {3,5},{3,5},{3,5 } },Boxed->False,Axes->True] 

Fig. 3.3.12b: Show[%, ViewPoint->{0.000, 0.000, 3.384}] 

Fig. 3.3.13:ComourPlot3D[Sin[2 Pi x] Sin[Pi (x+1.732 y)] Sin[Pi (-x+1.732 y)]+ 
.25 Sin[4 Pi z],{x,-1.05,.45},{y,-.85,.85},{z,.375,-.375},MaxRecursion->2,PlotPoints-> 

{ { 3,5 }, { 3,5 }, { 3,5 } },B oxed->False,Axes->True] 

Fig. 3.3.14: Show[%, ViewPoint->{0.000, 0.000, 3.384}] 

Fig. 3.3.15:ContourPlot3D[6 Sin[2 Pi x] Sin[ Pi (x+1.732 y)] Sin[ Pi (-x+1.732 y)]+ 
Sinai z], {x,- 1.05,.45 }, {y,-.85,.85 }, {z, 1.8,-.8 },MaxRecursion->2,PlotPoints-> 

{ {3,5 },{3,5},{3,5 } },Boxed->False,Axes->True] 

Fig. 3.3.16: Show[%, ViewPoint->{0.000, -0.000, 3.384}] 

Chapter 4 

Fig. 4.1.1: ContourPlot3D[Cos[ Pi z]+ Cos[ Pi y] +Cos[ Pi x],{x,2,-2},{y,2,-2},{z,2,-2}, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } } ,B oxed->False,Axes->True] 

Fig. 4.1.2 ContourPlot3 D[Sin[Pi(x+y)]+ Sin[Pi(x-y)]+ Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
Sin[Pi(y+z)]+Sin[Pi(y-z)], {x, 1,- 1 }, {y, 1,- 1 }, { z, 1,- 1 },MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 4.1.3: ContourPlot3D [Cos[Pi(x+y)]+Cos[Pi(x-y)]+Cos[Pi(x+z)]+Cos[Pi(-x+z)]+ 
Cos [Pi(y+z)]+Cos [Pi(y-z)], { x, 1 ,- 1 }, {y, 1 ,- 1 }, { z, 1 ,- 1 } ,MaxRecursion->2,PlotPoints-> 
{ { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 4.1.4: ContourPlot3D[(Cos[Pi(x+y+z)]+Cos[Pi(x-y-z)]+Cos[Pi(-x-y+z)]+ 
Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)]), 
{x,l.05,-1.05},{y,l.05,-1.05},{z,l.05,-1.05},MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 
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Fig. 4.1.5: ContourPlot3D [Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
Sin[Pi(y+z)]+Sin[Pi(y-z)], {x, 1,- 1 }, {y, 1,- 1 }, { z,1,- 1 },MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 
Show[%, ViewPoint->{3.383,-0.000, 0.000}] 

Fig. 4.1.6: Show[%, ViewPoint->{- 1.954, - 1.940, - 1.966}] 

Fig. 4.1.7: ContourPlot3D[(Cos [Pi(x+y+z)]+Cos[Pi(x-y-z)]+Cos[Pi(-x-y+z)]+ 
Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)]), 
{x, 1.05,- 1.05 }, {y, 1.05,- 1.05 }, { z, 1.05,- 1.05 },MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 
Show[%, ViewPoint->{1.957, 1.958, 1.945}] 

Fig. 4.1.8: Show[%, ViewPoint->{-2.388,-2.397, 0.042}] 

Fig. 4.1.9: ContourPlot3D[Cos[Pi(x+y)]+Cos[Pi(x-y)]+Cos [Pi(x+z)]+Cos[Pi(-x+z)]+ 
Cos[Pi(y+z)]+Cos [Pi(y-z)]+ 1, {x, 1,- 1 }, {y, 1,- 1 }, { z, 1,- 1 },MaxRecursion->2,PlotPoints-> 
{ {4,4}, {4,4}, {4,4} },Boxed->False,Axes->True] 

Fig. 4.1.10: ContourPlot3D [Cos [Pi(x+y)]+Cos [Pi(x-y)]+Cos[Pi(x+z)]+Cos[Pi(-x+z)]+ 
Cos [Pi(y+z)]+Cos [Pi(y-z)]+ 1, {x, 1.4,- 1.4 }, {y, 1.4,- 1.4 }, { z, 1.4,- 1.4 } ,MaxRecursion->2, 
PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 4.2.1: ContourPlot3D[Cos[Pi(x)],{x,l.6,-1.6},{y,l.6,-1.6},{z,1,-1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.2.2 ContourPlot3D[Cos[Pi(x)]+. 1 (Cos[Pi(y)]+Cos[Pi(z)]), {x, 1.7,- 1.7}, {y, 1.7,- 1.7}, 
{ z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.2.3: ContourPlot3D[Cos[Pi(x)]+.2(Cos[Pi(y)]+Cos[Pi(z)]), {x, 1.7,- 1.7}, {y, 1.7,- 1.7}, 
{ z,0,2 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } } ,Boxed->False,Axes->True] 

Fig. 4.2.4: ContourPlot3D[Cos[Pi(x)]+.5 (Cos[Pi(y)]+Cos[Pi(z)]),{x,l.7,-1.7},{y,l.7,-1.7}, 
{ z,0,2 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } } ,Boxed->False,Axes->True] 

Fig. 4.2.5: ContourPlot3D[Cos [Pi(x)]+. 8(Cos[Pi(y)]+Cos[Pi(z)]), {x,2,-2}, {y,2,-2 }, 
{ z,0,2 },MaxRecursion->2,PlotPoims-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.2.6: ContourPlot3D [Cos[Pi(x)]+Cos[Pi(y)]+Cos[Pi(z)], {x,2,-2 }, {y,2,-2 }, 
{ z,0,2 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.2.7: ContourPlot3D[Sin[Pi(x+y)],{x,1,-1 },{y,1,-1 },{z,1,-1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.2.8: ContourPlot3D[Sin[Pi(x+y)]+. 1 (Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
S in [Pi(y+z)]+ S in [Pi(y-z)]), { x, 1 ,- 1 }, {y, 1 ,- 1 }, { z, 1 ,- 1 } ,MaxRecursion-> 2,PlotPoints-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },B oxed->False,Axes->True] 

Fig. 4.2.9: ContourPlot3D[Sin[Pi(x+y)]+.3(Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
Sin[Pi(y+z)]+ Sin[Pi(y-z)]), {x, 1 ,- 1 }, {y, 1,- 1 }, { z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.2.10: ContourPlot3D [Sin[Pi(x+y)]+.8(Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
S in [Pi(y+z) ]+ S in [Pi(y-z) ]), { x, 1 ,- 1 }, { y, 1 ,- 1 }, { z, 1 ,- 1 } ,MaxRecursion-> 2,P lotP oints-> 
{ {4,4},{4,4}, {4,4} },Boxed->False,Axes->True] 
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Fig. 4.2.11: ContourPlot3D [Sin[Pi(x)]+. 1 (Sin~i(x+y)]+Sin[Pi(xy)]+Sin[Pi(x+z)]+ 
Sin[Pi(x+z)]+ S in [Pi(y+z)] + Sin [Pi(y-z)]), { x, 1.2,- 1.2 }, {y, 1,1 }, { z, 1,1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.2.12 ContourPlot3D [Sin[Pi(x)]+.3(Sin[Pi(x+y)]+Sin[Pi(x-y)]+ 
S in [Pi(x+z)]+ S in [Pi(-x+z)] + S in [Pi(y+z)]+ S in [Pi(y-z)]), { x, 1.2,- 1.2, {y, 1,1 }, { z, 1 ,- 1 }, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.056,3.383,-0.026 } ] 

Fig. 4.2.13: ContourPlot3D[Sin[Pi(x)]+.37(Sin[Pi(x+y)]+Sin[Pi(x-y)]+ 
S in [Pi(x+z)]+ S in [Pi(-x+z)]+ S in[Pi(y+z)]+ Sin [Pi(y-z)]), { x, 1.2,- 1.2 }, {y, 1,1 }, { z, 1,- 1 }, 
MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } } ,B oxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.056,-3.383,-0.026 } ] 

Fig. 4.2.14: ContourPlot3D [Sin[Pi(x)]+.6(Sin[Pi(x+y)]+Sin[Pi(x-y)]+ 
Sin[Pi(x+z)]+Sin[Pi(-x+z)]+Sin [Pi(y+z)]+Sin[Pi(y-z)]), 
{x, 1.2,- 1.2},{y, 1,- 1 },{z, 1,- 1 },MaxRecursion->2,PlotPoints->{ {4,4}, 
{ 4,4 }, { 4,4 } } ,B oxed->False,Axes->True] 

Fig. 4.2.15: ContourPlot3D[Cos[Pi(x+y+z)], 
{x, I,- 1 },{y, 1,- 1 },{z, 1,- 1 },MaxRecursion->2,PlotPoints-> { {5,3 }, 
{ 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.2.16: ContourPlot3D[Cos[Pi(x+y+z)]+.2(Cos[Pi(x-y-z)]+ 
Cos[Pi(-x-y+z)]+Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+ 
S in[Pi(-x-y+z)]+Sin[Pi(-x+y-z)]), { x, 1 ,- 1 }, {y, 1 ,- 1 }, { z, 1,- 1 },MaxRecursion->2,PlotPoints-> 
{ { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 4.2.17: ContourPlot3D[Cos[Pi(x+y+z)]+.3 (Cos[Pi(x-y-z)]+ 
Cos[Pi(-x-y+z)]+Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+Sin[Pi(-x-y+z)]+ 
Sin[Pi(-x+y-z)]), {x, 1,- 1 }, {y, 1,- 1 }, { z, 1,- 1 },MaxRecursion->2,PlotPoints-> 
{ {4,4},{4,4}, {4,4} },Boxed->False,Axes->True] 

Fig. 4.2.18: ContourPlot3D [Cos[Pi(x+y+z)]+. 5(Cos[Pi(x-y-z)]+ 
Cos[Pi(-x-y+z)]+Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+ 
S in[Pi(-x-y+z)]+ S in[Pi(-x+y-z)]), { x, 1 ,- 1 }, {y, 1 ,- 1 }, { z, 1,- 1 },MaxRecursion->2,PlotPoims-> 
{ { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 4.2.19: ContourPlot3 D[Cos [Pi(x+y+z)]+(Cos[Pi(x-y-z)]+ 
Cos[Pi(-x-y+z)]+Cos [Pi(-x+y-z)]+Sin[Pi(x+y+z)]+ Sin[Pi(x-y-z)]+ 
Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)]), {x, 1,- 1 },{y, 1,- 1 },{z, 1,- 1 }, 
MaxRecursion->2,PlotPoints-> { { 4,4 }, 
{ 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 4.3.1: ContourPlot3D[Cos[Pi(x-y)]+Cos[Pi(-x+z)]+Cos~i(y-z)], 
{ x, 1.5,- 1.5 }, {y, 1.5,- 1.5 }, { z, 1.5,- 1.5 },MaxRecursion->2,PlotPoints-> { { 5,3 }, 
{ 5,3 },{ 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.2: Show[%,ViewPoint->{-1.961,-1.968,-1.932}] 

Fig. 4.3.3: ContourPlot3D [Cos[Pi(x-y)]+Cos[Pi(-x+z)]+Cos[Pi(y-z)]+.8 
(Cos [Pi(x)]+Cos [Pi(z)]+Cos[Pi(y)]), { x, 1.5,- 1.5 }, {y, 1.5,- 1.5 }, { z, 1.5,- 1.5 }, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 
Show [%,ViewPoint-> {- 1.961 ,- 1.968,- 1.932 } ] 
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Fig. 4.3.4: ContourPlot3D[Cos[Pi(x-y)]+Cos[Pi(-x+z)]+Cos[Pi(y-z)]+l.2 
(Cos [Pi(x)]+Cos [Pi(z)]+Cos [Pi(y)]), { x, 1.5,- 1.5 }, {y, 1.5,- 1.5 }, { z, 1.5,- 1.5 },MaxRecursion->2, 
PlotPoims-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 
Show[%,ViewPoint-> {- 1.961,- 1.968,- 1.932 } ] 

Fig. 4.3.5: ContourPlot3D[Cos[Pi(x-y)]+Cos[Pi(-x+z)]+Cos[Pi(y-z)]+l.8 (Cos[Pi(x)]+ 
Cos[ Pi(z)]+Cos[ Pi(y)]),{x,l.5,-1.5},{y,l.5,-1.5},{z,l.5,-1.5},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 
Show[%,ViewPoint->{- 1.961,- 1.968,- 1.932 }] 

Fig. 4.3.6: ContourPlot3D[Cos[Pi(x-y)]+Cos [Pi(-x+z)]+Cos[Pi(y-z)]+2.4 
(Cos [Pi(x)]+Cos [Pi(z)]+Cos [Pi(y)]), { x,2,-2 }, { y,2,-2 }, { z,2,-2 } ,MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.7: ContourPlot3D[Sin[Pi(x-y)]+Sin[ Pi(-x+z)]+Sin[Pi(y-z)]-.5, 
{ x, 1.5,- 1.5 }, {y, 1.5,- 1.5 }, { z, 1.5,- 1.5 },MaxRecursion->2,PlotPoints-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },B oxed->False,Axes->True] 

Fig. 4.3.8: Show[%,ViewPoint->{-1.961,-1.968,-1.932}] 

Fig. 4.3.9: ContourPlot3D[. 15(Sin[Pi(x+y)]+Sin[Pi(x+z)]+Sin[Pi(y+z)])+ 
S in[Pi(x-y)l+ Sin [Pi(-x+z)]+ Sin [Pi(y-z)]-. 5, { x, 1.5,- 1.5 }, {y, 1.5,- 1.5 }, { z, 1.5,- 1.5 }, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } } ,Boxed->False,Axes->Yrue] 

Fig. 4.3.10: Show[%,ViewPoint->{-1.961,-1.968,-1.932}] 

Fig. 4.3.11: ContourPlot3D [.2(Sin[Pi(x+y)]+Sin[Pi(x+z)]+Sin[Pi(y+z)])+ 
S in[Pi(x-y)]+ Sin [Pi(-x+z)]+ Sin [Pi(y-z)]-. 5, { x, 1.5,- 1.5 }, {y, 1.5,- 1.5 }, { z, 1.5,- 1.5 }, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Fig. 4.3.12: ContourPlot3D [.3 (Sin[Pi(x+y)]+Sin[Pi(x+z)]+Sin[Pi(y+z)])+ 
S in[Pi(x-y)]+ Sin [Pi(-x+z)]+ Sin [Pi(y-z)]-. 5, { x, 1.5,- 1.5 }, {y, 1.5,- 1.5 }, { z, 1.5,- 1.5 }, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 4.3.13: Show[%,ViewPoint->{-1.967,-1.962,-1.932}] 

Fig. 4.3.14: ContourPlot3D [.6(Sin[Pi(x+y)]+Sin[Pi(x+z)]+Sin[Pi(y+z)])+ 
Sin[Pi(x-y)]+Sin[ Pi(-x+z)]+Sin[ Pi(y-z)]-.5,{x,l.5,-1.5},{y,l.5,-1.5},{z,l.5,-1.5}, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 4.3.15: ContourPlot3D[Sin[Pi(x-y)]+Sin[Pi(-x+z)]+Sin[Pi(y-z)]+.2(Cos[Pi(x+y+z)]+ 
Cos[Pi(x-y-z)]+Cos[Pi(-x-y+z)]+Cos[Pi(-x§ 
Sin[ Pi(-x-y+z)]+Sin[Pi(-x+y-z)])-.5,{x,1,-1 },{y,1,-1 },{z,1,-1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.16: Show[%,ViewPoint->{-1.961,-1.968,-1.932}] 

Fig. 4.3.17: ContourPlot3D [Sin[Pi(x-y)]+Sin[Pi(-x+z)]+Sin[Pi(y-z)]+ 
�9 
Sin[Pi(x+y+z)]+Sin[ Pi(x-y-z)]+Sin[ Pi(-x-y+z)]+Sin[Pi(-x+y-z)])-.5, 
{x, 1,-1 },{y, 1,- 1 },{z,1,-1 },MaxRecursion->2,PlotPoints->{ { 5,3 }, 
{ 5,3 }, { 5,3 } },Boxed->False,Axes->True] 
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Fig. 4.3.18: Show[%,ViewPoint->{1.957,1.958,1.945}] 

Fig. 4.3.19: ContourPlot3D[Sin[Pi(x-y)]+Sin[Pi(-x+z)]+Sin[Pi(y-z)]+ 
2(Cos[Pi(x+y+z)]+Cos [Pi(x-y-z)]+Cos[Pi(-x-y+z)]+Cos[Pi(-x+y-z)]+ 
S in [Pi(x+y+z)] + Sin [Pi(x-y-z)] + S in [Pi(-x-y+z)] + S in [Pi(-x+y-z)])-. 5, 
{x, 1,- 1 },{y, 1,- 1 },{z, 1,- 1 },MaxRecursion->2,PlotPoints->{ { 5,3 }, 
{ 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.20: Show[%,ViewPoint->{1.957,1.958,1.945}] 

Fig. 4.3.21: ContourPlot3D[Cos[Pi x]+ Cos[Pi y]-.4,{x,3,-1},{y,3,-1},{z,1,-1}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.22: ContourPlot3D[Cos[Pi(x+y)]+Cos[Pi(x-y)]-.4,{x,l.5,-1.5},{y,l.5,-1.5},{z,1,-1 }, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.23:ContourPlot3D[Cos[2 Pi x]+ Cos[2 Pi y]+.2 Cos[2 Pi z] +.5,{x,1,-1 },{y,1,-1 }, 
{ z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.24:ContourPlot3D[Cos[2 Pi x]+ Cos[2 Pi y] +.4 Cos[2 Pi z]+.5,{x,1,-1},{y,1, 
-1 }, {z, 1,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 },{ 5,3 },{ 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.25:ContourPlot3D[Cos[2 Pi x]+ Cos[2 Pi y] +.6 Cos[2 Pi z]+.5,{x,1,-1},{y,1, 
-1 }, {z, 1,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 },{ 5,3 },{ 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.26:ContourPlot3D[Cos[2 Pi x]+ Cos[2 Pi y] +.8 Cos[2 Pi z]+.5,{x,1,-1},{y,1, 
- 1 }, { z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.27: ContourPlot3D[Sin[Pi(x+y)]+Sin[Pi(x-y)]-.2,{x,2.1,-1.1 },{y,l.6,-1.6},{z,1, 
- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.28: ContourPlot3D [Sin[Pi(x+y)]+Sin[Pi(x-y)]+. 1 (Sin[Pi(x+z)]+ 
Sin[Pi(-x+z)]+Sin[Pi(y+z)]+Sin[ Pi(y-z)])-.2,{x,l.2,-1.2},{y,1,-1 },{z,1.2,-1.2}, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.29: ContourPlot3D[Sin[Pi(x+y)]+Sin[Pi(x-y)]+.2(Sin[Pi(x+z)]+ 
Sin[Pi(-x+z)]+Sin[Pi(y+z)]+Sin[Pi(y-z)])-.2, {x, 1,- 1 }, {y, 1,- 1 }, { z, 1,- 1 },MaxRecursion-> 
2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.30: ContourPlot3D[Sin[Pi(x+y)]+Sin[Pi(x-y)]+.4(Sin[Pi(x+z)]+ 
Sin[Pi(-x+z)]+Sin[Pi(y+z)]+ Sin[Pi(y-z)]), {x, 1,- 1 }, {y, 1,- 1 }, { z, 1,- 1 },MaxRecursion-> 
2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.31: ContourPlot3D[.02(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+ 
S in [Pi(-x+z)]+Sin [Pi(y+z)] + Sin [Pi(y-z)])+Cos [Pi(x)]+Cos [Pi(y), { x,2,-2 }, {y,2,-2 }, 
{ z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } } ,Boxed->False,Axes->True] 

Fig. 4.3.32: ContourPlot3D [.08(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+ 
S in [Pi(-x+z)] + S in [Pi(y+z)] + Sin [Pi(y-z)])+Cos [Pi(x)]+Cos [Pi(y)], { x,2,-2 }, { y,2,-2 }, 
{z,1,-1 },MaxRecursion->2,PlotPoints->{ {5,4},{5,4},{5,3}},Boxed->False,Axes->True] 

Fig. 4.3.33: ContourPlot3D [.4(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
Sin[Pi(y+z)]+Sin[Pi(y-z)])+Cos [Pi(x)]+Cos [Pi(y)], { x,2,-2 }, {y,2,-2 }, {z, 1,-1 }, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } },Boxed-False,Axes->True] 
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Fig. 4.3.34: ContourPlot3D [.8(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
Sin[Pi(y+z)]+Sin ~i(y-z)])+Cos [Pi(x)]+Cos ~i(y)], { x,2,-2 }, { y,2,-2 }, {z, 1,-1 }, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.35: ContourPlot3D [2(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
S in[Pi (y+z)]+ S in [Pi(y-z)])+Cos [Pi(x)]+Co s [Pi(y)], { x,2,-2 }, { y,2,-2 }, { z, 1,- 1 }, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.36: Show[%,ViewPoint->{0.000,0.000,3.384}] 

Fig. 4.3.37: ContourPlot3D[Cos [Pi(x+y)]+Cos [Pi(x-y)]+.02(Cos[Pi(x+y+z)]+ 
Cos[Pi(x-y-z)]+Cos[Pi(-x-y+z)]+Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+ 
Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)]), {x, 1.6,- 1.6 }, {y, 1.6,- 1.6 }, { z, 1,- 1 },MaxRecursion->2, 
PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.38: ContourPlot3D[Cos[Pi(x+y)]+Cos[Pi(x-y)]+.2 (Cos[Pi(x+y+z)]+ 
Cos[Pi(x-y-z)]+Cos[Pi(-x-y+z)]+Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+ 
S in [Pi(-x-y+z)]+ S in [Pi(-x+y-z)]), { x, 1.6,- 1.6 }, { y, 1.6,- 1.6 }, { z, 1 ,- 1 } ,MaxRecursion->2, 
PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.39: ContourPlot3D[Cos[Pi(x+y+z)]+Sin[Pi(x-y-z)]+.2,{x,1,-1 },{y,1,-1 },{z,1,-1 }, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.3.40: ContourPlot3D[Cos[Pi(x+y+z)]+Sin[Pi(x-y-z)]+. 1 (Cos[Pi(x-y-z)]+ 
Cos [Pi(-x-y+z)]+Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)])+ 
.2, {x, 1 ,- 1 }, {y, 1 ,- 1 }, { z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed-> 
False,Axes->True] 

Fig. 4.3.41: ContourPlot3D[Cos[Pi(x+y+z)]+Sin[Pi(x-y-z)]+.3(Cos[Pi(x-y-z)]+ 
Cos[Pi(-x-y+z)]+Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[ Pi(-x-y+z)]+Sin[Pi(-x+y-z)])+ 
.2, {x, 1 ,- 1 }, {y, 1,- 1 }, { z, 1 ,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed-> 
False,Axes->True] 

Fig. 4.3.42: ContourPlot3D [Cos[Pi(x+y+z)]+Sin[Pi(x-y-z)]+. 5(Cos[Pi(x-y-z)]+ 
C•s[Pi(-x-y+z)]+C•s[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)])+.5, 
{x, 1,- 1 }, {y, 1,- 1 }, { z, 1,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed-> 
False,Axes->True] 

Fig. 4.4.1: ContourPlot3D [Sin[Pi(x+y)]+Sin[Pi(x-y)]+(Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
Sin [Pi(y+z)]+ Sin [Pi(y-z)]), { x,. 85,-. 85 }, {y,. 85,-. 85 }, { z,. 85,-. 85 } ,MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 4.4.2: ContourPlot3D[.5 (Cos[Pi(x+y+z)]+Cos[Pi(x-y-z)]+Cos[Pi(-x-y+z)]+ 
Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)])+ 
Sin[Pi(x+y)]+Sin[Pi(x-y)]+(Sin[Pi(x+z)]+Sin[Pi(-x+z)]+Sin[Pi(y+z)]+Sin[Pi(y-z)])• 
{ x,. 85,-.85 }, { y,. 85,-. 85 }, { z,. 85,-. 85 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 4.4.3: ContourPlot3D[ (Cos[Pi(x+y+z)]+Cos[Pi(x-y-z)]+Cos[Pi(-x-y+z)]+ 
Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)])+ 
S in[Pi(x+y)]+ S in[Pi(x-y)]+( S in[Pi(x+z)]+ Sin[Pi(-x+z)]+ S in[Pi(y+z)]+ S in[Pi(y-z)]), 
{ x,. 85,-. 85 }, {y,. 85,-. 85 }, { z,. 85,-. 85 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 4.4.4: ContourPlot3D [(Cos [Pi(x+y+z)]+Cos[Pi(x-y-z)]+Cos[Pi(-x-y+z)]+ 
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Cos~i(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)])+ 
•75(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+Sin[Pi(y+z)]+Sin[Pi(y-z)])• 
{x,.85,-.85 }, {y,. 85,-. 85 }, { z,. 85,-. 85 } ,MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 4.4.5: ContourPlot3D [(Cos [Pi(x+y+z)]+Cos [Pi(x-y-z)]+Cos [Pi(-x-y+z)]+ 
Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+Sin[Pi(-x-y+z)]+Sin[Pi(-x§ 
•5(Sin[Pi(x+y)]•Sin[Pi(x-y)]•Sin[Pi(x+z)]+Sin[Pi(-x•z)]•Sin[Pi(y•z)]+Sin[Pi(yz)])• 
{ x,.85,.85 }, { y,. 85,.85 }, { z,.85,.85 } ,MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 4.4.6: ContourPlot3D [(Cos [Pi(x+y+z)]+Cos[Pi(x-y-z)]+Cos[Pi(-x-y+z)]+ 
Cos[Pi(-x+y-z)]+Sin[Pi(x+y+z)]+Sin[Pi(x-y-z)]+Sin[Pi(-x-y+z)]+Sin[Pi(-x+y-z)])+ 
.25(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+Sin[Pi(y+z)]+Sin[Pi(y-z)])• 
{ x,.85,-.85 }, {y,. 85,-. 85 }, { z,. 85,-. 85 } ,MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 4.4.7: ContourPlot3D [(Sin[Pi(x+y)]+Sin~i(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
S in [Pi(y+z)]+Sin [Pi(y-z)]), {x, 1.2,- 1.2 }, {y, 1.2,- 1.2 }, { z, 1.2,- 1.2 } ,MaxRecursion->2, 
PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 4.4.8: Show[%,ViewPoint->{0.056,-3.382,-0.093}] 

Fig. 4.4.9: ContourPlot3D [(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
S in [Pi(y+z)]+ S in [Pi(y-z)])+( Cos ~i(x)]+Cos [Pi (y)]+Cos [Pi(z) ]), { x, 1.2,- 1.2 }, { y, 1.2,- 1.2 }, 
{ z, 1.2,- 1.2 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } } ,B oxed->False,Axes->True] 
Show[%, ViewPoint->{-0.012,-3.384, 0.042}] 

Fig. 4.4.10: ContourPlot3D [(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
Sin[Pi(y+z)]+Sin [Pi(y-z)])+ 1.7(Cos [Pi(x)]+Cos[Pi(y)]+Cos[Pi(z)]), {x, 1.2,- 1.2 }, {% 1.2,- 1.2 }, 
{ z, 1.2,- 1.2 } ,MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.056,-3.382,-0.093 } ] 

Fig. 4.4.11: ContourPlot3D [(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin~i(-x+z)]+ 
S in [Pi(y+z)]+ S in [Pi(y-z)])+ 2.2(Cos [Pi(x)]+Cos [Pi(y)]+Cos [Pi(z)]), { x, 1.2,- 1.2 }, { y, 1.2,- 1.2 }, 
{ z, 1.2,- 1.2 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } } ,B oxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.056,-3.382,-0.093 } ] 

Fig. 4.4.12: ContourPlot3D [(Sin[Pi(x+y)]+Sin[Pi(x-y)]+Sin[Pi(x+z)]+Sin[Pi(-x+z)]+ 
Sin[Pi(y+z)]+Sin[Pi(y-z)])+3 (Cos[Pi(x)]+Cos[Pi(y)]+Cos[Pi(z)]), {x, 1.2,- 1.2},{y, 1.2,- 1.2}, 
{ z, 1.2,- 1.2 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 
Show[%, ViewPoint->{0.056, -3.382, -0.093}] 

C h a p t e r  5 

Fig. 5.2.1: ContourPlot3D[EAx-100,{x,5,-5},{y,5,-5},{z,5,-5},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.2.2: ContourPlot3D[EAx+EA-x-100,{x,5,-5},{y,5,-5},{z,5,-5},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.2.3: ContourPlot3D[E^x+E^y-100,{x,5,-5},{y,5,-5},{z,5,-5}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 
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Fig. 5.2.4: ContourPlot3D[E^x+E^y-1000,{x,7,-7},{y,7,-7},{z,7,-7}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.2.5: ContourPlot3D[E^x+E^y+E^z-100,{x,5,-5},{y,5,-5},{z,5,-5}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.2.6: ContourPlot3D[E^x+E^y+E^z+E^-x+E^-y+E^-z-100,{x,5,-5},{y,5,-5},{z,5,-5}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.2.7: ContourPlot3D [E^(x-6)+E^(y)+E^(z)+E^-(x-6)+E^-(y)+E^-(z)- 100, 
{x, 11,1 }, {y,5,-5 }, { z,5,-5 },MaxRecursion->2,PlotPoints-> { { 5,3 }, 
{ 5,3 },{ 5,3 } },Boxed->False,Axes->True 

Fig. 5.2.8: ContourPlot3D[E^x+E^y+E^z+E^-x+E^-y+E^-z-1000,{x,7,-7},{y,7,-7},{z,7,-7}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.2.9: ContourPlot3D[EAx+EAy+EAz+EA-x+E^-y+E^-z-1000,{x,7,-7},{y,7,-7},{z,7,-7}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.2.10: ContourPlot3D[EAxA6+EAyA6+EAz^6-1000, {x, 1.4,- 1.4}, {y, 1.4,- 1.4}, {z, 1.4, 
- 1.4 } ,MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 5.2.11: ContourPlot3D[EA(x+y+z)A3+EA(x-y-z)^3+ EA(-x-y+z)A3+EA(y-z-x)^3-40000, 
{ x,2.5,-2.5 }, { y,2.5,-2.5 }, { z,2.5,-2.5 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 5.2.12: ContourPlot3D[E^(x+y+z)A4+EA(x-y-z)^4+ EA(-x-y+z)^4+EA(-x+y-z)^4-40000, 
{x, 1.7,- 1.7}, {y, 1.7,- 1.7},{z, 1.7,- 1.7},MaxRecursion->2,PlotPoints->{ {4,4}, {4,4},{4,4} }, 
Boxed->False,Axes->True] 

Fig. 5.3.1: ContourPlot3D[EA-xA2-.1,{x,2,-2},{y,3,-3},{z,3,-3},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.3.2: ContourPlot3D[EA-xA2-.9,{x,1,-1 },{y,3,-3},{z,3,-3},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.3.3: ImplicitPlot[E^-((x)^2)+EA-((x-8)^2)-y--0, {x,2,-2 }, {y,2.2,-.2},PlotPoints->200, 
Axes->True] 

Fig. 5.3.4: ImplicitPlot[EA-((x)A2)+2EA-((x-8)A2)-y==0, {x,10,-3 },{y,3,-.2},PlotPoints->200, 
Axes->True] 

Fig. 5.3.5: ContourPlot3D[EA-((x)A2+(y)A2+(z-3)A2)+EA-((x)A2+(y)A2+(z)A2)-.25,{x,l.5, 
- 1.5 }, {y, 1.5,- 1.6 }, { z,4.3,- 1.7 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,4 } },Boxed-> 
False,Axes->True] 

Fig. 5.3.6: Show[%,ViewPoint->{3.381,0.144,-0.03}] 

Fig. 5.3.7: ContourPlot3D[EA-((x)^2+(y)A2+(z-3)A2)+EA-((x)A2+(y)A2+(z)^2)-.2108, 
{ x, 1.5,- 1.5 }, {y, 1.5,- 1.6 }, { z,4.3,- 1.7 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,4 } }, 
Boxed->False,Axes->True] 
Show[%, ViewPoint->{3.381, 0.144, -0.031 }] 

Fig. 5.3.8: ContourPlot3D[E^-((x)^2+(y)^2+(z-3)^2)+E^-((x)^2+(y)^2+(z)^2) 
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-. 18, { x, 1.5,- 1.5 }, {y, 1.5,- 1.6 }, { z,4.3,- 1.7} ,MaxRecursion->2,PlotPoints-> { { 5,3 }, 
{ 5,3 }, { 5,4} },Boxed->False,Axes->True] Show[%,ViewPoint->{ 3.381,0.144,-0.031 }] 

Fig. 5.3.9:ContourPlot3D[.2 EA-((x)A2+(y)A2+(Z-2.6)A2)+EA-((x)A2+(y)A2+(z)A2)-.18, 
{X, 1.5,- 1.5}, {y, 1.5,- 1.6}, { Z,3.5,- 1.5 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 5.3.10:ContourPlot3D[.2 EA-((x)A2+(y)A2+(Z-2.4)A2)+EA-((x)A2+(y)A2+(Z)^2)-.18, 
{X, 1.5,- 1.5 }, {y, 1.5,- 1.6 }, { Z,3.5,- 1.5 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 5.3.11:ContourPlot3D[.2 EA-((x)A2+(y)A2+(Z-2.36)A2)+EA-((x)A2+(y)A2+(z)A2)-.18, 
{ X, 1.5,- 1.5 }, {y, 1.5,- 1.6 }, { Z,3.5,- 1.5 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 5.3.12: ContourPlot3D[EA-((x)A2+(y)A2+(z-3)A2)+EA-((x)A2+(y)A2+(z)A2)+ 
.1 EA-((x)A2+(y)A2+(Z- 1.5)A2)-.2108, {X, 1.5,- 1.5 },{y, 1.5,- 1.6 }, {Z,4.3,- 1.7},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 5.3.13: ContourPlot3D[EA-((x)A2+(y)A2+(z-3)A2)+EA-((x)A2+(y)A2+(z)^2)- 
.1 EA'((x)A2+(y)A2+(Z" 1.5)A2)-.2108, {X, 1.5," 1.5 }, {y, 1.5,- 1.6}, {Z,4.3,- 1.7},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,4 } },Boxed->False,Axes->True] 
Show[%,ViewPoint->{ 3.381,0.144,-0.031 }] 

Fig. 5.3.14:ImplicitP1ot[E^-((y-l.7)A2+xA2)+.4 EA-(((y)A2+(X-2)^2)) 
+EA-((y+ 1.7)^2+xA2)----.4, { X,2.4,- 1.5 }, { y,-3,3 } ,PlotPoints->200] 

Fig. 5.3.15a: ImplicitPlot[EA-((y -1.25)^2+xA2)+EA-((y+l.25)A2+xA2)--.4, 
{x,2.4,-1.5},{y,-3,3},PlotPoints->200] 

Fig. 5.3.15b: ImplicitP1ot[EA-((y-l.25)A2+xA2)-.4 EA-(((y)A2+(X)^2)) 
+EA-((y+ 1.25)A2+x^2) ==. 4, { X,2.4,- 1.5 }, {y,-3,3 } ,PlotPoints->200] 

Fig. 5.3.16: ImplicitP1ot[EA-(yA2+xA2-14)A2+EA-(4((y-7)A2+(X+I)A2-.5))A2----.6, 
{ X,-5,7 }, { y,-5, 8 },PlotPoints-> 100] 

Fig. 5.4.1:ContourPlot3D[.25 EA'((X-3.5)A2+y^2+Z^2-.25)+.25 EA-((X-3)A2+(y+2.3)^2 
+Z^2-.25)+.25 E^-((x-5)^2+yA2+(z+2.5)^2-.25)+E^(-(x^2 - 1))+EA(-((x-8)^2))-.2,{x,9.5,-3 }, 
{y,3 ,-3.2 }, { z,3 ,-3 } ,MaxRecursion->2,PlotPoints-> { { 7,4 }, { 5,3 }, { 5,3 } } ,B oxed->False, 
Axes->True] 

Fig. 5.4.2: ContourPlot3D[ x^2+ yA2-2 Z^2 ,{X,4,-4},{y,4,-4},{Z,2.8,-2.8}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.4.3: ContourPlot3D[ x^2+ y^2-2 zA2-4,{X,4,-4},{y,4,-4},{Z,2.5,-2.5}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 5.4.4: ContourPlot3D[ E^( x^2+ y^2-2 zA2-4)+EA'(3((x)A2+yA2+(Z-3.5)A2))-.15, 
{X,3,'3 }, { y,3,'3 }, { Z,4.3,'4.3 },MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } }, 
Boxed->False,Axes->True] 

Fig. 5.4.5: ContourPlot3D[ EA( XA2+ y^2-2 zA2-4)+EA-(1.6((x)A2+yA2+(z)A2))-.15,{X,2,-2}, 
{ y,2,-2 }, { Z, 1.5,- 1.5 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 
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Fig. 5.4.6: ContourPlot3D[E^( x^2+ y^2-2 z^2-4)+E^-(2((x)^6+y^6+(z)^6))-.15, 
{ x,3 ,-3 }, {y,3,-3 }, { z,3,-3 } ,MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } }, 
Boxed->False,Axes->True] 

Fig. 5.4.7: ContourPlot3D[E^( x^2+ y^2-2 z^2-4)+E^-(.4(E^(x+y+z-3)+E^(x-y-z+3) 
+E^(-x-y+z-3)+E^(y-z+3-x)))-. 15, { x,3,-3 }, { y,3,-3 }, { z,4,-4 },MaxRecursion->2,PlotPoints-> 
{ { 3,5 }, { 3,5 }, { 3,5 } },B oxed->False,Axes->True] 

Fig. 5.4.8: ContourPlot3D[E^( x^2+ y^2-2 z^2-4)+E^-(.362(E^(x+y+z)+E^(x-y-z)+ 
E^(-x-y+z)+E^(y-z-x))) -. 15 { x,2,-2 }, { y,2,-2 }, { z,2,-2 } ,MaxRecursion->2,PlotPoints-> 
{{3,5},{3,5},{3,5}},Boxed->False,Axes->True] Show[%, ViewPoint->{0.000,-0.000,3.384}] 

Fig. 5.4.9: ContourPlot3D[E^-( x^2+ yA2+(z-4)^2)+EA-(((x^2+y^2)^.5-4)^2+z^2)-.2, 
{ x,5.5,-5.5 }, { y, 5.5,-5.5 }, { z,5.3,- 1.3 } ,MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 4,4 } }, 
Boxed->False,Axes->True] 

Fig. 5.4.11: ContourPlot3D[EA(.2(xA2+yA2))+EA(y Cos[.5 Pi( z)]+x Sin[.5 Pi( z)])+ 
.5 EA(y Cos[.5 Pi(z+2)]+x Sin[.5 Pi(z+2)])-3.5,{x,l.9,-1.9},{y,l.9,-1.9},{z,4,-4}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 6,4 } },Boxed->False,Axes->True] 
Show[%,ViewPoint->{-2.4,-2.4,0.0211 } ] 

Fig. 5.4.12: ContourPlot3D[EA-(.5(EA(.2(xA2+yA2))+E^(y Cos[.5 Pi( z)]+x Sin[.5 Pi( z)])+.5 
EA(y Cos[.5 Pi( z+2)]+x Sin[.5 Pi(z+2)])))+.25 E^-(((xA2+y^2)A.5-5)^2+zA2)-.1,{x,6,-6}, 
{ y, 6,-6 }, { z,4,-4 } ,MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } } ,B oxed->False,Axes-> 
True] Show[%, ViewPoint->{1.318,-2.981,0.910}] 

Fig. 5.4.13: ContourPlot3D[EA-(.5(E^(.2(xA2+y^2))+ EA(y Cos[.5 Pi( z)]+x Sin[.5 Pi( 
z)])+.5 E^(y Cos[.5 Pi( z+2)]+x Sin[.5 Pi (z+2)])))+ .25 E^-(((x^2+yA2)A.5-5)A2+(z+4)^2) - 
�9 1, { x, 6,-6 }, { y, 6,-6 }, { z,5,-5 } ,MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 4,5 } } ,Boxed-> 
False,Axes->True] 

Chapter  6 

Fig. 6.1.1: ContourPlot3D[xA4-3xA2+2.25+yA4-3yA2+zA4-3zA2,{x,2,-2},{y,2,-2},{z,0,-2}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 6.1.2: ContourPlot3D[z (z-1)(z+l)(z-2)+ x(x-1)(x+l)(x-2)+ y(y-1)(y+l)(y-2), 
{x,- 1.4,2.4}, {y,- 1.4,2.4 }, {z,.5,-2.2},MaxRecursion->2,PlotPoints-> { { 5,3 },{ 5,3 },{ 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 6.1.3: ContourPlot3D[xA4-3x^2+3.5+y^4-3yA2+z^4-3zA2,{x,2,-2},{y,2,-2},{z,2,-2}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Yrue] 

Fig. 6.1.4: Plot[{EA-x^2(1680-13440'x^2+ 13440'x^4-3584*xA6+256*x^8), 
3000 Cos[1 Pi (x)]},{x,-3,3},PlotPoints->200,Axes->True] 

Fig. 61.5: HermiteH[10,x] Plot[{E^-(.5 x^2) (-30240 + 302400'x^2 -403200'x^4 
+161280'x^6 - 23040*x^8+1024*x^10),-30000 Cos [1.5 Pi (x)]},{x,0,2},PlotPoints->200, 
Axes->True] 

Fig. 6.1.6: HermiteH[20,x] Plot[{E^-(.5 x^2)(670442572800- 
13408851456000*xA2+40226554368000*xA4-42908324659200*x^6 
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21454162329600'x^8-5721109954560*x^10+866834841600*x^12 - 
76205260800'x ̂ 14+3810263040'x ^16-99614720'x ̂ 18 + 1048576'x^20), 

670000000000 Cos [2 Pi (x)]},{x,0,2},PlotPoints->200,Axes->True] 

Fig. 6.1.9: Plot[{E^-( x^2),Cos [2 Pi (x)]},{x,-3,3},PlotPoints->200,Axes->False] 

Fig. 6.1.10: Plot[E^-( xA2)Cos [2 Pi (x)],{x,-3,3},PlotPoints->200,Axes->False] 

Fig. 6.2.1: Plot[E^-( xA2)Cos [2 Pi (x)],{x,-3,3},PlotPoints->200,Axes->True] 

Fig. 6.2.2: ImplicitPlot[-E^-(.5(x)A2)(Cos[Pi x])-~=0,{x,-4.2,.5},{y,l.5,-1 }, 
PlotPoints->200,Axes->True] 

Fig. 6.2.3: ContourPlot3D[(z Cos[2 Pi x]-y Sin[2 Pi x]), {x,1,-1 },{y,.5,-.5},{z,.5,-.5}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 6.2.4: ContourPlot3D[ (z Cos[2 Pi x]-y Sin[2 Pi x])- 4(zA2+yA2),{x,1,-1},{y,.3,-.3}, 
{ z,. 3,-. 3 },MaxRecursion->2,PlotPoints- { { 5,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 6.2.5: ContourPlot3D~A-((x)^2) (z Cos[2 Pi x]- y Sin[2 Pi x])- 4(zA2+y^2),{x,l.8,-1.8}, 
{y,.3,-.3 }, { z,.3,-.3 } ,MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } } ,Boxed-> 
False,Axes->True] 

Fig. 6.2.6: Show[%,ViewPoint->{0.123,-3.381,-0.031}] 

Fig. 6.3.1: ContourPlot3D[EA-(((x)^2+(y)A2+(z)^2)) ( Cos[Pi x]+Cos[Pi y]+Cos[Pi z])- 
.5, {x, 1.3,- 1 }, {y, 1 ,- 1 }, { z, 1,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed-> 
False,Axes->True] 

Fig. 6.3.2: ContourPlot3D[EA-(((x)A2+(y)A2+5(z)^2)) (Cos[.5 Pi x]+Cos[Pi y]+Cos[Pi z])- 
.5, {x, 1.3,- 1 }, {y,.9,-.9 }, { z,.6,-.6 },MaxRecursion->2,PlotPoints-> { { 5,3 },{ 5,3 },{ 5,3 } },Boxed-> 
False,Axes->True] 

Fig. 6.3.3: ImplicitPlot[( Cos[Pi x]+Cos[Pi y])--.1,{x,3,-3},{y,3,-3},PlotPoims->100] 

Fig. 6.3.4 a: ImplicitPlot[EA-(.5((x+4)A2+(y)^2)) (Cos[Pi x]+Cos[Pi y])--.1, 
{x,7,-7 }, {y,3,-3 },PlotPoints->200] 

Fig. 6.3.4 b: ImplicitPlot[EA-(.25((x-4)A2+(y)^2)) (Cos[Pi x]+Cos[Pi y])--.1, 
{x,7,-7 }, {y,3,-3 },PlotPoints->200] 

Fig. 6.3.5: ImplicitPlot[E^-(.5((x+4)A2+(y)^2)) (Cos[Pi x]+Cos[Pi y])+EA-(.25((x-4)^2 
+(y)^2)) ( Cos[Pi x]+Cos[Pi y])--.1,{x,7,-7},{y,3,-3},PlotPoints->100] 

Fig. 6.3.6: ContourPlot3D[E^-(.5((x+4)A2+(y)A2+(z)^2)) (Cos[Pi x]+Cos[Pi y]+Cos[Pi 
z])+EA-(.25((x-4)A2+(y)A2+(z)^2)) ( Cos~ix]+Cos[Pi y]+Cos[Pi z])-.1,{x,7,-7},{y,3.5,-3.5}, 
{ z,3.5,-3.5 },MaxRecursion->2,PlotPoints-> { { 4,5 }, { 3,5 }, { 3,5 } },B oxed->False,Axes->True] 

Fig. 6.3.7: ContourPlot3D[E^-(2((x)^2+(y)^2+(z)^2))(Sin[Pi (-x+y-z)]+Sin[Pi (-x-y+z)]+ 
Sin[Pi(x-y-z)]+Sin~i (+x+y+z)]+ Cos[Pi (-x+y-z)]+Cos[Pi (-x-y+z)]+ Cos[Pi(x-y-z)]+ 
Cos[Pi (+x+y+z)])-.4,{x, 1,-1 },{y,1,-1 },{z,1,-1 }, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 
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Fig. 6.4.1: ImplicitPlot[{(( x)+y)^4+(x-(y))^4--1,((.8 x)+y)^4+(x-(.8 y))^4--1,((.6 
x)+y)^4+(x-(.6 y))^4--1,((.4x)+y)^4+(x-(.4 y))^4==1,((.2 x)+y)^4+(x-(.2 y))^4==l, 
(y)^4+(x)^4 --1 },{x,l.2,-1.2},{y,l.2,-1.2},PlotPoints->100] 

Fig. 6.4.2: ImplicitPlot[{(x-1)A2+(y)^2---.005,(x-.707)A2+(y-.707)^2--.005, 
(x)^2+(y - 1)^2--.005,(x-. 6)^2+(y-. 8)^2--. 005,(x-.2)^2+(y-. 98)^2---. 005, 
(x-. 8)^2+(y-. 6)^2--.005,(x-.4)^2+(y-.916)^2--. 005,(x-.9)^2+(y-.436)^2--. 005, 
(x-. 97)^2+(y-. 24)^2---. 005 }, { x, 1.2,-.2 }, {y, 1.2,-.2 },PlotPoints-> 100] 

Fig. 6.4.3: ImplicitPlot[{ (x- 1)^2+(2y)^2--.005,(x-.707)A2+(2y-.707)A2--.005,(x)^2+(2y - 
1)^2--.005,(x-.6)A2+(2y-. 8)^2==.005,(x-.2)A2+(2y-.98)^2--.005,(x-. 8)^2+(2y-.6)^2--.005, 
(x-.4)^2+(2y-.916)^2--. 005,(x-.9)^2+(2y-.436)^2--. 005,(x-.97)^2+(2y-.24)^2--. 005 }, 
{ x, 1.2,-.2 }, {y, 1.2,-.2 },PlotPoints-> 100] 

Fig. 6.4.4: ImplicitPlot[{ 4(x- 1)^2+(2y)A2==.005,4(x-.707)^2+(2y-.707)A2---.005,4(x)^2+ 
(2y- 1)^2--.005,4(x-.6)^2+(2y-. 8)^2--.005,4(x-.2)^2+(2y-.98)A2--.005,n(x-. 8)^2+(2y-.6)^2 
--.005,4(x-.4)^2+(2y-.916)^2--. 005,4(x-. 9)^2+(2y-.436)^2--. 005,4(x-. 97)^2+(2y-. 24)^2 
--.005 }, { x, 1.2,-.2 }, {y, 1.2,-.2 },PlotPoints-> 100] 

Chapter 7 

Fig. 7.1.1: ContourPlot3D[E^-(xA2)Cos[Pi x]EA-(y^2)Cos[Pi y]E^-(zA2)Cos[Pi z]-.05, 
{x, 1.7,- 1.7}, {y, 1.7,- 1.7}, {z, 1.7,- 1.7},MaxRecursion->2,PlotPoints->{ {3,5}, {3,5 },{3,5} }, 
Boxed->False,Axes->True] 

Fig. 7.1.2:ContourPlot3D[E^-(x^2)Cos[2 Pi x]EA-(yA2)Cos[2 Pi y]E^-(zA2)Cos[2 Pi z]-.05, 
{x, 1.7,- 1.7}, {y, 1.7,- 1.7 },{z, 1.7,- 1.7 },MaxRecursion->2,PlotPoints->{ {3,5}, {3,5 },{3,5} }, 
Boxed->False,Axes->True] 

Fig. 7.2.1 a: ContourPlot3D[Cos[Pi x],{x,2,-2},{y,2,-2},{z,1,-1},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.2.1 b: ContourPlot3D[Cos[Pi y],{x,2,-2},{y,2,-2},{z,1,-1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.2.1 e: ContourPlot3D[Cos[Pi z],{x,2,-2},{y,2,-2},{z,2,-2},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.2.2a: ContourPlot3D[Cos[Pi x]+Cos[Pi y]-l,{x,2.5,-.5},{y,2.5,-.5},{z,2,-2}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.2.2b: ContourPlot3D[Cos[Pi x]+Cos[Pi z]-l,{x,2.5,-.5},{y,2,-2},{z,2.5,-.5}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.2.2c: ContourPlot3D[Cos[Pi y]+Cos[Pi z]-l,{x,2,-2},{y,2.5,-.5},{z,2.5,-.5}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.2.3: ContourPlot3D[Cos[Pi y]+Cos[Pi z]+Cos[Pi x],{x,2,-2},{y,2,-2},{z,2,-2}, 
MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 7.2.4: ContourPlot3D[Cos[Pi y]Cos[Pi z]Cos[Pi x]-.001,{x,2,-2},{y,2,-2},{z,2,-2}, 
MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 
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Fig. 7.2.5: ContourPlot3D[Cos[Pi y]Cos[Pi z]Cos[Pi x]-.2,{x,2.5,-2},{y,2,-2.5},{z,2.5,-2}, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } },B oxed->False,Axes->True] 

Fig. 7.2.6:ContourPlot3D[Cos[2 Pi x]+Cos [2 Pi y]+Cos[2 Pi z]+ (xA2+yA2+z^2)-2, 
{ x,2,-2 }, {y,2,-2 }, { z,2,-2 } ,MaxReeursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } } ,Boxed->False, 
Axes->True] 

Fig. 7.2.7: ContourPlot3D[Cos[Pi x]+Cos[Pi y]+Cos[Pi z]+(xA2+y^2)-l,{x,2,-2},{y,2,-2}, 
{ z,3 ,-3 } ,MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } } ,B oxed->False,Axes->True] 

Fig. 7.2.8: ContourPlot3D[Cos[Pi x]+Cos[Pi y]+Cos[Pi z] + (x^2)-.5,{x,2,-2),{y,3,-3}, 
{ z,3 ,-3 } ,MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } } ,B oxed->False,Axes->True] 

Fig. 7.2.9:ContourPlot3D[E^(Cos[3 Pi x]+Cos [3 Pi y]+Cos[3 Pi z]) + 
(E^xA2+E^yA2+EAz^2)-8.5, { x, 1.4,- 1.4 }, {y, 1.4,- 1.4 }, { z, 1.4,- 1.4 },MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 7.2.10: ContourPlot3D [EA(Cos [Pi(x+y+z)]+Cos[Pi(x-y-z)]+Cos [Pi(-x-y+z)]+ 
Cos[Pi(y-z-x)])+EA(Sin [Pi(x+y+z)]+Sin[Pi(x-y-z)]+Sin[Pi(-x-y+z)]+Sin[Pi(y-z-x)])+ 
E^((x+y+z))+E^((x-y-z))+E^((-x-y+z))+E^((y-z-x)) - 11, {x, 1.8,- 1.8 },{y, 1.8,- 1.8 }, {z, 1.8,- 1.8 }, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Fig. 7.2.11:ContourPlot3D[E^(Sin[4 Pi (x+y)]+Sin[4 Pi (x-y)]+Sin[4 Pi (x+z)]+ 
Sin[4 Pi (z-x)]+Sin[4 Pi (y+z)]+Sin[4 Pi (y-z)])+(EAxA2+EAy^2+EAzA2)-5.5,{x,l.3,-1.3}, 
{y, 1.3,- 1.3 }, { z, 1.3,- 1.3 } ,MaxRecursion->2,PlotPoints-> { { 5,5 }, { 5,5 }, { 5,5 } },Boxed-> 
False,Axes->True,AxesLabel->{x,y,z}] 

Fig. 7.3.1a: ContourPlot3D[(E^-(x)A2)-.5,{x,-4,4},{y,-4,4},{z,-4,4},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.3.1b: ContourPlot3D[(EA-(y)A2)-.5,{x,-4,4},{y,-4,4},{z,-4,4},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.3.1c: ContourPlot3D[(EA-(z)A2)-.5,{x,-4,4},{y,-4,4},{z,-4,4},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.3.2: ContourPlot3D[(EA-(x)A2)+(EA-(y)A2)+(EA-(z)^2)+-.5, {x,-4,4 }, {y,-4,4}, {z,-4,4}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.3.3:ContourPlot3D[(EA-(x)A2)+(EA-(y)A2)+(EA-(z)A2)+-l.8,{x,-3,3},{y,-3,3},{z,-3,3 }, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Fig. 7.3.4: ContourPlot3D[(EA-(x)A2)+(EA-(y)A2)+(EA-(z)A2)+-2.5,{x,-1,1},{y,-1,1},{z,-1,1}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.3.5: ContourPlot3D[(EA-(x)A2)+(EA-(y)A2)+(E^-(z)A2)+(EA-(x-2)^2)+ 
(EA-(y-2)A2)+(E^-(z-2)^2)-2.7, {x,- 1,3 }, {y,- 1,3 }, { z,- 1,3 },MaxRecursion->2,PlotPoints 
-'> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 7.3.6: ContourPlot3D [(E^-(x)^2)+(EA-(y)^2)+(EA-(z)A2)+(E^-(x-2)^2)+(E^-(y-2)^2) 
+(EA-(z-2)^2)-2.9, {x,-. 6,2.5 }, {y,-.6,2.5 }, { z,-.6,2.5 },MaxRecursion->2,PlotPoints-> { { 5,3 }, 
{ 5,3 }, { 5,3 } },Boxed->False,Axes->True] 



496 Appendix 9 

Fig. 7.3.7: ContourPlot3D [(E^-(x)^2)+(E^-(y)^2)+(E^-(z)^2)+(E^-(x-2)^2)+(E^-(y-2)^2)+ 
(E^-(z-2)^2)+(E^-(x-4)^2)+(E^-(y-4)^2)+(E^-(z-4)^2)-2.85, {x,- 1,5.5 }, {y,- 1,5.5 }, { z,-1,5.5 }, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } } ,Boxed->False,Axes->True] 

Fig. 7.3.8: ContourPlot3D[(E^-(x^2)+E^-((x-2)^2)+E^-((x-4)^2)+E^-((x-6)^2)+E^-((x-8)^2)+ 
E^-((x - 10)^2))+(E^-(y^2)+E^-((y-2)^2)+E^-((y-4)^2)+E^-((y-6)^2)+E^-((y-8)^2)+ 
E^-((y - 10)^2))+(E^-(z^2)+E^-((z-2)^2)+E^-((z-4)^2)+E^-((z-6)^2)+E^-((z-8)^2)+ 
E^-((z - 10)^2))-2.65, { x,-2,12 }, { y,-2,12 }, { z,-2,12 },MaxRecursion->2,PlotPoints-> 
{ { 5,5 }, { 5,5 }, { 5,5 } },Boxed->False,Axes->Tme] 

Fig. 7.4.1 : ContourPlot3D[E^-((x+y)^2)-.8,{x,-1,1 },{y,-1,1 },{z,-1,1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Tme] 

Fig. 7.4.2: ContourPlot3D[E^-((x+y-.5)^2)+E^-((x-y-.5)^2)+E^-((x+z-.5)^2)+ 
E^-((y+z-. 5)^2)+E^-((-x+z-. 5)^2)+E^-((y-z-. 5)^2)+E^-((x+y+ 1.5)^2)+E^-((x-y+ 1.5)^2)+ 
E^-((x+z+ 1.5)^2)+E^-((y+z+ 1.5)^2)+E^-((-x+z+ 1.5)^2)+E^-((y-z+ 1.5)^2)+E^-((x+y-2.5)^2)+ 
E^-((x-y-2.5)^2)+E^-((x+z-2.5)^2)+E^-((y+z-2.5)^2)+E^-((-x+z-2.5)^2)+E^-((y-z-2.5)^2)+ 
-5.3, { x,-2.5,3 }, { y,-2.5,3 }, { z,-2.5,3 },MaxRecursion->2,PlotPoints-> { { 6,4 }, { 6,4 }, { 6,4 } }, 
Boxed->False,Axes->Tme] 

Fig. 7.4.3: ContourPlot3D[E^-((x+y-.5)^2)+E^-((x-y-.5)^2)+E^-((x+z-.5)^2)+ 
E^-((y+z-. 5)^2)+E^-((-x+z-. 5)^2)+E^-((y-z-. 5)^2)+E^-((x+y-2.5)^2)+E^-((x-y-2.5)^2)+ 
E^-((x+z-2.5)^2)+E^-((y+z-2.5)^2)+E^-((-x+z-2.5)^2)+E^-((y-z-2.5)^2)+E^-((x+y+ 1.5)^2)+ 
E^-((x-y+ 1.5)^2)+E^-((x+z+ 1.5)^2)+E^-((y+z+ 1.5)^2)+E^-((-x+z+ 1.5)^2)+E^-((y-z+ 1.5)^2)+ 
E^-((x+y-4.5)^2)+E^-((x-y-4.5)^2)+E^-((x+z-4.5)^2)+E^-((y+z-4.5)^2)+E^-((-x+z-4.5)^2)+ 
E^-((y-z-4.5)^2)+E^-((x+y+3.5)^2)+E^-((x-y+3.5)^2)+E^-((x+z+3.5)^2)+E^-((y+z+3.5)^2)+ 
E^-((-x+z+3.5)^2)+E^-((y-z+3.5)^2)+E^-((x+y+5.5)^2)+E^-((x-y+5.5)^2)+E^-((x+z+5.5)^2)+ 
E^-((y+z+5.5)^2)+E^-((-x+z+5.5)^2)+E^-((y-z+5.5)^2)-5.3, {x,-6,5.6 }, { y,-6,5.6 }, { z,-6,5.6 }, 
MaxRecursion->2,PlotPoints-> { { 5,5 }, { 5,5 }, { 5,5 } },Boxed->False,Axes->True] 
Show[%,ViewPoint->{ 1.957, 1.945,1.959}] 

Fig. 7.5.1 : ContourPlot3D~^-((x+y+z)^2)-.8,{x,-1,1 },{y,-1,1 },{z,-1,1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Tme] 

Fig. 7.5.2: ContourPlot3D[E^-((x+y+z+.5)^2)+E^-((x-y+z+.5)^2)+E^-((x+y-z+.5)^2)+ 
E^-((-x+y+z+. 5)^2)+-2.3, { x,. 7,- 1.5 }, {y,. 7,- 1.5 }, { z,. 7,- 1.5 } ,MaxRecursion->2,PlotPoints-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Tme] 

Fig. 7.5.3: ContourPlot3D[EA-((x+y+z+.5)A2)+EA-((x-y+z+.5)^2)+E^-((x+y-z+.5)^2)+ 
E^-((-x+y+z+. 5)^2)+E^-((x+y+z - 1.5)^2)+E^-((x-y+z - 1.5)^2)+E^-((x+y-z - 1.5)^2)+ 
E^-((-x+y+z - 1.5)^2)-3.7, {x,2,- 1.5 }, {y,2,- 1.5 }, { z,2,1.5 },MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Fig. 7.5.4: ContourPlot3D[EA-((x+y+z+.5)A2)+EA-((x-y+z+.5)A2)+EA-((x+y-z+.5)^2)+ 
EA-((-x+y+z+. 5)^2)+E^-((x+y+z+2.5)^2)+EA-((x-y+z+2.5)^2)+EA-((x+y-z+2.5)^2)+ 
E^-((-x+y+z+2.5)^2)+EA-((x+y+z - 1.5)^2)+EA-((x-y+z - 1.5)^2)+EA-((x+y-z - 1.5)^2)+ 
E ̂ -( (-x+ y+z- 1.5)^ 2 )- 3.7, { x,-2.4,2 }, { y,-2.4,2 }, { z,-2.4,2 } ,MaxRecursion-> 2,P lotP o ints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 7.5.5: ContourPlot3D[E^-((x+y+z+.5)^2)+E^-((x-y+z+.5)^2)+E^-((x+y-z+.5)^2)+ 
EA-((-x+y+z+. 5)^2)+EA-((x+y+z+2.5)^2)+EA-((x-y+z+2.5)^2)+EA-((x+y-z+2.5)^2)+ 
E^-((-x+y+z+2.5)^2)+EA-((x+y+z - 1.5)^2)+EA-((x-y+z - 1.5)^2)+E^-((x+y-z - 1.5)^2)+ 
EA-((-x+y+z - 1.5)^2)+EA-((x+y+z+4.5)^2)+EA-((x-y+z+4.5)^2)+EA-((x+y-z+4.5)^2)+ 
EA-((-x+y+z+4.5)^2)+EA-((x+y+z-3.5)^2)+EA-((x-y+z-3.5)^2)+EA-((x+y-z-3.5)^2)+ 



Mathematica 497 

E^-((-x+y+z-3.5)^2)-3.5, { x,-5,4.2 }, { y,-5,4.2 }, { z,- 5,4.2 } ,MaxRecursion->2,PlotPoints-> 
{ { 5,5 }, { 5,5 }, { 5,5 } },Boxed->False,Axes->True] 

Fig. 7.5.7: ContourPlot3D[E^-(x-3)^2+E^-(x-5)^2+E^-(x-8)^2+E^-(x-13)^2+E^-(x-21)^2+ 
E^-(x-34)^2+E^-(y-3 )^2+E^-(y- 5)^2+E^-(y- 8)^2+E^- (y - 13 )^2+E^-(y-21 )^2+E^-(y-34)^2+ 
E^-(z-3)^2+E^-(z- 5)^2+E^-(z- 8)^2+E^-(z - 13)^2+E^-(z-21)^2+E^-(z-34)^2-2.5, {x,9,2 }, 
{ y,9,2 }, { z,9,2 } ,MaxRecursion->2,PlotPoints-> { { 6,4 }, { 6,4 }, { 6,4 } } ,B oxed->False,Axes-> 
True] 

Fig. 7.5.8: ImplicitPlot[E^-(y-3)^2+E^-(y-5)^2+E^-(y-8)^2+E^-(y- 13)^2+E^-(y-21)^2+ 
E^-(y-34)^2+E^-(x- 3 )^2+E^-(x- 5)^2+E^-(x- 8)^2+E^- (x - 13 )^2+E^-(x-21 )^2+E^-(x-34)^2 
- -  1.9, {x,0,35 }, { y,0,35 },PlotPoints->200] 

Fig. 7.5.9: ImplicitPlot[E^-(y-3)^2+E^-(y-5)^2+E^-(y-9)^2+E^-(y- 12)^2+E^-(y- 15)^2+ 
E^-(x-2)^2+E^-(x-4)^2+E^-(x-7)^2+E^-(x - 10)^2+E^-(x - 12)^2 --- 1.85, { x,0,16 }, {y,0,16 }, 
PlotPoints->200] 

Fig. ?.6.1a: ComourPlot3D~^-(x^2+y^2+(z-2)^2)++E^-((x-2)^2+y^2+z^2)+ 
E^-(x^2+y^2+z^2)+E^-((x)^2+(y)^2+(z+2)^2)+E^-(x^2+(y+2)^2+(z)^2)+ 
E^-((x+2)^2+(y)^2+z^2)+E^-(x^2+(y-2)^2+z^2)-. 85, { x,2.5,-2.5 }, {y,2.5,-2.5 }, { z,2.5,-2.5 ), 
MaxRecursion->2,P lotP oints-> { { 3,5 }, { 3,5 }, { 3,5 } },Boxed->F al se,Axes->True] 

Fig. ?.6.1b: ContourPlot3D[E^-(x^2+y^2+(z-2)^2)+E^-((x-2)^2+y^2+z^2)+ 
E^-(x^2+y^2+z^2)+E^-((x)^2+(y)^2+(z+2)^2)+E^-(x^2+(y+2)^2+(z)^2)+ 
E^-( (x+ 2)^2+(y)^2+z^2 )+E^-(x^2+(y-2)^2 +z^2 )-. 7, { x,3,-3 ), { y, 3,-3 }, { z,3,3 }, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 7.6.2: ContourPlot3D[E^-((x-2)^2+y^2+(z-2)^2)+E^-(x^2+y^2+(z-2)^2)+ 
E^-((x-2)^2+y^2+z^2)+E^-(x^2+y^2+z^2)+E^-((x-2)^2+(y-2)^2+(z-2)^2)+ 
E^-(x^2+(y-2)^2+(z-2)^2)+E^-((x-2)^2+(y-2)^2+z^2)+E^-(x^2+(y-2)^2+z^2)+ 
E^-((x-4)^2+(y-2)^2+z^2)+E^-((x-4)^2+y^2+z^2)+E^-((x-4)^2+(y-2)^2+(z-2)^2)+ 
E^-((x-4)^2+y^2+(z-2)^2)+E^-((x-4)^2+(y-2)^2+(z-4)^2)+E^-((x-4)^2+y^2+(z-4)^2)+ 
E^-((x-2)^2+y^2+(z-4)^2)+E^-(x^2+y^2+(z-4)^2)+E^-((x-2)^2+(y-2)^2+(z-4)^2)+ 
E^-(x^2+(y-2)^2+(z-4)^2)+E^-((x-2)^2+(y-4)^2+(z-2)^2)+E^-(x^2+(y-a)^2+(z-2)^2)+ 
E^-((x-2)^2+(y-4)^2+z^2)+E^-(x^2+(y-4)^2+z^2)+E^-((x-4)^2+(y-4)^2+z^2)+ 
E^-((x-4)^2+(y-4)^2+(z-2)^2)+E^-((x-4)^2+(y-•)^2+(z-4)^2)+E^-((x-2)^2+(y-4)^2+(z-4)^2)+ 
E^-(x^2+(y-4)^2+(z-4)^2-.68, { x,5.5,- 1.5 }, {y, 5.5,- 1.5 }, { z,2.5,- 1.5 },MaxRecursion->2, 
PlotPoints-> { { 3,5 ), { 3,5 }, { 3,5 } } ,Boxed->False,Axes->True] 

Fig. 7.6.3a: ContourPlot3D[E^-((x-1)^2+(y-1)^2+(z-1)^2)+E^-((x+l)^2+ 
(y+l)^2+(z+l)^2)+E^-((x+l)^2+(y-3)^2+(z-3)^2)+E^-((x-3)/'2+(y+l)^2+(z-3)^2)+ 
E^-((x- 3 )^2+(y- 3 )^2+ (z+ 1 )"2)-. 12, { x,5 ,-2.7 }, {y,5 ,-2.7 }, { z, 5,-2.7 } ,MaxRecursion->2, 
PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 7.6.3b: ContourPlot3D[E^-((x-1)^2+(y-1)^2+(z-1)^2)+E^-((x+l)^2+(y+l)^2+ 
(z+l)^2)+E^-((x+l)^2+(y-3)^2+(z-3)^2)+E^-((x-3)^2+(y+l)^2+(z-3)^2)+E^-((x-3)^2+ 
(y-3)^2 +(z+ 1 )^2 )-. 08, { x,5 ,-2.7 }, { y,5,-2.7 }, { z,5 ,-2.7 } ,MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } } ,Boxed->False,Axes->True] 

Fig. 7.6.4: ContourPlot3D [E^-((x- 1)^2+(y- 1)^2+(z- 1)^2)+E^-((x+ 1)^2+(y+ 1)^2+(z+ 1)^2)+ 
E^-((x+l)^2+(y-3)^2+(z-3)^2)+E^-((x-3)^2+(y+l)^2+(z-3)^2)+E^-((x-3)^2+(y-3)"2+ 
(z+•)^2)+E^-((x-•)^2+(y-5)/`2+(z-5)/`2)+E^-((x-5)'`2+(y-•)^2+(z-5)/`2)+E^-((x+3)^2+(y-•)^2 
+(z-5)^2)+E^-((x - 1)^2+(y+3)^2+(z-5)^2)+-. 08, { x,7,-4.7 }, { y,7,-4.7 }, { z, 7,-4.7 }, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } },B oxed->False,Axes->True] 
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Fig. 7.6.5: ContourPlot3D [EA-EA((x-2)A2+yA2+z^2)+E^-E^((x- 1)^2+(y- 1.73 2)^2+z^2)+ 
E^-E^(x^2+y^2+zA2)+E^-E^((x - 1 )^2+(y-. 577)^2+(z - 1.633 )^2)+E^-E^((x- 2)^2+y^2+ 
(z-3.27)^2)+EA-E^((x - 1)^2+(y- 1.732)^2+(z-a.27)^2)+E^-E^(xA2+y^2+(z-3.27)^2)+ 
EA-EA((x-4)AE+y^2+zA2)+E^-E^((x-5)A2+(y-1.732)A2+z^2)+E^-EA((x-2)^2+(y-3.464)^2 
+z^2)+E•-E^((x-4)•2•(y-•.464)•2+z•2)+E•-E^((x-4)^2•y•2+(z-•.27)^2)•E^-E•((x-5)^2• 
(y- 1.73 2)^2+(z-3.27)^2)+E^-E^((x-2 )^2+(y-3.464)^2+(z-3.27)^2)+E^-EA((x-4)^2+ 
(y-3.464)^2+(z-3.27)•2)+E•-E•((x-3)•2+(y-5.2)•2•(z-3.27)•2)+E^-E^((x-3)^2+(y-5.•)^•• 
(z)A2)+EA-EA((x-3)^E+(y-4.041)^2+(z-l.633)A2)+EA-EA((x-6)^2+yA2+(z-3.27)^2)+ 
EA-EA((x-6)A2+yA2+(z)A2)+EA-E^((x-5)^2+(y-. 577)^2+(z - 1.633)^2)+EA-E^((x-6)A2+ 
(y-a.46)AE+(z-a.27)A2)+E^-EA((x)^2+(y-3.464)A2+(z-3.27)AE)+EA-E^((x-3)A2+(y+ 1.732)^2+ 
(z-3.27)AE)+EA-EA((x-6)^2+(y-3.46)A2+(z)A2)+E^-E^((x)^2+(y-3.464)^2+(z)^2)+ 
EA-EA((x-3 )^2+(y+ 1.732)^2+(z)AE)+EA-E^((x- 5)^2+(y-2.883 )^2+(z-4.9)^2)+E^-E^((x - 1 )^2+ 
(y-2.8••)•2•(z-4.9)••)+E^-E^((x-3)•2+(y•.577)^2•(z-4.9)^2)•E^-E^((x-5)^2+(y-2.88•)^•+ 
(z+l.633)^2)+E^-E^((x -1)^2+(y-2.883)^2+(z+l.633)^2)++E^-E^((x-3)^2+(y+.577)^2+ 
(z+ 1.633)^2)-. 05, {x,7,- 1 }, {y,6.5,-3 }, { z,6,-3 },MaxRecursion->2,PlotPoints-> 
{ { 4,5 }, { 4,5 }, { 4,5 } },B oxed->False,Axes->True] 

Fig. 7.6.6: ContourPlot3D[E^-((x+ 1)^2+(y- 1)^2+(z- 1)^2)+E^-((x- 1)^2+(y- 1)^2+(z-3)^2)+ 
E^-((x-3)A2+(y-3)^2+(z-3)A2)+EA-((x -1)^2+(y+l)A2+(z-5)^2)+E^-((x-3)^2+(y-5)^2+ 
(z-5)A2)+E^-((x- 5)^2+(y-3)A2+(z- 1 )^2)-.25, { x,-3,7 }, {y,-3,7 }, { z,- 1,7 },MaxRecursion->2, 
lotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } },Boxed->Fals e,Axes->True] 

Fig. 7.6.7: ContourPlot3D[E^-((x+.5)A2+(y-.5)A2+(z-.5)A2)+E^-((x-.5)^2+(y-.5)^2+ 
(z-1.5)^2)+EA-((x-. 5)^2+(y+. 5)^2+(z-2.5)^2)+E^-((x+. 5)^2+(y+. 5)^2+(z-3.5)^2)+ 
E^-((x+. 5)^2+(y-4.5)^2+(z-. 5)^2)+E^-((x+.5)A2+(y-3.5)^2+(z-3.5)^2)+E^-((x-. 5)^2+ 
(y-3.5)^2+(z-2.5)^2)+EA-((X-. 5)^2+(y-4.5)A2+(Z - 1.5)^2)+E^-((X-3.5)A2+(y-3.5)^2+ 
(Z-3.5)^2)+EA-((x-3.5)^2+(y-4.5)^2+(z-. 5)^2)+E^-((x-4.5)^2+(y-4.5)^2+(z - 1.5)^2)+ 
E^-((x - 1.5)^2+(y - 1.5)^2+(z - 1.5)^2)+E^-((x - 1.5)^2+(y-2.5)^2+(z-2.5)^2)+E^-((x-2.5)^2+ 
(y-2.5)^2+(z-3.5)A2)+EA-((x-2.5)A2+(y-1.5)^2+(z-.5)A2)+EA-((x-4.5)A2+(y-3.5)^2+ 
(z-2.5)^2)+E^-((x-3.5)^2+(y-.5)^2+(z-. 5)^2)+E^-((x-4.5)^2+(y-.5)^2+(z - 1.5)^2)+ 
EA-((x-3.5)^2+(y+. 5)^2+(z-3.5)^2)+E^-((x-4.5)^2+(y+. 5)^2+(z-2.5)^2)+E^-((x+. 5)^2+ 
(y-.5)^2+(z-4.5)^2)+EA-((x-.5)^2+(y-.5)^2+(z-5.5)A2)+E^-((x-. 5)^2+(y+.5)^2+(z-6.5)^2)+ 
E^-((x+.5)A2+(y+.5)A2+(z-7.5)A2)+E^-((x+. 5)^2+(y-4.5)^2+(z-4.5)^2)+EA-((x+.5)^2+ 
(y-3.5)^2+(z-7.5)^2)+E^-((x-. 5)^2+(y-3.5)^2+(z-6.5)A2)+E^-((x-. 5)^2+(y-4.5)^2+(z-5.5)^2)+ 
E^-((x - 1.5)^2+(y- 1.5)^2+(z-5.5)^2)+E^-((x - 1.5)^2+(y-2.5)^2+(z-6.5)^2)+E^-((x-2.5)^2+ 
(y-2.5)^2+(z-7.5)^2)+E^-((x-2.5)^2+(y - 1.5)^2+(z-4.5)^2)+E^-((x-3.5)^2+(y-4.5)^2+ 
(z-4.5)^2)+E^-((x-4.5)^2+(y-4.5)A2+(z-5.5)^2)+EA-((x-3.5)^2+(y-3.5)^2+(z-7.5)^2)+ 
E^-((x-4.5)^2+(y-3.5)^2+(z-6.5)^2)+E^-((x-3.5)^2+(y-. 5)^2+(z-4.5)^2)+E^-((x-4.5)^2+ 
(y-. 5)^2+(z-5.5)^2)+E^-((x-3.5)^2+(y+. 5)^2+(z-7.5)^2)+EA-((x-4.5)^2+(y+. 5)^2+(z-6.5)^2) 
-.9, {x,- 1,6 }, {y,-2,6 }, { z,- 1,9 },MaxRecursion->2,PlotPoints-> { { 5,4 },{ 5,4}, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 7.6.83: ContourPlot3D[E^-(x^2+y^2+(z)^2)+E^-((x-2)A2+y^2+zA2)+E^-((x-4)^2+ 
(y)A2+(z)A2)+EA-((X-6)A2+(y)A2+(Z)^2)-. 5, {X,7,- 1 }, {y, 1,- 1 }, { z,1,- 1 },MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 7.6.8b: ContourPlot3D[EA-(xA2+y^2+(z)A2)+EA-((x-2)A2+yA2+zA2)+EA-((x-2)^2+ 
(y)•2+(z-2)•2)+E^-((x-4)•2+(y)•2+(z-2)•2)+E•-((x-•)^2+(y)•2+(z-•)•2)+E•-((x-6)^2+ 
(y)A2+(z-4)^2)-. 5, {x,7,- 1 }, {y,2,-2 }, { z,6,- 1 },MaxRecursion->2,PlotPoints-> 
{ { 7,4 }, { 7,4 }, { 7,4 } },B oxed->False,Axes->True] 

Fig. 7.6.9a: ContourPlot3D[EA-(x^2+y^2+(z-2)^2)+E^-((x-2)A2+y^2+z^2)+ 
E^(x^E+y^2+zA2)+EA-((x+E)A2+(y)A2+(z-2)A2)+EA-((x-E)A2+(y)AE+(z+2)^2)+ 
EA-((x+2)AE+(y-E)AE+(z+2)AE)+EA-((x+E)AE+(y-2)A2+(z)A2)+EA-((x§247 
(y-4)AE+(z)A2)+EA-((x+E)AE+(y-4)A2+(z-2)AE)+EA-((x+2)A2+(y-6)AE+(z-2)^2)+ 
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EA-((x)A2+(y-6)A2+(Z+2)A2)+EA-((x)A2+(y-6)A2+(z)A2)+EA-((X-2)A2+(y-6)A2+(Z)^2)+ 
EA-((X-2)A2+(y-6)A2+(Z-2)A2)+EA-((X-4)A2+(y-6)A2+(Z-2)A2)+EA-((X-4)A2+(y-4)A2+ 
(z+2)A2)+EA-((x-4)•2+(y-4)•2+(z)A2)+EA-((x-4)A2+(y-2)A2+(z)A2)+E•-((x-4)•2+(y-2)A2+ 
(Z-2)A2)+EA-((X-4)A2+(y)A2+(Z-2)A2)-. 5, { X,5,-3 }, {y,7,- 1 }, { Z,5,-3 },MaxRecursion->2, 
PlotPoints-> { { 7,4 }, { 7,4 }, { 7,4 } },Boxed->False,Axes->True] 

Fig. 7.6.9b: Show[%, ViewPoint->{-0.000, 0.000, 3.384}] 
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Fig. 8.2.2: ContourPlot3D[EA-((EA(Cos[Pi x] Sin[Pi z]+ Cos[Pi y] Sin[Pi x]+ 
Sin[Pi y] Cos[Pi z] )+EA-(Cos[Pi x] Sin[Pi z]+ Cos[Pi y] Sin[Pi x]+Sin[Pi y] Cos[Pi z])-l+ 
.2(xA2+yA2+z^2)))+ .2 EA-EA(Cos[Pi x])-. 1, {x,4,-4},{y,4,-4}, {z,4,-4}MaxRecursion->2, 
PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } } ,Boxed->False,Axes->True] 

Fig. 8.2.3: Show[%, ViewPoint->{0.000, -0.000, 3.384}] 

Fig. 8.2.4: ContourPlot3D[E^-((E^(Cos[Pi x] Sin[Pi z]+ Cos[Pi y] Sin[Pi x]+ 
Sin[Pi y] Cos[Pi z] )+EA-(Cos[Pi x] Sin[Pi z]+ Cos~i y] Sin[Pi x]+ 
Sin[Pi y] Cos[Pi z] )-I+.2(xA2+yA2+zA2)))+ .2 EA-EA(Cos~i x])-.1,{x,4,-4},{y,4,0},{z,4,-4}, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } },Boxed->False,Axes->True] 

Fig. 8.2.5: ContourPlot3D[E^-((EA(Cos[Pi x] Sin[Pi z]+ Cos[Pi y] Sin[Pi x]+Sin[Pi y] 
Cos[Pi z] )+EA-(Cos[Pi x] Sin[Pi z]+ Cos[Pi y] Sin[Pi x]+Sin[Pi y] Cos[Pi z] )-1+ 
.2(xA2+yA2+zA2)))+.2 EA-EA(Cos[Pi x])-. 1, {x,3.5,-3.5 }, {y,4,0 }, { z,2,-2 },MaxRecursion->2, 
PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } } ,B oxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.000,-0.000,3.384 } ] 

Fig. 8.2.6: ContourPlot3D[EA-((EA(Cos[Pi x] Sin[Pi z]+ Cos[Pi y] Sin[Pi x]+ 
Sin[Pi y] Cos[Pi z] )+EA-(Cos[Pi x] Sin[Pi z]+ Cos[Pi y] Sin[Pi x]+Sin[Pi y] Cos[Pi z])-l+ 
.2(xA2+yA2+zA2)))+ .2 EA-EA(Cos[Pi x])-. 1, {x,2,-2 }, {y,4,0 }, { z,2,-2 },MaxRecursion->2, 
PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } },Boxed->False,Axes->True] 
Show[%, ViewPoint->{3.384, 0.019,-0.026}] 

Fig. 8.2.7: ContourPlot3D[E^-((EA(Cos[Pi x] Sin[Pi z]+ Cos[Pi y] Sin[Pi x]+Sin[Pi y] 
Cos[Pi z] )+EA-(Cos[Pi x] Sin[Pi z]+ Cos[Pi y] Sin[Pi x]+Sin[Pi y] Cos[Pi z] )-1+ 
.2(xA2+yA2+z^2)))+.2 EA-EA(Cos[Pi x])-.1,{x,.65,-.65},{y,3,-3},{z,3,-3 },MaxRecursion->2, 
PlotPoints-> { { 3,5 }, { 6,4 }, { 6,4 } },Boxed->False,Axes->True] 
Show[%, ViewPoint->{3.384, 0.019,-0.026}] 

Fig. 8.5.2a: ContourPlot3D[.02 (Cos[2 Pi x]+Cos[2 Pi y]+Cos[2 Pi Z])+(xA2+yA2+zA2)-I, 
{X, 1,- 1 },{y, 1,- 1 },{Z, 1,- 1 },MaxRecursion->2,PlotPoints-> { {4,4},{4,4},{4,4} },Boxed->False, 
Axes->True] 

Fig. 8.5.2b: ContourPlot3D[-.02 (Cos[2 Pi x]+Cos[2 Pi y]+Cos[2 Pi Z])+(xA2+yA2+z^2)-I, 
{x,l.2,-1.2},{y,l.2,-1.2},{z,l.2,-1.2},MaxRecursion->2,PlotPoints->{ {4,4},{4,4},{4,4} }, 
Boxed->False,Axes->True] 

Fig. 8.5.3a: ContourPlot3D[.4 (Cos[2 Pi x] Sin[2 Pi z]+ Cos[2 Pi y] Sin[2 Pi x]+ 
Cos[2 Pi z] Sin[2 Pi y])+(xA2+yA2+zA2)-12,{x,4,-0},{y,0,-4},{z,4,-0},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } } ,B oxed->False,Axes->True] 

Fig. 8.5.3b: ContourPlot3D[-.4 (Cos[2 Pi x] Sin[2 Pi z]+ Cos[2 Pi y] Sin[2 Pi x]+ 
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Cos[2 Pi z] Sin[2 Pi y])+(x^2+y^2+z^2)-12,{x,4,-0},{y,0,-4},{z,4,-0},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 8.5.3c: ContourPlot3D[.25 (Cos[2 Pi x] Sin[2 Pi z]+ Cos[2 Pi y] Sin[2 Pi x]+ 
Cos[2 Pi z] Sin[2 Pi y])+(x^2+y^2+z^2)-12,{x,4,-0},{y,0,-4},{z,4,-0},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 8.5.3d: ContourPlot3D[.6 (Cos[2 Pi x] Sin[2 Pi z]+ Cos[2 Pi y] Sin[2 Pi x]+ 
Cos[2 Pi z] Sin[2 Pi y])+(x^2+y^2+z^2)-12,{x,4,-0},{y,0,-4},{z,4,-0},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } } ,B oxed->False,Axes->True] 

Fig. 8.5.3e: ContourPlot3D[.3 (Cos[2 Pi x] Sin[2 Pi z]+ Cos[2 Pi y] Sin[2 Pi x]+ 
Cos[2 Pi z] Sin[2 Pi y])+(x^2+y^2+z^2)-12,{x,4,-0},{y,0,-4},{z,4,-0},MaxRecursion->2, 
PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 8.5.4:ContourPlot3D[.4 (Cos[2 Pi x] Sin[2 Pi z]+ Cos[2 Pi y] Sin[2 Pi x]+ 
Cos[2 Pi z] Sin[2 Pi y])+(xA2+yA2+z^2)-12,{x,4,-4},{y,4,-4},{z,4,-4},MaxRecursion->2, 
PlotPoints-> { { 5,5 }, { 5,5 }, { 5,5 } },Boxed->False,Axes->True] 

Fig. 8.5.5:ContourPlot3D[.4 (Cos[2 Pi x] Sin[2 Pi z]+ Cos[2 Pi y] Sin[2 Pi x]+ 
Cos[2 Pi z] Sin[2 Pi y])+(xA2+y^2+z^2)-12,{x,4,-4},{y,4,-4},{z,4,-4},MaxRecursion->2, 
PlotPoints-> { { 5,5 }, { 5,5 }, { 5,5 } },B oxed->False,Axes->True] 
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Fig. 9.1.1a: ImplicitPlot[(x)A-2==4,{x,6,-3 },{y,4,-4},PlotPoims->100] 

Fig. 9.1.1b: ImplicitPlot[(x)A-2+(x-4)^-2--4,{x,6,-3 },{y,4,-4},PlotPoints->100] 

Fig. 9.1.1c: ImplicitPlot[EA-(x)A2+EA-(x-4)^2==. 8, {x,6,-3 }, {y,4,-4 },PlotPoints-> 100] 

Fig. 9.1.1d: ImplicitPlot[EA-((x)A2+(y)^2-1)--. 5, {x,3,-3 }, {y,3,-3 },PlotPoints-> 100] 

Fig. 9.1.1e: ImplicitPlot[EA-((x)A2+(y)^2-5)--. 5, {x,3,-3 }, {y,3,-3 },PlotPoints-> 100] 

Fig. 9.1.1f: ImplicitPlot[EA-((x)A2+(y)^2-5)^2==.5, {x,3,-3 }, {y,3,-3 },PlotPoints-> 100] 

Fig. 9.1.2a: ImplicitPlot[E^-((x)^2+(y)^2-5)+EA-((x)^2+(y)^2-5)==.5,{x,7.5,-3 },{y,3,-3 }, 
PlotPoints-> 100] 

Fig. 9.1.2b: ImplicitPlot[E^-((x-2)^2+(y)A2-5)+E^-((x)A2+(y)^2-5)--.5,{x,7.5,-3},{y,3,-3}, 
PlotPoints-> 100] 

Fig. 9.1.2e: ImplicitPlot[EA-((x-3)A2+(y)A2-5)+EA-((x)^2+(y)^2-5)---.5, {x,7.5,-3 },{y,3,-3 }, 
PlotPoints-> 100] 

Fig. 9.1.2d: ImplicitPlot[EA-((x-4)A2+(y)^2-5)+EA-((x)A2+(y)^2-5)==.5, 

Fig. 9.1.2e: ImplicitPlot~^-((x-4)A2+(y)^2-5)+EA-((x)A2+(y)A2-5)+E^-((x-4)A2+(y-3)^2-5)+ 
EA-((x)A2+(y-3)^2-5)==. 5, { x,7.5,-3 }, { y,7,-3 },PlotPoints-> 100] 

Fig. 9.1.2f: ImplicitPlot[E^-((x-4)^2+(y)^2-5)+E^-((x)^2+(y)^2-5)+E^-((x-4)^2+(y-4)^2-5)+ 
E^-((x)^2+(y-4)^2-5)--. 5, {x,7.5,-3 }, { y,7,-3 },PlotPoints-> 100] 
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Fig. 9.1.3 a: ImplicitPlot[E^-((x)^4+(y)^4-5)+E^-((x)^4+(y)^4-5)--.5,{x,5,-2},{y,2,-2}, 
PlotPoints-> 100] 

Fig. 9.1.3 b: ImplicitPlot[E^-((x-2)^4+(y)^4-5)+E^-((x)^4+(y)^4-5)--.5,{x,5,-2},{y,2,-2}, 
PlotPoints-> 100] 

Fig. 9.1.3 e: ImplicitPlot[E^-((x-3.1)^4+(y)^4-5)+E^-((x)^4+(y)^4-5)--.5, 
{ x, 5,-2 }, { y,2,-2 } ,PlotPoints-> 100] 

Fig. 9.1.3 d: ImplicitPlot[E^-((x-3.2)^4+(y)^4-5)+E^-((x)^4+(y)^4-5)==.5, 
{x, 5,-2 }, {y,2,-2 },PlotPoints-> 100] 

Fig. 9.1.3 e: ImplicitPlot[E^-((x-3.2)^4+(y)^4-5)+E^-((x)^4+(y)^4-5)+E^-((x)^4+ 
(y-3.2)^4-5)+E^-((x-3.2)^4+(y-3.2)^4-5)--. 5, { x, 5,-2 }, {y, 5,-2 },PlotPoints-> 100] 

Fig. 9.1.4 a: ContourPlot3D[E^-((x)^2+(y)^2+z^2-5)+E^-((x)^2+((y))^2+z^2-5)-.5, 
{ x,-2.9,3 }, { y,-2.9,2.9 }, { z,2.9,-2.9 },MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } }, 
Boxed->False,Axes->True] 

Fig. 9.1.4 b: ContourPlot3D[E^-((x -1)^2+(y)^2+z^2-5)+E^-((x)^2+((y))^2+z^2-5)-.5, 
{ x,-2.9,4 }, { y,-2.9,2.9 }, { z,2.9,-2.9 },MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } }, 
Boxed->False,Axes->True] 

Fig. 9.1.4 e: ContourPlot3D[E^-((x-2)^2+(y)^2+z^2-5)+E^-((x)^2+((y))^2+z^2-5)-.5, 
{x,-2.9,5 }, {y,-2.9,2.9}, {z,2.9,-2.9},MaxRecursion->2,PlotPoints->{ {4,4}, {4,4}, {4,4} }, 
Boxed->False,Axes->True] 

Fig. 9.1.4 d: ContourPlot3D[E^-((x-4)^2+(y)^2+z^2-5)+E^-((x)^2+((y))^2+z^2-5)-.5, 
{x,-2.9,7}, {y,-2.9,2.9}, {z,2.9,-2.9},MaxRecursion->2,PlotPoints->{ {4,4}, {4,4}, {4,4} }, 
Boxed->False,Axes->True] 

Fig. 9.1.4 e: ContourPlot3D[E^-((x-5)^2+(y)^2+z^2-5)+E^-((x)^2+((y))^2+z^2-5)-.5, 
{x,-2.9,8 }, {y,-2.9,2.9}, {z,2.9,-2.9},MaxRecursion->2,PlotPoints->{ {4,4}, {4,4}, {4,4} }, 
Boxed->False,Axes->True] 

Fig. 9.1.5 a: ContourPlot3D[E^-((x)^2+(y)^2+z^2-5)+E^-((x-5)^2+((y))A2+z^2-5)+ 
E^-((x)^2+(y)^2+z^2-5)+E^-((x-5)^2+((y))^2+z^2-5)-. 5, { x,-2.6, 8 }, { y,-2.6,3 }, { z,2.9,-2.9 }, 
MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 9.1.5 b: ContourPlot3D[EA-((x)A2+(y)A2+zA2-5)+EA-((x-5)A2+((y))A2+z^2-5)+ 
EA-((x)A2+(y-2)A2+z^2-5)+E^-((x-5)^2+((y-2))^2+z^2-5)-. 5, {x,-2.6, 8 }, {y,-2.6,4 }, { z,2.9,-2.9 }, 
MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed->False,Axes->True] 

Fig. 9.1.5 e: ContourPlot3D[EA-((x)A2+(y)A2+z^2-5)+EA-((x-5)A2+((y))A2+z^2-5)+ 
EA-((x)A2+(y-3)^2+z^2- 5)+EA-((x- 5)^2+((y-3 ))^2+z^2-5)-. 5, { x,-2.6, 8 }, { y,-2.6,6 }, { z,2.9,-2.9 }, 
MaxRecursion->2,PlotPoints->{ {4,4}, { 4,4}, {4,4 } },Boxed->False,Axes->True] 

Fig. 9.1.5 d: ContourPlot3D[EA-((x)A2+(y)A2+zA2-5)+EA-((x-5)A2+((y))A2+z^2-5)+ 
EA-((x)A2+(y-5)^2+z^2-5)+E^-((x-5)^2+((y-5))^2+z^2-5)-. 5, { x,-2.7, 7.6 }, { y,-2.7,7.6 }, 
{ z,2.8,-2.8 } ,MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 4,4 } } ,Boxed->False,Axes->True] 

Fig. 9.1.6 a: ContourPlot3D[E^-((x)^2+(y)^2+z^2-5)+E^-((x-5)^2+((y))^2+z^2-5)+ 
EA-((x)A2+(y-5)A2+zA2-5)+EA-((x-5)A2+((y-5))A2+zA2-5)+E^-((x)^2+(y)A2+z^2-5)+ 
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E^-((x-5)^2+((y))^2+(z)^2-5)+E^-((x)^2+(y-5)^2+z^2-5)+E^-((x-5)^2+((y-5))^2+(z)^2-5)-. 5, 
{ x,-2.6, 8 }, { y,-2.6,8 }, { z,2.9,-2.9 } ,MaxRecursion->2,PlotPoims-> { { 4,4 }, { 4,4 }, { 4,4 } },Boxed-> 
False,Axes->True] 

Fig. 9.1.6 b: ContourPlot3D[E^-((x)^2+(y)^2+z^2-5)+E^-((x-5)^2+((y))^2+z^2-5)+ 
E^-((x)^2+(y-5)^2+z^2-5)+E^-((x-5)^2+((y-5))^2+z^2-5)+E^-((x)^2+(y)^2+(z - 1)^2-5)+ 
E^-((x- 5)^2+((y))^2+(z - 1)^2- 5)+E^-((x)^2+(y- 5)^2+(z- 1 )^2- 5)+E^-((x- 5)^2+((y- 5))^2+ 
(z- 1 )^2-5)-.5, {x,-2.6, 8 }, {y,-2.6, 8 }, { z,3.9,-2.9 } ,MaxRecursion->2,PlotPoints-> 
{ { 4,4 }, { 4,4 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 9.1.6 e: ContourPlot3D[E^-((x)^2+(y)^2+z^2-5)+E^-((x-5)^2+((y))^2+z^2-5)+ 
E^-((x)^2+(y-5)^2+z^2-5)+E^-((x-5)^2+((y-5))^2+z^2-5)+E^-((x)^2+(y)^2+(z-3.5)^2-5)+ 
E^-((x-5)^2+((y))^2+(z-3.5)^2-5)+E^-((x)^2+(y-5)^2+(z-3.5)^2-5)+E^-((x-5)^2+((y-5))^2+ 
(z-3.5)^2-5)-.5, {x,-2.6,8 }, {y,-2.6, 8 }, { z,6,-2.9 } ,MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, 
{ 4,4 } },B oxed->False,Axes->True] 

Fig. 9.1.6 d: ContourPlot3D[E^-((x)^2+(y)^2+z^2-5)+E^-((x-5)^2+((y))^2+z^2-5)+ 
E^-((x)^2+(y-5)^2+z^2-5)+E^-((x-5)^2+((y-5))^2+z^2-5)+E^-((x)^2+(y)^2+(z-5)^2-5)+ 
E^-((x-5)^2+((y))^2+(z-5)^2-5)+E^-((x)^2+(y-5)^2+(z-5)^2-5)+E^-((x-5)^2+((y-5))^2+ 
(z-5)^2-5)-. 5, { x,-2.6, 8 }, { y,-2.6, 8 }, { z,8,-2.9 } ,MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, 
{ 4,4 } },Boxed->False,Axes->True] 

Fig. 9.2.1 a: ImplicitPlot[E^-((x)^2+(y)^2-5)^2==.5,{x,8,-3},{y,3,-3},PlotPoints->100] 

Fig. 9.2.1 b: ImplicitPlot[E^-((x)^2+(y)^2-5)^2+E^-((x-1)^2+(y)^2-5)^2--.5,{x,8,-3}, 
{y,3,-3 },PlotPoints-> 100] 

Fig. 9.2.1 e: ImplicitPlot[(EA-((x)A2+(y)^2-5)+E^-((x-1)^2+(y)^2-5)-l)^2--.5,{x,8,-3}, 
{y,3,-3 } ,PlotPoints-> 100] 

Fig. 9.2.1 d: ImplicitPlot[(EA-((x)A2+(y)A2-5)+E^-((x-3)^2+(y)^2-5)-l)^2--.5, 
{x,8,-3 }, {y,3,-3 },PlotPoints-> 100] 

Fig. 9.2.1 e: ImplicitPlot[(EA-((x)A2+(y)A2-5)+E^-((x-4)A2+(y)^2-5)-l)^2==.5, 
{x,8,-3 }, {y,3,-3 },PlotPoints-> 100] 

Fig. 9.2.1 f: ImplicitPlot[(EA-((x)^2+(y)^2-5)+E^-((x-4.7)A2+(y)^2-5)-l)^2--.5, 
{x,8,-3 }, {y,3,-3 },PlotPoints-> 100] 

Fig. 9.2.1 g: ImplicitPlot[(E^-((x)A2+(y)A2-5)+EA-((x-5)A2+(y)^2-5)-l)^2--.5, 
{x,8,-3 }, {y,3,-3 },PlotPoints-> 100] 

Fig. 9.2.1 h: ImplicitPlot[(E^-((x)A2+(y)^2-5)+EA-((x-5.4)A2+(y)^2-5)-l)^2--.5, 
{x,8,-3 }, {y,3,-3 },PlotPoints-> 100] 

Fig. 9.2.2 a: ImplicitPlot[EA-(((x)A2+(y)^2)-6) (Cos[2 Pi x]+Cos[2Pi y])+ 
EA-((x)A4+(y)A4-6)+EA-(((x)A2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ EA-((x)A4+(y)^4-6) 
- -44,  { x,4.5,-2 }, { y,2,-2 } ,PlotPoims-> 100] 

Fig. 9.2.2 b: ImplicitPlot[E^-(((x)A2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
EA-((x)A4+(y)^4-6)+EA-(((x - 1)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ EA-((x - 1)^4+(y)^4-6) 
- -44,  { x,4.5,-2 }, { y,2,-2 } ,PlotPoints-> 100] 

Fig. 9.2.2 e: ImplicitPlot[E^-(((x)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
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E^-((x)^4+(y)^4-6)+E^-(((x-2)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ E^-((x-2)^4+(y)^4-6) 
--44, { x,4.5,-2 }, { y,2,-2 } ,PlotPoints-> 100] 

Fig. 9.2.2 d: ImplicitPlot[E^-(((x)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
E^-((x)^4+(y)^4-6)+E^-(((x-2.5)^2+(y)^2)-6) (Cos[2 pi x]+ Cos[2Pi y])+ 
E^-((x-2.5)^4+(y)^4-6)---44, {x,4.5,-2 }, {y,2,-2 },PlotPoints-> 100] 

Fig. 9.2.2 e: ImplicitPlot[E^-(((x)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
E^-((x)^4+(y)^4-6)+E^-(((x-2.7)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
E^-((x-2.7)^4+(y)^4-6)--44, {x,4.5,-2 }, { y,2,-2 },PlotPoints-> 100] 

Fig. 9.2.2 f: ImplicitPlot[E^-(((x)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
E^-((x)^4+(y)^4-6)+E^-(((x-3)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ E^-((x-3)^n+(y)^4-6) 
--44, {x,4.5,-2 }, { y,2,-2 },PlotPoints-> 100] 

Fig. 9.2.2 g: ImplicitPlot[E^-(((x)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
E^-((x)^4+(y)^4-6)+E^-(((x-3)^2+(y)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
E^-((x-3)^4+(y)^4-6)+E^-(((x)^2+(y-3)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
E^-((x)^4+(y-3)^4-6)+E^-(((x-3)^2+(y-3)^2)-6) (Cos[2 Pi x]+ Cos[2Pi y])+ 
E^-((x- 3 )^4+(y- 3 )^4-6)--88, { x,4.5,-2 }, { y,4.5,-2 },PlotPoints-> 100] 

Fig. 9.2.5 a: ImplicitPlot[10^-((x-3)^2+10^-(y-10)+10^(y-33)) +10^-((x-8)^2+10^-(y-10)+ 
10^(y-33))+ 10^-((x+ 3)^2+ 10^(y-33)+ 10^-(y+ 15))+ 10^-((x)^2+ 10^(y-8)+ 10^-(y+ 15))+ 
10^-((x-5)^2+ 10^(y-8)+ 1 o^-(y+ 15))+ 1 o^-((x- 15)^2+ 10^(y-8)+ 1 o^-(y+ 15))+ 1 o^-((x- 17)^2+ 
10^(y-28)+ 10^-(y - 15))+ 10^-((x - 11)^2+ 10h(y - 18)+ 10^-(y+ 10))+ 10^-((X-20)^2+ 10^-(y+ 15)+ 
10^(y-33) )+ 10h-( (y'33)^ 2+ 10^(X'21)+ 10^-(X+4))+ 10h'((y+ 15)^2 + 10^(X'21 )+ 10^'(X+ 4)) 
----0.6, { X,'7,23 }, {y,- 16,38 },PlotPoints-> 100] 

Fig. 9.2.5 b: ImplicitPlot[10^-((x-3)^2+10^-(y-10)+10^(y-33)) +10^-((x-8)^2+ 
10^-(y- 10)+ 10^(y-33)) + 10^-((x+3)^2+ 10^(y-33)+ 10^-(y+ 15))+ 10^-((x)^2+ 10^(y-8)+ 
10^-(y+ 15))+ 10^-((x-5)^2+ 10^(y-8)+ 10^-(y+ 15))+ 10^-((x - 15)^2+ 10^(y-8)+ 10^-(y+ 15))+ 
10^-((x - 17)^2+ 10^(y-28)+ 10^-(y - 15))+ 10^-((x - 11)^2+ 10h(y - 18)+ 10^-(y+ 10))+ 
10^-((X-20)^2+ 10^-(y+ 15)+ 10^(y-33))+ 10^-((y-33)^2+ 10^(X-21 )+ 10^-(X+4))+ 
10^-((y+ 15)^2+ 10^(X-21 )+ 10^-(X+4))+ 10^-((X - 13)^2+ 10^-(y- 10)+ 10^(y-33))+ 
I 0^-((X- 18)^2+ 10^-(y- 10)+ 10^(y-33)) + 10^-((X-7)^2+ 10^(y-33)+ 10^-(y+ 15))+ 
10^-((X - 10)^2+ 10^(y-8)+ 10^-(y+ 15))+ 10^-((X - 15)^2+ 10^(y-8)+ 10^-(y+ 15))+ 10^-((X-25)^2+ 
10^(y-8)+ 10^-(y+ 15))+ 10^-((X-27)^2+ 10^(y-28)+ 10^-(y - 15))+ 10^-((X-21)^2+ 10h(y - 18)+ 
10^-(y+ 10))+ 10^-((X-30)^2+ 10^-(y+ 15)+ 10^(y-33))+ 10^-((y-33)^2+ 10^(X-31)+ 10^-(X-6))+ 
10^-((y+ 15)^2+ 10^(X-31)+ 10^-(X-6))--0.6, {X,-7,33 }, {y,- 16,38 },PlotPoints-> 100] 

Fig. 9.2.5 e: ImplicitPlot[10^-((x-3)^2+ 10^-(y - 10)+ 10^(y-33)) + 10^-((x-8)^2+ 10^-(y - 10)+ 
10^(y-33)) + 10^-((x+3)^2+ 10^(y-33)+ 10^-(y+ 15))+ 10^-((x)^2+ 10^(y-8)+ 10A-(y+ 15))+ 
10^-((x- 5)^2+ 10^(y-8)+ 10^-(y+ 15))+ 10^-((x - 15)^2+ 10^(y-8)+ 10A-(y+ 15))+ 10^-((x - 17)^2+ 
10^(y-28)+ 10^-(y - 15))+ 10^-((x - 11)^2+ 10h(y - 18)+ 10A-(y+ 10))+ 10^-((X-20)^2+ 10A-(y+ 15)+ 
10^(y-33))+ 10^-((y-33)^2+ I 0^(X-21 )+ 10A-(x+4))+ 10^-((y+ 15)^2+ 10^(X-21 )+ 10^-(X+4))+ 
10^-((X-26)^2+ 10^-(y- 10)+ 10^(y-33)) + 10^-((X-31)^2+ 10^-(y- 10)+10^(y-33))+ 
10^-((X-20)^2+ 10^(y-33)+ I 0^-(y+ 15))+ 10^-((X-23)^2+ 10^(y-8)+ 10^-(y+ 15))+ 
10^-((X-28)^2+ 10^(y-8)+ 10^-(y+ 15))+ 10^-((X-38)^2+ 10^(y-8)+ 10A-(y+ 15))+ 10^-((X-40)^2+ 
10^(y-28)+ 10^-(y - 15))+ 10^-((X-34)^2+ 10h(y - 18)+ 10^-(y+ 10))+ 10^-((X-43)^2+ 10^-(y+ 15)+ 
10^(y-33))+ 10^-((y-33)^2+ 10^(X-44)+ 10^-(X - 19))+ 10^-((y+ 15)^2+ 10^(X-44)+ 10^-(X - 19)) 
----0.6, {X,-7,45 }, {y,- 16,38 },PlotPoints-> 100] 

Fig. 9.2.5 d: ImplicitPlot[10^-((x-3)^2+10^-(y-10)+10^(y-33)) +10^-((x-8)A2+10^-(y-10)+ 
10^(y-33))+ 10^-((x+3)^2+ 10^(y-33)+ 10^-(y+ 15))+ 10^-((x)^2+ 10^(y-8)+ 10A-(y+ 15))+ 
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10h-((X-5)h2+ 10h(y-8)+ 10^-(y+ 15))+ 10h'((X" 15)h2+ 10h(y-8)+ 10^-(y+ 15))+ 10h-((X - 17)h2+ 
10h(y-28)+ 10h-(y - 15))+ 10h'((X" 11)^2+ 10h(y" 18)+ 10^'(y+ 10))+ 10h'((X'20)h2+ 10h-(y+ 15)+ 
10h(y - 33))+ 10h-( (y-33)h 2+ 10h(x-21 )+ 10h-(x+ 4))+ 10h-( (y + 15)hE + 10h(x - 21 )+ 10h-(x+4))+ 
10h-((X-Eg)h2+ 10h-(y- 10)+ 10h(y-33))+ 10h-((X-33)h2+ 10^-(y- 10)+ 10h(y-33))+ 
10h-((X-22)h2+ 10h(y-33)+ 10^-(y+ 15))+ 10h-((X-25)^2+ 10h(y-8)+ 10h-(y+ 15))+ 
10^-((X-30)h2+ 10h(y-S)+ 10^-(y+ 15))+ 10^-((X-40)^2+ 10h(y-S)+ 10h-(y+ 15))+ 
10^-((X-42)h2+ 10^(y-28)+ 10h-(y - 15))+ 10h-((X-36)^2+ 10h(y - 18)+ 10^-(y+ 10))+ 
10h-((X-45)^2+ 10h-(y+ 15)+ 10^(y-33))+ 10^-((y-33)h2+ 10^(X-46)+ 10h-(x-21))+ 
10h-((y+ 15)^2+ 10h(x-46)+ 10h-(x-21))==0.6, { X,-7,48 }, {y,- 16,38 },PlotPoints-> 100] 

Fig. 9.3.2: ImplicitPlot[Cos[ Pi x] Cos~i (.5 x+.866 y)] Cos[Pi (-.5 x+.866 y)]+Cos[2 Pi x] 
Cos[2 Pi (.5 x+.866 y)] Cos[2 Pi (-.5 x+.866 y)]--.7,{x,-4,4},{y,-4,4},PlotPoints->200] 

Fig. 9.3.3: ImplicitP1ot[.00012(Eh(y Sin[Pi/3]+x Cos[Pi/3])+Eh(y Sin[Pi 2/3]+ 
x Cos[Pi 2/3])+Eh(y Sinai 3/3]+x Cos[Pi 3/3])+Eh-(y Sin[Pi/3]+x Cos[Pi/3])+ 
Eh-(y Sin[Pi 2/3]+x Cos[Pi 2/3])+Eh-(y Sin[Pi 3/3]+x Cos[Pi 3/3]))+ 
Eh-(Cos[ Pi x] Cos[Pi (.5 x+.866 y)] Cos[Pi (-.5 x+.866 y)] +Cos[2 Pi x] 
Cos[2 Pi (.5 x+.866 y)] Cos[2 Pi (-.5 x+.866 y)])--.5,{x,-9,9},{y,-9,9},PlotPoints->300] 

Fig. 9.3.4: ContourPlot3D[Cos[ Pi x] Cos[Pi (.5 x+.866 y)] Cos[Pi (-.5 x+.866 y)] + 
Cos[2 Pi x] Cos[2 Pi (.5 x+.866 y)] Cos[2 Pi (-.5 x+.866 y)]-.7,{x,1,-1 },{y,1,-1 },{z,.6,-.6}, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 4,4 } },B oxed->False,Axes->True] 

Fig. 9.3.5: ComourPlot3D[Cos[ Pi x] Cos[Pi (.5 x+.866 y)] Cos[Pi (-.5 x+.866 y)] + 
Cos[2 Pi x] Cos[2 Pi (.5 x+.866 y)] Cos[2 Pi (-.5 x+.866 y)]+.075 Cos[4 Pi z]-.5,{x,.6,-.6}, 
{y,.6,-. 6 }, { z,.6,-. 6 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,3 } } ,Boxed->False,Axes-> 
True] 

Fig. 9.3.6: Show[%,ViewPoint->{-0.000,-0.000,3.384}] 

Fig. 9.3.7: ImplicitPlot[ 10h-((X-4)h2+ 10h(y'22)+ 10h'(y+4))+ 10h'((x)h2+ 10h(y'22)+ 
10h-(y+4))+ 10^-((X-8)^2+ 10^(y-22)+ 10h-(y+4)) +. 15 10^-((X-2)^2+ 10h-(y - 15)) + 
.15 10h-((X-6)^2+10h-(y-15))+.15 10^-((X+2)^2+10^-(y-15))+.15 10h-((X-10)^2+ 
10^-(y-15)) +.15 10^-((X-2)^2+10h+(y-3))+.15 10^-((X-6)h2+10~-(y-3))+.15 10h-((X+2)^2+ 
10h+(y-3))+. 15 10^-((X - 10)h2+ 10A+(y-3))+.2 10^-((y-38)h2+ 10h(x - 11)+ 10h-(x+2))+ 
.2 10h-((y+ 19)^2+10h(x- 11)+10^-(X+2))==0.1,{X,- 10,12}, {y,-22,41 },PlotPoints->200] 

Fig. 9.3.8: ImplicitPlot[ 10h-((X-4)h2+ 10h(y-22)+ 10A-(y+4))+ 10h-((x)h2+ 10h(y-22)+ 
10A-(y+4))+ 10h-((X-8)h2+ 10^(y-22)+ 10h-(y+4)) +. 15 10h-((X-2)h2+ 10h-(y - 10)) + 
.15 10h-((X-6)h2+10h-(y-10))+.15 10^-((X+2)h2+10h-(y-10))+.15 10h-((X-10)h2+ 
10^-(y-10)) +.15 10h-((X-2)A2+10h+(y-8))+.15 10h-((X-6)A2+10^+(y-8))+.15 10h-((X+2)h2+ 
10~+(y-8))+.15 10h-((X-10)h2+10A+(y-8))+.2 10h-((y-33)h2+10h(x-11)+10h-(x+2))+ 
.2 10h-((y+ 15)h2+ 10h(x- 11)+ 10h-(x+2))==0.1,{X,- 10,12}, {y,-22,41 },P1otPoints->200] 

Fig. 9.4.1 a: ContourPlot3D[ EA-(Eh((xA2+y^2))+ EA(y Cos[ Pi( z)]+x Sin[ Pi( z)])-.125)+ 
Eh-(Eh(((x)h2+(y)h2))+ Eh((y) Cos[ Pi(z)]+(x) Sin[ Pi( z)])-.125)-.125,{x,l.5,-1 },{y,l.5,-1 }, 
{ z,2,-4 } ,MaxRecursion->2,PlotPoints-> { { 4,4 }, { 4,4 }, { 5,4 } } ,B oxed->False,Axes->True] 

Fig. 9.4.1 b: ContourPlot3D[ EA-(Eh((xA2+y^2))+ EA(y Cos[ Pi( z)]+x Sin[ Pi( z)])-.125)+ 
Eh-(Eh(((X-1)hE+(y-1)h2))+ Eh((y-1) Cos[ Pi(z)]+(x-1) Sin[ Pi( z)])-.125)-.125,{x,l.8,-.8}, 
{y, 1.8,-. 8 }, { z,2,-4 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 6,4 } },B oxed->False,Axes-> 
True] 

Fig. 9.4.1 c: ContourPlot3D[ E^-(E^((x^2+yh2))+ Eh(y Cos[ Pi( z)]+x Sin[ Pi( z)])-.125)+ 
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E^-(E^(((x-l.1)A2+(y-l.1)^2))+ E^((y-l.1) Cos[ Pi(z)l+(x-l.1) Sin[ Pi( z)])-.125)-.125, 
{x, 1.9,-.8 }, {y, 1.9,-.8 }, {z,2,-4},MaxRecursion->2,PlotPoints-> { {5,4},{ 5,4}, {6,4} },Boxed-> 
False,Axes->True] Show[%, ViewPoint->{2.371,-2.414, 0.042}] 

Fig. 9.4.1 d: ContourPlot3D[ E^-(E^((x^2+y^2))+E^(y Cos[ Pi( z)]+x Sin[ Pi( z)])-.125)+ 
E^-(E^(((x-l.25)^2+(y-l.25)^2))+ E^((y-l.25) Cos[ Pi(z)]+(x-l.25) Sin[ Pi( z)])-.125)-.125, 
{x,2.5,- 1 }, {y,2.5,- 1 }, { z,2,-4 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 6,4 } } ,Boxed-> 
False,Axes->True] 

Fig. 9.4.2 a: ContourPlot3D[ EA-(E^((x^2+y^2))+ E^(y Cos[ Pi( z)]+x Sin[ Pi( z)])-.125)+ 
E^-(E^(((x-l.5)^2§ E^((y-l.5) Cos[ Pi(z+l)]§ Sin[ Pi( z§ 
{ x,2.5,- 1 }, { y,2.5,- 1 }, { z,2,-4 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed-> 
False,Axes->True] 

Fig. 9.4.2 b: ContourPlot3D[ E^-(EA((xA2+y^2))+ EA(y Cos[ Pi( z)]+x Sin[ Pi( z)])-.125)+ 
EA-(E^(((x-l.25)^2+(y-l.25)^2))+ E^((y-l.25) Cos[ Pi(z+l)]+(x-l.25) Sin[ Pi(z+1)])-.125) 
-. 125, {x,2.1,- 1 }, {y,2.1,- 1 }, { z,2,-4 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 6,4 } }, 
Boxed->False,Axes->True] 

Fig. 9.4.2 c: ContourPlot3D[ EA-(EA((xA2+y^2))+ EA(y Cos[ Pi( z)]+x Sin[ Pi( z)])- 
.125)+E^-(E^(((x-1)^2+(y-1)^2))+ E^((y-1) Cos[ Pi(z+l)]+(x-1) Sin[ Pi( z+1)])-.125)- 
.125, {x, 1.9,- 1 }, {y, 1.9,- 1 }, { z,2,-4 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 6,4 } },Boxed- 
>False,Axes->True] 

Fig. 9.4.2 d: ContourPlot3D[ E^-(E^((xA2+y^2))+ EA(y Cos[ Pi( z)]+x Sin[ Pi( z)])-.125)+ 
E^-(E^(((x-.8)^2+(y-.8)^2))+ E^((y-.8)Cos[ Pi(z+l)]+(x-.8) Sin[ Pi( z+1)])-.125)-.125, 
{x, 1.7,-.7 }, {y, 1.7,-.7 }, {z,2,-4},MaxRecursion->2,PlotPoints-> { { 5,4},{ 5,4}, {6,4} },Boxed-> 
False,Axes->True] 

Fig. 9.4.3 a: ContourPlot3D[EA-(.2EA((xA2+(y-3)^2))+2 x (y-3) Cos[Pi z]-(x^2-(y-3)^2) 
Sin[Pi z]) +E^-(.EEA(((z)AE+(y)^2))+2 (z) (y) Cos[ Pi (x)]+((z)^E-(y)A2)Sin[Pi (x)])-l, 
{x,2,-2}, {y,4.5,-1.7},{z,2,-2},MaxRecursion->2,PlotPoints->{ {7,4},{7,4},{7,4}},Boxed-> 
False, Axes->True] 

Fig. 9.4.3 b: Show[%,ViewPoint->{0.000,-0.000,3.384}] 

Fig. 9.4.4 a: ContourPlot3D[EA-(.2EA((xA2+(y-l.5)^2))+2 x (y-l.5) Cos[ Pi z]-(x^2 - 
(y-l.5)^2)Sin[Pi z])+EA-(.2EA(((z)A2+(y)^2))+2 (z) (y) Cos[Pi (x)]+((z)a2-(y)a2)Sin~i (x)]) 
- 1, { x,4.5,-4.5 }, {y,3,-2 }, { z,4.5,-4.5 },MaxRecursion->2,PlotPoints-> { { 4,5 }, { 4,5 }, { 4,5 } }, 
Boxed->False,Axes->True] Show[%, ViewPoint->{-0.061, 3.383, 0.042}] 

Fig. 9.4.4 b: Show[%, ViewPoint->{0.000,-0.000, 3.384}] 

Chapter  10 

Fig. 10.1.1: ImplicitPlot[E^-((x) ^2)+EA-((x-8) ^2)-y--0,{x,2,-2},{y,2.2,.2}, 
PlotPoints->200,Axes->True] 

Fig. 10.1.2: ImplicitPlot[E^-((x) ^2)+2EA-((x-3) ^2)-y~---0, 
{ x, 10,-3 }, {y,3,-.2 } ,PlotPoints->200,Axes->True] 

Fig. 10.1.3: ImplicitPlot[E^-((x) ^2)+EA-((x-2.5) ^2)-y==0, 
{ x,6,-4 }, {y, 1.2,- 1.2 },PlotPoints->200,Axes->True] 



506 Appendix 9 

Fig. 10.1.4 a: ContourPlot3D[E^-((x)^2+(z)^2+(y)^2)+E^-((x)^2+(z)^2+(y)^2)-.25,{x,2,-2}, 
{ y,2,-2 }, { z,2,-2 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False, 
Axes->True] 

Fig. 10.2.1: ContourPlot3D[E^-((x- 1)^2+(y- 1)^2+(z)^2)+E^-((x+ 1)^2+(y+ 1)^2+(z)^2)+ 
E^-((x -1)^2+(y+l)^2+(z-2)^2)+E^-((x+l)^2+(y-1)^2+(z-2)^2)+E^-((x -1)^2+(y-1)^2+ 
(z-4)^2)+E^-((x+l)^2+(y+l)^2+(z-4)^2)+E^-((x -1)^2+(y+l)^2+(z-6)^2)+E^-((x+l)^2+ 
(y- 1 )^2+(z-6)^2)+E^-((x - 1 )^2+(y- 1 )^2+(z- 8)^2)+E^-((x+ 1 )^2+(y+ 1 )^2+(z- 8)^2)+ 
E^-((x+ 1)^2+(y- 1)^2+(z- 10.5)^2)+E^-((x+ 1 )^2+(y+ 1)^2+(z- 12.5)^2)-.25, { x,2.7,-2.3 }, 
{y,2.3,-2.3 }, { z, 14,- 1.5 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 7,4 } }, 
Boxed->False,Axes->True] 

Fig. 10.2.2:ContourPlot3D[E^(Cos[.5 Pi x]+Cos[.5 Pi (z+2)])+E^(Cos[.5 Pi z]+ 
Cos[.5 Pi (y+2)])+E^(Cos[.5 Pi y]+Cos[.5 Pi (x+2)])-6,{x,3,-3},{y,3,-3},{z,3,-3}, 
MaxRecursion->2,PlotPoints->{ {5,4},{5,4},{5,4}},Boxed->False,Axes->True, 
AxesLabel->{x,y,z}] 

Fig. 10.2.3: ContourPlot3D [EA-((x)A2+(y+2)A2)^2+EA-(yA2+(z+2)A2)A2+EA-(z^2+ 
(x+2)A2)A2+E^-((x)^2+(y-2)^2)^2+E^-(y^2+(z-2)^2)^2+E^-(z^2+(x-2)^2)^2-.65, 
{x,3,-3 }, {y,3,-3 }, { z,3,-3 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 10.2.4:ContourPlot3D[E^(Cos[.5 Pi (x-y)]+Cos[.5 Pi ((y+z))]+Cos[.5 Pi ((x+z))])+ 
EA(Cos[.5 Pi (x+y+2)]+Cos[.5 Pi ((y-z))]+Cos[.5 Pi ((x+z+2))])+EA(Cos[.5 Pi (x+y)]+ 
Cos[.5 Pi ((y+z+2))]+Cos[.5 Pi ((x-z-2))])+EA(fos[.5 Pi (x-y+2)]+Cos[.5 Pi ((y-z-2))]+ 
Cos[.5 Pi ((x-z))])-•5•{x•2.7•-2.7}•{y•2.7•-2.7}•{z•2.7•-2.7}•MaxRecursi•n->2•P••tP•ints-> 
{ { 6,4 }, { 6,4 }, { 6,4 } },B oxed->False,Axes->True] 

Fig. 10.2.5: ContourPlot3D[EA-(((x-y)A2)+((y+z)^2)+((x+z)A2))+E^-(((x+y)^2)+ 
((y+z+4)^2)+((x-z-4)^2))+E•-(((x-y+4)•2)+((y-z-4)^2)+((x-z)•2))+E^-(((x+y-4)•2)+ 
((y-z)•2)+((x+z-4)^2))-.95,{x•4•-4}•{y•4•-4}•{z•4,-4}•MaxRecursion->2•P••tP•ints-> 
{ { 7,5 }, { 7,5}, { 7,5 } },B oxed->False,Axes->True] 

Fig. 10.2.6: ContourPlot3D[ E^-(10(yA2+(z)A2)+EA(x-6)+ E^-(x+6))-.5,{x,6,-6},{y,.3,-.3 }, 
{ z,. 3,-.3 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 10.2.7: ContourPlot3D[E^-(100(y^2+(z)A2)+E^(x- 10)+EA-(x+ 10))-.5, {x, 10,- 10}, 
{y,. 1,-. 1 }, {z,. 1,-. 1 },MaxRecursion->2,PlotPoints->{ { 5,4}, { 5,4}, { 5,4} }, 
Boxed->False,Axes->False] 

Fig. 10.2.8: ContourPlot3D [E^-(100(yA2+(z)A2)+EA(x- 10)+EA-(x+ 10))-.5, {x, 10,- 10 }, 
{y,. 1,-. 1 }, { z,. 1 ,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 10.2.9: ContourPlot3D[EA-(100(yA2+(z)A2)+EA(x-8)+E^-(x+14))-.5,{x,8,-14}, 
{y,. 1 ,-. 1 }, { z,. 1 ,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed-> 
False,Axes->True] 

Fig. 10.2.10: ContourPlot3D[ EA-(100(y^2+(z)^2)+E^(x-15)+ E^-(x+15))-.5, 
{ x, 15,- 15 }, {y,. 1,-. 1 }, { z,. 1,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 10.2.11: ContourPlot3D[ E^-(100(y^2+(z)^2)+E^(x-15)+ EA-(x+15))-.5, 
{x, 15,- 15 }, {y,. 1,-. 1 }, { z,. 1,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
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Boxed->False,Axes->False] 

Fig. 10.2.12:ContourPlot3D[E^-(5 (x^2+(y+2)^2))+E^-(5 (x^2+(y-3)^2))+ 
E^-(5 ((x-.5)^2+(z)^2))+E^(z-12)+E^-(z+12) -.5,{x,3,-a},{y,5,-4},{z,12.5,-12.5}, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 10.3.1: ImplicitPlot[EA(y Sin[Pi/9]+x Cos[Pi/9])A3+EA(-y Sin[Pi 2/9]-x 
Cos[Pi 2/9] )^3 +E^(y Sin[Pi 3/9]+x Cos[Pi 3/9])^3+E^(-y Sin[Pi 4/9]-x Cos[Pi 4/9])^3+ 
EA(y Sin[Pi 5/9]+x Cos[Pi 5/9])^3+EA(-y Sin[Pi 6/9]-x Cos[Pi 6/9])^3+ 
E^(y Sin[Pi 7/9]+x Cos[Pi 7/9])^3+E^(-y Sin[Pi 8/9]-x Cos[Pi 8/9] )^3 +E^(y Sin[Pi 9/9]+ 
x Cos[Pi 9/9])^3--20000000,{x,-4,2.9},{y,-4,2.7},PlotPoints->200] 

Fig. 10.3.2: ImplicitPlot[Sin[ Pi x]- Sin[ Pi (x Cos[Pi/5] + y Sin[Pi/5] )] + 
Sin[ Pi (x Cos[2 Pi/5] + y Sin[2 Pi/5] )]-Sin[ Pi (x Cos[3 Pi/5] + y Sin[3 Pi/5] )] + 
Sin[ Pi (x Cos[4 Pi/5] + y Sin[4 Pi/5] )]--2,{x,-10,10},{y,-10,10},PlotPoints->200] 

Fig. 10.3.3: ImplicitPlot[(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + y Sin[Pi/9] )] + 
Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]-Sin[ Pi (x Cos[3 Pi/9] + y Sin[3 Pi/9] )]+ 
Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + y Sin[5Pi/9] )] + 
Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + y Sin[7Pi/9] )]+ 
Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )])--3,{x,-10,10},{y,-10,10},PlotPoints->100] 

Fig. 10.3.4: ImplicitPlot[E^-(.25((x)^2+yA2))((Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + 
y Sin[Pi/9] )] +Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]-Sin[ Pi (x Cos[3 Pi/9] + 
y Sin[3 Pi/9] )]+Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + 
y Sin[5Pi/9])] +Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + y 
Sin[7Pi/9] )]+Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )])-.5)^2--1,{x,-6,6},{y,-6,6}, 
PlotPoints-> 100] 

Fig. 10.3.5: ImplicitPlot[EA-(.25((x)A2+y^2))((Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + 
y Sin[Pi/9] )] +Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]- Sin[ Pi (x Cos[3 Pi/9] + 
y Sin[3 Pi/9] )]+Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + 
y Sin[5Pi/9] )] +Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + 
y Sin[7Pi/9] )]+Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )])-.5)^2 ==.175,{x,-6,6},{y,-6,6}, 
PlotPoints-> 100] 

Fig. 10.3.6: ImplicitPlot[EA-(.l(xA2+y^2))(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + y Sin[Pi/9] )]+ 
Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]- Sin[ Pi (x Cos[3 Pi/9] + y Sin[3 Pi/9] )]+ 
Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + y Sin[5Pi/9] )]+ 
Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + y Sin[7Pi/9] )]+ 
Sin[ Pi (x Cos[8 Pi/9] + y Sin[gPi/9] )]-.5)^2 +.lEA(.l(xAE+yA2))--3.2,{x,-8,g},{y,-8,8}, 
PlotPoints->200] 

Fig. 10.3.7: ImplicitPlot[EA-(.l(x^2+yA2))(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + y Sin[Pi/9] )]+ 
Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]-Sin[ Pi (x Cos[3 Pi/9] + y Sin[3 Pi/9] )]+ 
Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + y Sin[5Pi/9] )]+ 
Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )]-Sin[ Pi (x Cos[7 Pi/9] + y Sin[7Pi/9] )]+ 
Sin[ Pi (x Cos[8 Pi/9] + y Sin[gPi/9] )]-1)^2 +.1 EA(.l(xA2+yA2-1))--E,{x,-6,6},{y,-6,6}, 
PlotPoints-> 100] 

Fig. 10.3.8: ContourPlot3D[E^-(.25((x)^2+y^2))((Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + 
ySin[Pi/9] )]+Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]- Sin[ Pi (x Cos[3 Pi/9]+ 
y Sin[3 Pi/9] )]+Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9]+ 
y Sin[5Pi/9] )] +Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9]+ 
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y Sin[7Pi/9] )]+Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )])-.5)^2 -1,{x,-4.5,4.5},{y,-4.5,4.5}, 
{ z,-2,2 },MaxRecursion->2,PlotPoints->{ { 7,4}, { 7,4 }, { 7,4} },Boxed->False,Axes->True] 

Fig. 10.3.9: ImplicitPlot[EA-(.l(xA2+yA2))(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + y Sin[Pi/9] )] 
+Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]-Sin[ Pi (x Cos[3 Pi/9] + y Sin[3 Pi/9] )]+ 
Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + y Sin[5Pi/9] )] + 
Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + y Sin[7Pi/9] )]+ 
Sin[ Pi (x Cos[8 Pi/9] + y Sin[gPi/9] )]-.5) +EA(.l(xA2+yA2))--3.2,{x,-5,4},{y,-5,4}, 
PlotPoints-> 100] 

Fig. 10.3.10: ImplicitPlot[E^-(.l(xA2+y^2))(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + y Sin[Pi/9] )] 
+Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]-Sin[ Pi (x Cos[3 Pi/9] + y Sin[3 Pi/9] )]+ 
Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + y Sin[5Pi/9] )]+ 
Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )]-Sin[ Pi (x Cos[7 Pi/9] + y Sin[7Pi/9] )]+ 
Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )]-.5) +E^(.l(x^2+2y^2))==3.2,{x,-5,4},{y,-4,4}, 
PlotPoints-> 100] 

Fig. 10.4.1: ContourPlot3D[ (z Cos[ Pi x]- y Sin[ Pi x]),{x,4.3,-1.5},{y,l.1,-1.3}, 
{ z, 1.2,- 1.1 },MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } },Boxed->False,Axes->True] 

Fig. 10.4.2: ContourPlot3D[(EA-((.2(x)A2+yA2+z^2)) (z Cos[ Pi x]- y Sin[ Pi x])-.3), 
{x, 1.4,- 1.4 }, {y, 1.2,- 1.2 }, { z, 1.2,- 1.2 },MaxRecursion->2,PlotPoint> { { 6,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 10.4.3: ContourPlot3D[ EA-((x-3.5)A2+(y+.7)A2+zA2)+EA-((x-2)A2+yA2+z^2)-.75, 
{x,4.3,. 5 }, {y,. 8,- 1.3 }, { z, 1,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 10.4.4: ContourPlot3D[EA(EA-((.2(x)A2+yA2+z^2)) (z Cos[ Pi x]-y Sin[ Pi x])-.3) 
+ .4 EA-((x-3.5)A2+(y)A2+z^2)+.4 EA-((x-2)A2+yA2+zA2)-l,{x,4.3,-1.5},{y,l.1,-1.3}, 
{ z, 1.2,- 1.1 },MaxRecursion->2,PlotPoints-> { { 7,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.000,-0.000,3.384 } ] 

Fig. 10.4.5: ContourPlot3D[EA(EA-((.2(x)A2+yA2+z^2)) (z Cos[ Pi x]-y Sin[ Pi x])-.3) 
+ .4 EA-((x-3.5)A2+(y+.35)A2+z^2)+.4 EA-((X-2)A2+yA2+zA2)-l,{x,4.3,-1.5},{y,l.1,-1.3}, 
{ Z, 1.2,- 1.1 },MaxRecursion->2,PlotPoints-> { { 7,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.000,-0.000,3.384 } ] 

Fig. 10.4.6: ContourPlot3D[EA(EA-((.2(x)A2+yA2+z^2)) (z Cos[ Pi x]- y Sin[ Pi x])-.3) 
+ .4 EA-((x-3.5)^2+(y+.7)A2+z^2)+ .4 E^-((x-2)A2+yA2+zA2)-l,{x,4.3,-1.5},{y,l.1,-1.4}, 
{ z, 1.2,- 1.1 },MaxRecursion->2,PlotPoints-> { { 7,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.000,-0.000,3.384 } ] 

Fig. 10.5.1: ImplicitPlotLv-x+.5--0, {x,4,-4 }, {y,4,0 },PlotPoints-> 100] 

Fig. 10.5.2: ImplicitPlot[y+E^-(. 15xA2)(x-.5)--0, {x,7,-7 }, {y,2,-2},PlotPoints-> 100] 

Fig. 10.5.3: ImplicitPlot[(-E^-(. 15(x)A2)(x-.5)-y)^2-.0 l==0, {x,8,-8}, {y,2,-2}, 
PlotPoints-> 100] 

Fig. 10.5.4:ImplicitPlot[(E^-(.15(x)A2)(x-.5)(x -1)-2y)^2-.03--0, 
{x,8,-8 }, {y,4,- 1 },PlotPoints->200] 

Fig. 10.5.5: ImplicitPlot[E^((E^-(. 15(x)A2)(x-. 5)+y)^2-.01)-EA-((x+5)^2+(y- 1)^2)- 1+ 
EA-(x+ 10)+E^(x - 10)==0, { x, 8,-8 }, { y,2,-2 },PlotPoints-> 100] 
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Fig. 10.5.6: ImplicitPlot[E^((E^-(.15(x)^2)(x-.5)(x-1)-2y)^2-.02)-E^-((x+6)^2+(y)^2)-l+ 
E^-(x+ 10)+E^(x - 10)-=0, {x, 8,- 10 }, { y,3,-2 },PlotPoints->200] 

Fig. 10.5.7: ImplicitPlot[E^((-E^-(. 15(x)^2)Cos[.25Pi x]-y)^2-.01)-E^-((x+4)^2+(y - 1)^2)- 1 + 
E^-(x+ 10)+E^(x - 10)==0, { x, 6,- 12 }, { y,2,-2 },PlotPoints-> 100] 

Fig. 10.5.8: ImplicitPlot[E^((-E^-(.15(x)^2)Cos[.5Pi x]-y)^2-.01)-E^-((x+4)^2+(y-1)^2)-l+ 
E^-(x+10)+E^(x -10)==0,{x,8,-8},{y,2,-2},PlotPoints->150] 

Fig. 10.5.9: ImplicitPlot[E^((-E^-(. 15(x)^2)Cos[.75Pi x]-y)^2-.01)-E^-((x+4)^2+(y - 1)^2)- 1+ 
E^-(x+ 10)+E^(x - 10)==0, { x,7,-7 }, {y,2,-2 },PlotPoints-> 150] 

Fig. 10.5.10: ImplicitPlot[E^((-E^-(. 15(x)^2)Cos[.25Pi x]-y)^2-.01)- 
E^-((x+4)^2+(y - 1 )^2)- 1 +E^-(x+ 10)+E^(x - 10)--0, {x,6,- 12 }, { y,2,-2 },PlotPoints-> 100] 

Fig. 10.5.12:In[37]:=ImplicitPlot[E^-(x^2+E^(y-2)+E^-(y))+.2 E^-((x+y-3)^2+E^(x)+E ̂ - 
(x+ 5))+.2 E^-((-x+y-3)^2+E^(x-5)+E^-(x)) -. 1--0, {x,6,-6}, {y,8,-2 },PlotPoints-> 100] 

Fig. 10.5.13: ImplicitPlot[E^((E^-(.15(x)^2)Cos [.25 Pi x]+y)^2-.01)-E^-((x+4)^2+ 
(y- 1 )^ 2 )- 1 + E ̂ -(x+ 10 )+ E ̂ (x- 10 )--0,  { x, 8,-8 }, { y ,2,-2 } ,P 1 otP o ints-> 100 ] 

Fig. 10.5.14:ImplicitPlot[E^((E^-(.15(y)^2)Cos[.25 Pi y]+x)^2-.01)-E^-((y+4)^2+ 
(x- 1 )^2)- 1 +E^-(y+ 10)+E^(y - 10)--0, { x,2,-2 }, { y, 8,-8 },PlotPoints-> 100] 

Fig. 10.5.15:ImplicitPlot[E^-(E^((E^-(.15(y)^2)Cos[.5 Pi y]+x)^2-.01) - E^-((y+4)^2+ 
(x-1)^2)- I+E^-(y+3)+E^(y-8))+E^-(E^((E^-(. 15(x)^2)Cos [.5 Pi x]+y)^2-.01)- 
E^-((x+4)^2+(y - 1 )^2)- 1 +E^-(x+3)+E^(x-8))-. 97--0, { x, 10,-5 }, {y, 10,-5 } ,PlotPoints-> 100] 

Chapter 10 

Fig. 10.1.1: ImplicitPlot[E^-((x) ^2)+E^-((x-8) ^2)-y--0, 
{ x,2,-2 }, { y,2.2,-.2 } ,PlotPoints->200,Axes->True] 

Fig. 10.1.2: ImplicitPlot[E^-((x) ^2)+2EA-((x-3) ^2)-y--0, 
{ x, 10,-3 }, {y,3,-.2 },PlotPoints->200,Axes->True] 

Fig. 10.1.3: ImplicitPlot[E^-((x) ^2)+EA-((x-2.5) ^2)-y==0, 
{x,6,-4},{y,l.2,-1.2},PlotPoints->200,Axes->True] 

Fig. 10.1.4 a: ContourPlot3D[EA-((x)A2+(z)A2+(y)A2)+EA-((x)A2+(z)A2+(y)^2)-.25, 
{ x,2,-2 }, { y,2,-2 }, { z,2,-2 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 10.2.1: ContourPlot3D [E^-((x- 1)^2+(y- 1)^2+(z)^2)+E^-((x+ 1)^2+(y+ 1)^2+ 
(z)A2)+EA-((x-1)A2+(y+l)A2+(z-2)A2)+EA-((x+l)A2+(y-1)^2+ 
(z-Z)^Z)+EA-((x-1)AZ+(y-1)^Z+(z-4)AZ)+EA-((x+l)AZ+(y+l)^2+ 
(z-4)^Z)+EA-((x -1)^2+(y+l)Az+(z-6)Az)+E^-((x+l)Az+(y-1)^2+ 
(z-6)AZ)+EA-((x - 1)^2+(y-1)^2+(z-8)AZ)+EA-((x+ 1)^2+(y+ 1)^2+ 
(z- 8)^2)+EA-((x+ 1 )^2+(y-1 )^2+(z-10.5)^2)+EA-((x+ 1)^2+(y+ 1 )^2+ 
(z- 12.5)^2)-.25, { x,2.7,-2.3 }, {y,2.3,-2.3 }, { z, 14,- 1.5 },MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 7,4 } },B oxed->False,Axes->True] 
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Fig. 10.2.2:ContourPlot3D[E^(Cos[.5 Pi x]+Cos[.5 Pi (z+2)])+ 
E^(Cos[.5 Pi z]+Cos[.5 Pi (y+2)])+E^(Cos[.5 Pi y]+fos[.5 Pi (x+2)])-6,{x,3,-3}, 
{y,3,-3 }, { z,3,-3 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False, 
Axes->True,AxesLabel-> {x,y,z } ] 

Fig. 10.2.3: ContourPlot3D[E^-((x)^2+(y+2)^2)^2+ E^-(y^2+(z+2)^2)^2+ 
E^-(z^2+(x+2)^2)^2+E^-((x)^2+(y-2)^2)^2+ E^-(y^2+(z-2)^2)^2+ 
E^-(z^2+(x-2)^2)^2-. 65, {x,3,-3 }, {y,3,-3 }, { z,3,-3 },MaxRecursion->2,PlotPoints-> { { 5,3 }, 
{ 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 10.2.4:ContourPlot3D[E^(Cos[.5 Pi (x-y)]+Cos[.5 Pi ((y+z))]+Cos[.5 Pi ((x+z))])+ 
E^(Cos[.5 Pi (x+y+2)]+Cos[.5 Pi ((y-z))]+Cos[.5 Pi ((x+z+2))])+E^(Cos[.5 Pi (x+y)]+ 
Cos[.5 Pi ((y+z+2))]+Cos[.5 Pi ((x-z-2))])+E^(fos[.5 Pi (x-y+2)]+Cos[.5 Pi ((y-z-2))]+ 
Cos[.5 Pi ((x-z))])-•5•{x•2.7•-2.7}•{y•2.7•-2.7}•{z•2.7•-2.7}•MaxRecursi•n->2•P••tP•ints-> 
{ { 6,4 }, { 6,4 }, { 6,4 } } ,B oxed->False,Axes->Tme] 

Fig. 10.2.5: ContourPlot3D[EA-(((x-y)A2)+((y+z)^2)+((x+z)^2))+E^-(((x+y)^2)+ 
((y+z+•)^2)+((x-z-•)^2))+E^-(((x-y+4)^2)+((y-z-4)^2)+((x-z)^2))+E^-(((x+y-4)^2)+ 
((y-z)^2)+((x+z-4)^2))+-. 95, {x,4,-4 }, { y,4,-4 }, { z,4,-4 } ,MaxRecursion->2,PlotPoints-> 
{ { 7,5 }, { 7,5}, { 7,5 } },B oxed->False,Axes->True] 

Fig. 10.2.6: ContourPlot3D[ E^-(10(yA2+(z)^2)+EA(x-6)+ EA-(x+6))-.5,{x,6,-6}, {y,.3,-.3 }, 
{ z,.3,-.3 } ,MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } } ,Boxed->False,Axes->Tme] 

Fig. 10.2.7: ContourPlot3D [E^-(100(yA2+(z)A2)+E^(x- 10)+EA-(x+ 10))-.5, {x, 10,- 10}, {y,. 1, - 
�9 1 }, { z,. 1,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->False] 

Fig. 10.2.8: ContourPlot3D[ EA-(100(yA2+(z)^2)+EA(x-10)+ EA-(x+10))-.5,{x,10,-10}, 
{y,. 1,-. 1 }, { z,. 1 ,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed-> 
False,Axes->True] 

Fig. 10.2.9: ContourPlot3D[E^-(100(yA2+(z)A2)+EA(x-8)+EA-(x+ 14))-.5, {x,8,- 14}, 
{y,. 1,-. 1 }, { z,. 1 ,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed-> 
False,Axes->True] 

Fig. 10.2.10: ContourPlot3D [E^-(100(yA2+(z)A2)+E^(x- 15)+EA-(x+ 15))-. 5, 
{x, 15,-15 }, {y,. 1,-. 1 },{z,. 1,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4},{ 5,4},{5,4} }, 
Boxed->False,Axes->True] 

Fig. 10.2.11: ContourPlot3D[E^-(100(y^2+(z)^2)+EA(x- 15)+E^-(x+ 15))-. 5, 
{x, 15,- 15 }, {y,. 1,-. 1 }, { z,. 1,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, 
{5,4},{5,4} },Boxed->False,Axes->False] 

Fig. 10.2.12:ContourPlot3D[E^-(5 (x^2+(y+2)A2))+E^-(5 (x^2+(y-3)A2))+E^-(5 ((x-.5)^2+ 
(z)A2))+EA(z - 12)+E^-(z+ 12) -.5, { x,3,-3 }, {y,5,-4 }, { z, 12.5,- 12.5 },MaxRecursion->2, 
PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 10.3.1: ImplicitPlot[E^(y Sin[Pi/9]+x Cos[Pi/9])A3+EA(-y Sin[Pi 2/9]- 
x Cos[Pi 2/9])^3+E^(y Sin[Pi 3/9]+x Cos[Pi 3/9])^3+E^(-y Sin[Pi 4/9]- 
x Cos[Pi 4/9])^3+EA(y Sin[Pi 5/9]+x Cos[Pi 5/9])^3+E^(-y Sin[Pi 6/9]-x Cos[Pi 6/9])^3+ 
EA(y Sin[Pi 7/9]+x Cos[Pi 7/9] )^3 +EA(-y Sin[Pi 8/9]-x Cos[Pi 8/9])^3+EA(y Sin[Pi 9/9]+ 
x Cos[Pi 9/9])^3--20000000,{x,-4,2.9},{y,-4,2.7},PlotPoints->200] 

Fig. 10.3.2: ImplicitPlot[Sin[ Pi x]- Sin[ Pi (x Cos[Pi/5] + y Sin[Pi/5] )]+ 
Sin[ Pi (x Cos[2 Pi/5] + y Sin[2 Pi/5] )]-Sin[ Pi (x Cos[3 Pi/5] + y Sin[3 Pi/5] )] + 
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Sin[ Pi (x Cos[4 Pi/5] + y Sin[4 Pi/5] )]--2,{x,-10,10},{y,-10,10},PlotPoints->200] 

Fig. 10.3.3: ImplicitPlot[(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + y Sin[Pi/9] )] + 
Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]-Sin[ Pi (x Cos[3 Pi/9] + y Sin[3 Pi/9] )]+ 
Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + y Sin[5Pi/9] )] + 
Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + y Sin[7Pi/9] )]+ 
Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )])--3,{x,-10,10},{y,-10,10},PlotPoints->100] 

Fig. 10.3.4: ImplicitPlot[EA-(.25((x)^2+y^2))((Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + 
y Sin[Pi/9] )]+Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]-Sin[ Pi (x Cos[3 Pi/9] + 
y Sin[3 Pi/9] )]+ Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + 
y Sin[5Pi/9] )] +Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + 
y Sin[7Pi/9] )]+Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )])-.5)^2--1,{x,-6,6},{y,-6,6}, 
PlotPoints-> 100] 

Fig. 10.3.5: ImplicitPlot[EA-(.25((x)^2+yA2))((Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + 
y Sin[Pi/9] )] +Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]-Sin[ Pi (x Cos[3 Pi/9] + 
y Sin[3 Pi/9] )]+Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + 
y Sin[5Pi/9] )] +Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + 
y Sin[7Pi/9] )]+Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )])-.5)^2 ==.175,{x,-6,6},{y,-6,6}, 
PlotPoints-> 100] 

Fig. 10.3.6: ImplicitPlot[EA-(.l(xA2+y^2))(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + 
y Sin[Pi/9] )] § Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]- Sin[ Pi (x Cos[3 Pi/9] + 
y Sin[3 Pi/9] )]+ Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + 
y Sin[5Pi/9] )] +Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + 
y Sin[7Pi/9] )]§ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )]-.5)^2 +.lEA(.l(xA2+y^2))--3.2, 
{x,-8,8 }, {y,-8,8 },PlotPoints->200] 

Fig. 10.3.7: ImplicitPlot[EA-(.l(xA2+yA2))(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + y Sin[Pi/9] )] + 
Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]- Sin[ Pi (x Cos[3 Pi/9] + y Sin[3 Pi/9] )]+ 
Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + y Sin[5Pi/9] )] + 
Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + y Sin[7Pi/9] )]+ 
Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )]-1)^2 +.1 EA(.l(xA2+yA2-1))---2,{x,-6,6},{y,-6,6}, 
PlotPoints-> 100] 

Fig. 10.3.8: ContourPlot3D[E^-(.25((x)A2+yA2))((Sin[Pi x] -Sin[ Pi (x Cos[Pi/9] + 
y Sin[Pi/9] )] +Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]-Sin[ Pi (x Cos[3 Pi/9] + 
y Sin[3 Pi/9] )]§ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + 
y Sin[5Pi/9] )] +Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + 
y Sin[7Pi/9] )]+Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )])-.5)^2 -1,{x,-4.5,4.5},{y,-4.5,4.5}, 
{ z,-2,2 } ,MaxRecursion->2,PlotPoint-> { { 7,4 }, { 7,4 }, { 7,4 } },B oxed->False,Axes->True] 

Fig. 10.3.9: ImplicitPlot[E^-(.l(xA2+yA2))(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + y Sin[Pi/9] )] + 
Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]- Sin[ Pi (x Cos[3 Pi/9] + y Sin[3 Pi/9] )]+ 
Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + y Sin[5Pi/9] )] + 
Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )] -Sin[ Pi (x Cos[7 Pi/9] + y Sin[7Pi/9] )]+ 
Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )]-.5) +E^(.l(x^2+y^2))---3.2,{x,-5,4},{y,-5,4}, 
PlotPoints-> 100] 

Fig. 10.3.10: ImplicitPlot[E^-(.l(x^2+y^2))(Sin[ Pi x] -Sin[ Pi (x Cos[Pi/9] + y Sin[Pi/9] )] 
+Sin[ Pi (x Cos[2 Pi/9] + y Sin[2 Pi/9] )]- Sin[ Pi (x Cos[3 Pi/9] + y Sin[3 Pi/9] )]+ 
Sin[ Pi (x Cos[4 Pi/9] + y Sin[4 Pi/9] )]-Sin[ Pi (x Cos[5 Pi/9] + y Sin[5Pi/9] )]+ 
Sin[ Pi (x Cos[6 Pi/9] + y Sin[6Pi/9] )]-Sin[ Pi (x Cos[7 Pi/9] + y Sin[7Pi/9] )]+ 
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Sin[ Pi (x Cos[8 Pi/9] + y Sin[8Pi/9] )]-.5) +E^(.l(x^2+2y^2))==3.2,{x,-5,4},{y,-4,4}, 
PlotPoints-> 100] 

Fig. 10.4.1: ContourPlot3D[ (z Cos[ Pi x]-y Sin[ Pi x]),{x,4.3,-1.5},{y,l.1,-1.3},{z,l.2,-1.1}, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } } ,B oxed->False,Axes->True] 

Fig. 10.4.2: ContourPlot3D[(E^-((.2(x)^2+y^2+z^2)) (z Cos[ Pi x]-y Sin[ Pi x])-.3), 
{ x, 1.4,- 1.4 }, {y, 1.2,- 1.2 }, { z, 1.2,- 1.2 } ,MaxRecursion->2,PlotPoints-> { { 6,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 10.4.3: ContourPlot3D[ E^-((x-3.5)^2+(y+.7)^2+z^2)+E^-((x-2)^2+y^2+z^2)-.75, 
{x,4.3,.5 }, {y,. 8,- 1.3 }, { z, 1,- 1 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 10.4.4: ContourPlot3D[E^(E^-((.2(x)^2+y^2+z^2)) (z Cos[ Pi x]-y Sin[ Pi x])-.3)+ 
.4 E^-((x-3.5)^2+(y)^2+z^2)+ .4 E^-((x-2)^2+y^2+z^2)- 1, {x,4.3,- 1.5 },{y, 1.1,- 1.3 }, 
{ z, 1.2,- 1.1 },MaxRecursion->2,PlotPoints-> { { 7,4 }, { 5,4 }, { 5,4 } } ,Boxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.000,-0.000,3.384 } ] 

Fig. 10.4.5: ContourPlot3D[E^(E^-((.2(x)^2+y^2+z^2)) (z Cos[ Pi x]-y Sin[ Pi x])-.3)+ .4 
E^-((x-3.5)^2+(y+.35)^2+z^2)+.4 E^-((x-2)^2+y^2+z^2)-l,{x,4.3,-1.5},{y,l.1,-1.3 }, 
{ z, 1.2,- 1.1 },MaxRecursion->2,PlotPoints-> { { 7,4 }, { 5,4 }, { 5,4 } } ,Boxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.000,-0.000,3.384 } ] 

Fig. 10.4.6: ContourPlot3D[EA(E^-((.2(x)A2+yA2+z^2)) (z Cos[ Pi x]- 
y Sin[ Pi x])-.3)+ .4 E^-((x-3.5)A2+(y+.7)A2+z^2)+.4 E^-((x-2)^2+y^2+z^2)-l,{x,4.3,-1.5}, 
{y, 1.1 ,- 1.4 }, { z, 1.2,- 1.1 },MaxRecursion->2,PlotPoints-> { { 7,4 }, { 5,4 }, { 5,4 } },Boxed->False, 
Axes->True] 
Sho w[%, V iewPo int-> { 0.000,-0.000,3.384 } ] 

Fig. 10.5.1: ImplicitPlot[y-x+.5--0, {x,4,-4 }, {y,4,0 },PlotPoints-> 100] 

Fig. 10.5.2: ImplicitPlot[y+E^-(. 15xA2)(x-.5)---0, {x,7,-7 }, {y,2,-2},PlotPoints-> 100] 

Fig. 10.5.3: ImplicitPlot[(-EA-(.15(x)A2)(x-.5)-y)A2-.01==0,{x,8,-8},{y,2,-2}, 
PlotPoints-> 100] 

Fig. 10.5.4:ImplicitPlot[(EA-(.15(x)A2)(x-.5)(x-1)-2y)A2-.03--0,{x,8,-8},{y,4,-1 }, 
PlotPoints->200] 

Fig. 10.5.5: ImplicitPlot[EA((E^-(. 15(x)^2)(x-.5)+y)^2-.01)-EA-((x+5)^2+(y - 1)^2)-1+ 
EA-(x+ 10)+EA(x - 10)==0, { x, 8,-8 }, {y,2,-2 },PlotPoints-> 100] 

Fig. 10.5.6: ImplicitPlot[E^((EA-(.15(x)^2)(x-.5)(x-1)-2y)^2-.02)-EA-((x+6)^2+(y)^2)-l+ 
EA-(x+ 10)+EA(x - 10)=-0, { x,8,- 10 }, {y,3,-2 },PlotPoints->200] 

Fig. 10.5.7: ImplicitPlot[E^((-E^-(. 15(x)^2)Cos[.25Pi x]-y)^2-.01)-E^-((x+4)^2+ 
(y- 1 )^2)- 1 +EA-(x+ 10)+E^(x - 10)--0, {x,6,- 12 }, { y,2,-2 },PlotPoints-> 100] 

Fig. 10.5.8: ImplicitPlot[E^((-EA-(.15(x)A2)Cos[.5Pi x]-y)A2-.01)-EA-((x+4)A2+(y-1)^2)-l+ 
EA-(x+ 10)+EA(x - 10)==0, { x, 8,-8 }, { y,2,-2 },PlotPoints-> 150] 

Fig. 10.5.9: ImplicitPlot[E^((-E^-(.15(x)^2)Cos[.75Pi x]-y)A2-.01)-EA-((x+4)^2+(y-1)^2)-l+ 
EA-(x+ 10)+EA(x - 10)--=0, { x,7,-7 }, { y,2,-2 } ,PlotPoints-> 150] 
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Fig. 10.5.10: ImplicitPlot[E^((-E^-(. 15(x)^2)Cos[.25Pi xl-y)^2-.01)-E^-((x+4)^2+(y-1)^2)- 
1 +E^-(x+ 10)+E^(x - 10)==0, { x,6,- 12 }, {y,2,-2 },PlotPoints-> 100] 

Fig. 10.5.12:In[37]:=ImplicitPlot[E^-(x^2+E^(y-2)+E^-(y))+.2 E^-((x+y-3)^2+E^(x)+ 
E^-(x+5))+.2 E^-((-x+y-3)^2+E^(x-5)+E^-(x)) -. 1--0, {x,6,-6}, {y,8,-2},PlotPoints-> 100] 

Fig. 10.5.13: ImplicitPlot[E^((E^-(.15(x)^2)Cos [.25 Pi x]+y)^2-.01)-E^-((x+4)^2+ 
(y- 1 )^2)- 1 +E^-(x+ 10)+E^(x - 10)--0, {x, 8,-8 }, { y,2,-2 } ,PlotPoints-> 100] 

Fig. 10.5.14:ImplicitPlot[E^((E^-(.15(y)^2)Cos[.25 Pi y]+x)^2-.01)-E^-((y+4)^2+ 
(x- 1 )^2)- 1 +E^-(y+ 10)+E^(y - 10)--0, { x,2,-2 }, { y, 8,-8 },PlotPoints-> 100] 

Fig. 10.5.15: ImplicitPlot[E^-(E^((E^-(. 15(y)^2)Cos[.5 Pi y]+x)^2-.01)-E^-((y+4)^2+ 
(x- 1)^2)- I+E^-(y+3)+E^(y-8))+E^-(E^((E^-(. 15(x)^2)Cos [.5 Pi x]+y)^2-.01)-E^-((x+4)^2+ 
(y- 1 )^2)- 1 +E^-(x+3)+E^(x-8))-. 97--0, { x, 10,-5 }, {y, 10,-5 },PlotPoints-> 100] 

C h a p t e r  11 

Fig. 11.1.1: ContourPlot3D[E^-(x^2+y^2+(z-l.7)^2)+ E^-z-1 ,{x,2,-2},{y,2,-2},{z,2.2,-.1}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 11.1.2: ContourPlot3D[E^-(x^2+y^2+(z)^2)^2+ E^z-1 ,{x,2,-2},{y,2,-2},{z,.5,-3}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 11.1.3:ImplicitPlot[10^-((x-2) ^2+ 10^(y-8)+ 10^-(y+9))+ 10^-((x-7)^2+ 10^(y-9)+ 
10^-(y+8))+ 10^-((x - 11)^2+ 10^(y-7)+ 10^-(y+9))+ 10^-((x - 17)^2+ 10^(y-9)+ 10^-(y+7))+ 
10^-((x-3.5)^2+y^2)+ 10^-((x)^2+(y-2)^2)+ 10^-((x-5)^2+(y+3)^2)+ 10^-((x-8)^2+y^2)+ 
10^-((x-9)^2+(y-2)^2)+ 10^-((x - 12)^2+(y+3)^2)+ 10^-((x- 13.5)^2+y^2)+ 10^-((x - 16)^2+ 
(y-2)^2)+ 10^-((x - 15)^2+(y+3)^2)+ 10^-((x-23.5)^2+y^2)+ 10^-((x - 19)^2+(y-2)^2)+ 
10^-((x-20)^2+(y+3)^2)==.5,{x,-3,22},{y,10,-10},PlotPoints->200] 

Fig. 11.1.4:ContourPlot3D[EA-(.5(xA2+y^2+30 (z)A2))+E^-(20((x+.5)^2+y^2+(z-.7)^2))+ 
E^-(20((x - 1 )^2+y^2+(z-.4)^2))+E^-(20((x - 1 )^2+(y+. 5)^2+(z+. 7)^2))-. 2, { x,2,-2 }, {y,2,-2 }, 
{ z, 1 ,-.9 } ,MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } } ,B oxed->False,Axes->True] 

Fig. 11.1.5 b: ContourPlot3D[EA-((x)A2+(y)A2+(z)^2)+EA-((x-2)A2+(y)A2+(z)^2)+ 
EA-((x-4)AZ+(y)AZ+(z)^Z)+EA-((x-6) ̂ 2+(y)^z+(z)A2)+EA-((x-8)A2+(y)A2+(z)^2)+ 
EA-((x - 10)^2+(y)A2+(z)A2)+EA-((x - 12)^2+(y)AZ+(z)^Z)+E^-((x - 14.3)^2+(y)AZ+(z)^2)-. 5, 
{x, 15.5,- 1 }, {y, 1.7,- 1.7}, {z, 1.7,- 1.7},MaxRecursion->2,PlotPoints->{ { 5,4}, { 5,3 },{5,3 } }, 
Boxed->False,Axes->True] 

Fig. 11.1.6: ImplicitPlot[.5EA-((x)A2+(y-l.6)A2-.5)A2+.5EA-((x-l.5)A2+(y)^2)+ 
EA-((x) ^2+ (y+l.6)AZ-.5)AZ--.45,{x,3,-Z},{y,2.7,-2.7},PlotPoints->100] 

Fig. 11.2.1: ContourPlot3D [EA-((x)A2+(z)A2+(y)A2-20)+EA-((x-6)A2+(z)A2+(y)^2+2)-. 1, 
{x,7,-5 }, { y, 5,-5 }, { z,. 5,-5 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 11.2.2: ContourPlot3D [E^((x)^2+(z)^2+(y)^2-20)+E^-((x+3)^2+(z)^2+(y)^2+2)-. 1, 
{x,6,-5 }, { y, 5,-5 }, { z,. 5,-5 } ,MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } } ,Boxed-> 
False,Axes->True] 
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Fig. 11.2.3: ContourPlot3D[(x)+(z)+(y),{x,2,-2},{y,2,-2},{z,2,-2},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Yrue] 

Fig. 11.2.4 b: ContourP1ot3D[(x)A3+(z)A3+(y)A3,{X,2,-2},{y,2,-2},{Z,2,-2}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 
Show[%,ViewPoint->{ 1.957,1.958,1.945}] 

Fig. 11.2.5 b: ContourP1ot3D[(x)A7+(z)A7+(y)A7,{X,2,-2},{y,2,-2},{Z,2,-2}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 
Show[%,ViewPoint->{ 1.957,1.958,1.945}] 

Fig. 11.2.6 a: ContourPlot3D[(x)-(z)+(y),{x,2,-2},{y,2,-2},{z,2,-2},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Yrue] 

Fig. 11.2.6 b: ContourPlot3D[(x)A3-(z)A3+(y)A3,{x,2,-2},{y,2,-2},{z,2,-2},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->Yrue] 

Fig. 11.2.7: ContourPlot3D[z (z-l) (z+l)+ x (x-l) (x+l)+ y (y-I) (y+l) ,{x,-2,2.5},{y,-2,2.5}, 
{ z,-2,2.5 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 11.2.8: ContourPlot3D[EA-(z (z-I) (z+l)+ x (x-I) (x+l)+ y (y-I) (y+l))-I ,{x,-2,2.5}, 
{y,-2,2.5 }, { z,-2,2.5 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False, 
Axes->True] 

Fig. 11.2.9: ContourPlot3D [EA'(xA2+yA2+(Z- 1.4)A2)+EA-(xA2+yA2+(Z'2.4)A2)+EA'((X'3)A2+ 
y^2+(Z- 1.4)A2)+E^-((X-3)^2+y^2+(Z-2 )^2)+E^-((X-2)A2+(y-2.5)^2+(Z - 1.4)A2)+EA-((X-2)^2+ 
(y-2.5)A2+(Z-2.6)A2)+EA-((X-5)A2+(y-3.5)A2+(Z - 1.4)A2)+EA'((X-5)^2+(y'3.5)A2+(Z'2.5)A2)+ 
EA-((X-5.5)A2+(y" 1)A2+(Z" 1.4)^2)+EA-((X-5.5)A2+(y - 1 )A2+(Z'2.3)A2)+EA'z" 1, { X,7,'2 }, 
{y,5,- 1 }, { Z,3.3,0 },MaxRecursion->2,PlotPoints-> { { 6,4 }, { 6,4 }, { 6,4 } }, 
Boxed->False,Axes->True] 

Fig. 11.2.10: ContourPlot3D[EA-(z (z-I) (z+l)+ x (x-I) (x+l)+ y (y-I) (y+l))+ 
EA-(((X - 1.7)A2)+((y - 1.7)A2)+((Z - 1.7)A2) - 1 )+EA-(((X-3)A2)+((y-3)A2)+((Z-3 )^2)- 1 )- 1, { X,-2,4.5 }, 
{y,-2,4.5 }, { Z,-2,4.5 },MaxRecursion->2,PlotPoints-> { { 7,4 }, { 7,4 }, { 7,4 } }, 
Boxed->False,Axes->True] 
Show [%,ViewPoint-> { 0.359,-0.858,3.253 } ] 

Fig. 11.3.1: ContourP1ot3D[EA-((x)A2+(z)A2+(y)A2-20)A2+EA-((X-2.5)A2+(z)A2+(y)A2+ 1)-.2, 
{X, 5.5,0 }, {y,2.5,-2.5 }, { Z,. 5,-5.5 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 11.3.2: ContourPlot3D[Cos[ Pi x]+Cos[.25 Pi y]+Cos[.25 Pi z] + 
4 (xA2)-2.8, {X,2,-2 }, {y, 10,- 10}, {Z, 10,- 10},MaxRecursion->2,PlotPoints-> 
{ { 3,5 }, { 4,5 }, { 4,5 } },B oxed->False,Axes->True] 

Fig. 11.3.3: ContourPlot3D [EA-(xA2+(y+2)A2+zA2)+EA-(xA2+(y-3)A2+zA2)+EAzA2-1 �9 5, 
{ X,3 ,-3 }, {y, 5,-4 }, { Z,. 75,-. 75 } ,MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 11.3.4: ImplicitPlot[EA((x)A2+ (y)A2-8)A2+EA-((X-2.83)A2+(y)A2)+EA-((X-2)A2+(y-2)A2) 
+EA-((x)AZ+(y-2.83)AZ)+EA-((x-Z)AZ+(y+2)^2)----2, { X, 3,-4 }, {y,3,-4 },PlotPoints-> 100] 

Fig. 11.3.5: ContourPlot3D [EA((x)^2+(y)A2-8+zA2)^2+EA-((X-2.8)^2+(y)A2+zA2)- 1.9, 
{x,l,3},{y,-2,2},{z,-2,2},MaxRecursion->2,PlotPoints->{ {5,4},{5,4},{5,4} }, 
Boxed->False,Axes->True] 



Mathematica 515 

Fig. 11.3.6: ImplicitPlot[E^-(((x-2.82)^2+(y-2.82)^2))+E^-(((x-4)^2+(y)^2)) 
+E^-(((x)^Z+(y-4)^Z))+E^-(((x-2.82)^2+(y+2.82)^2))+E^-(((x)^Z+(y+4)^2))+ 
E^-(((x+2.82)^2+(y+2.82)^2))+E^-(((x+4)^Z+(y)AZ))+E^-(((x+Z.SZ)^Z+(y-2.82)^2))+ 
E^-(((x-4.Z3)^Z+(y-4.Z3)^Z))+E^-(((x-6)^Z+(y)^Z))+E^-(((x)^Z+(y-6)^2))+ 
E^-(((x-4.23)^2+(y+4.23)^2))+E^-(((x)^Z+(y+6)^Z))+E^-(((x+4.23)^Z+(y+4.23)^2))+ 
E^-(((x+6)^Z+(y)^Z))+E^-(((x+4.23)^2+(y-4.23)^2))~. 18, { x,-8,8 }, {y,-8,8 }, 
PlotPoints-> 100] 

Fig. 11.3.7: ImplicitPlot[E^-(((x-2.82)^2+(y-2.82)^2))+E^-(((x-4)^2+(y)^2))+E^-(((x)^2+ 
(y-4)^Z))+E^-(((x-2.82)^2+(y+Z.SZ)^Z))+E^-(((x)^Z+(y+4)^Z))+E^-(((x+2.82)^2+ 
(y+2.82)^2))+E^-(((x+4)^Z+(y)^Z))+E^-(((x+Z.gZ)^Z+(y-2.82)^2))+E^-(((x-4.23)^2+ 
(y-4.•3)^•))+E^-(((x-6)^•+(y)^•))+E^-(((x)^•+(y-6)^•))+E^-(((x-4.•3)^2+(y+4.•3)^•))+ 
E^-(((x)^Z+(y+6)^Z))+E^-(((x+4.Z3)^Z+(y+4.Z3)^Z))+E^-(((x+6)^Z+(y)^2))+ 
E^-(((x+4.Z3)^Z+(y-4.23)^2))+.5 E^-(((x-5.11)^2+(y-2.1)^2))+.5 E^-(((x-2.1)^2+ 
(y-5.1)^2))+.5 E^-(((x+2.11)^2+(y-5.1)^2))+.5 E^-(((x+5.1)^Z+(y-2.1)^2))+ 
.5 E^-(((x+5.11)^Z+(y+2.1)^2))+.5 E^-(((x+Z.ll)^2+(y+5.1)^2))+.5 E^-(((x-5.11)^2+ 
(y+2.1)^2))+.5 E^-(((x-2.11)^2+(y+5.1)^2))--.35, {x,-8,8 }, {y,-8,S},PlotPoints-> 100] 

Fig. 11.3.8 a: ContourPlot3D[E^-(((x-2.82)^2+(y-2.82)^2+(z)^2))+E^-(((x-4)^2+ 
(y)^Z+(z)^Z))+E^-(((x)^Z+(y-4)^Z+(z)^Z))+E^-(((x-2.82)^2+(y+2.82)^2+(z)^2))+ 
E^-(((x)^Z+(y+4)^Z+(z)^Z))+E^-(((x+2.82)^2+(y+2.82)^2+(z)^Z))+E^-(((x+4)^2+ 
(y)^Z+(z)^2)) +E^-(((x+Z.82)^Z+(y-Z.82)^Z+(z)^2)) +E^-(((x-a.z3)^Z+(y-4.23)^2+ 
(z)^Z))+E^-(((x-6) ̂ 2+(y)^z+(z)^z))+E^-(((x)^z+(y-6)^z+(z) ̂ 2))+E^-(((x-4.23)^2+ 
(y+4.•3)^•+(z)^•))+E^-(((x)^•+(y+6)^•+(z)^•))+E^-(((x+4.•3)^•+(y+4.•3)^•+(z)^•))+ 
E^-(((x+6)^Z+(y)^Z+(z)^2)) +E^-(((x+4.Z3)^Z+(y-4.Z3)^Z+(z)^Z))+.75(E^-(((x-5.11)^2+ 
(y-2.1)^2+(z- 1.8)^2))+ E^-(((x-2.1)^2+(y-5.1)^2+(z- 1.8)^2))+E^-(((x+2.11)^2+(y-5.1)^2+ 
(z-1.8)^2))+ E^-(((x+5.1)^Z+(y-Z.1)^Z+(z-l.g)^z))+E^-(((x+5.11)^2+(y+Z.1)^2+(z-l.8)^2))+ 
E^-(((x+2.1)^2+(y+5.1)^2+(z-1.8)^2))+E^-(((x-5.11)^2+(y+2.1)^2+(z-1.8)^2))+ 
E^-(((x-Z.1)^Z+(y+5.1)^Z+(z-l.8)^2)))+.75( E^-(((x-5.11)^2+(y-Z.1)^Z+(z+l.8)^2))+ 
E^-(((x-2.1)^2+(y-5.1)^2+(z+ 1.8)^2))+E^-(((x+2.11)^2+(y-5.1 )^2+(z+ 1.8)^2))+ 
E^-(((x+ 5.1)^2+(y-2.1)^2+(z+ 1.8)^2))+E^-(((x+ 5.11)^2+(y+2.1)^2+(z+ 1.8)^2))+ 
E^-(((x+2.1)^2+(y+5.1)^2+(z+ 1.8)^2))+E^-(((x-5.11)^2+(y+2.1)^2+(z+ 1.8)^2))+ 
E^-(((x-2.1 )^2+(y+5.1 )^2+(z+ 1.8)^2))) -. 17 , {x,8,-8 }, {y,8,-8 }, { z,3.25,-3.25 }, 
MaxRecursion->2,PlotPoints-> { { 7,4 }, { 7,4 }, { 7,4 } },Boxed->False,Axes->True] 

Fig. 11.3.8 b: Show[%,ViewPoint->{0.000,-0.000,3.384}] 

Fig. 11.3.9: ContourPlot3D [E^-(((x-2.82)^2+(y-2.82)^2+(z)^2))+E^-(((x-4)A2+(y)^2+(z)^2)) 
+EA-(((x)^Z+(y-4)AZ+(z)AZ))+EA-(((x-2.82)AZ+(y+Z.82)A2+(z)^2))+EA-(((x)^2+ 
(y+4)AZ+(z)^Z))+EA-(((x+Z.82)AZ+(y+Z.SZ)AZ+(z)AZ))+EA-(((x+4)^Z+(y)^Z+(z)^2))+ 
EA-(((x+2.82)^2+(y-2.82)^2+(z)^2)) +EA-(((x-4.23)^2+(y-4.Z3)AZ+(z)^2))+ 
EA-(((x-6)^Z+(y)^Z+(z)^2)) +EA-(((x)AZ+(y-6)AZ+(z)AZ))+EA-(((x-4.Z3)AZ+(y+4.23)^2+ 
(z)AZ))+EA-(((x)AZ+(y+6)^Z+(z)AZ))+EA-(((x+4.Z3)AZ+(y+4.Z3)^Z+(z)^2))+ 
EA-(((x+6)AZ+(y)AZ+(z)^2)) +EA-(((x+4.Z3)AZ+(y-4.Z3)AZ+(z)AZ))+.75(EA-(((x-5.11)^2+ 
(y-2.1)^2+(z- 1.5)^2))+ E^-(((x-2.1)^2+(y-5.1)^2+(z-1.5)^2))+E^-(((x+2.11)^2+(y-5.1)^2+ 
(z-1.5)^2))+ E^-(((x+5.1)^2+(y-2.1)^2+(z - 1.5)^2))+E^-(((x+5.11)^2+(y+2.1)^2+(z-1.5)^2))+ 
E^-(((x+2.1)^2+(y+5.1)^2+(z- 1.5)^2))+E^-(((x-5.11)^2+(y+2.1 )^2+(z- 1.5)^2))+ 
E^-(((x-2.1)^2+(y+5.1)^2+(z-1.5)^2)))+.75( E^-(((x-5.11)^2+(y-2.1 )^2+(z+ 1.5)^2))+ 
E^-(((x-2.1)^2+(y-5.1)^2+(z+ 1.5)^2))+E^-(((x+2.11)^2+(y-5.1 )^2+(z+ 1.5)^2))+ 
E^-(((x+5.1)^2+(y-2.1)^2+(z+ 1.5)^2))+E^-(((x+5.11)^2+(y+2.1)^2+(z+ 1.5)^2))+ 
E^-(((x+2.1)^2+(y+5.1)^2+(z+ 1.5)^2))+E^-(((x-5.11 )^2+(y+2.1)^2+(z+ 1.5)^2))+ 
E^-(((x-2.1)^2+(y+ 5.1)^2+(z+ 1.5)^2))) -. 12 , { x,8,-8 }, {y,8,-8 }, { z,3.3,-3.3 }, 
MaxRecursion->2,PlotPoints-> { { 7,4 }, { 7,4 }, { 7,4 } },B oxed->False,Axes->True] 
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Fig. 11.3.10: ContourPlot3D[E^-(E^-(x^2+(y)^2+z^2-5)+ E^(z^2)-l.5)+ 
2 E^-(((x^2+y^2)^.5-1.2)^2+(z)^2+.6)+ 2 E^-(((x^2+y^2)^.5-2)^2+(z+2)^2+.5) + 
2 E^-(((x^2+y^2)^.5-2)^2+(z-2)^2+.5)-1 ,{x,n,-n},{y,4,0},{z,4,4}, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5}, { 3,5 } },Boxed->False,Axes->True] 

Fig. 11.3.11 a: ContourPlot3D[EA-(E^-(x^2+(y)^2+z^2-5)+E^(z^2)-l.5)+(E^-(x^2+ 
y^2+(z+3)^2-1))+(E^-( x^2+ y^2+(z+ 1)^2-1))+2 E^-(((x^2+y^2)^.5-3)^2+(z+2.5)^2)+ 
2 E^-(((x^2+y^2)^. 5-3 )^2+(z-2.5)^2)- 1, {x,4,-4 }, {y,4,-4 }, { z,-5,4 } ,MaxRecursion->2, 
PlotPoints->{ { 3,5}, { 3,5 }, { 3,5} },Boxed->False,Axes->True] 

Fig. 11.3.11 b:Show[%,ViewPoint->{1.359,-2.509,-1.819}] 

Chapter 12 

Fig. 12.1.1:ContourPlot3D[(EA((x+2.618 y)^4)+EA((-x+2.618 y)A4)+EA((y+2.618 z)^4)+ 
EA((-y+2.618z)A4)+E^((-2.618x+z)^4)+E^((2.618x+z)A4))+E^(1.618 (x+y+z))^4+ 
E^(1.618 (x-y-z))A4+E^(1.618 (-x-y+z))^4+ E^(1.618 (-x+y-z))^4-10^8, 
{x,. 8,-. 8 }, {y,. 8,-. 8 }, { z,. 8,-. 8 },MaxRecursion->2,PlotPoints-> { { 4,5 }, { 4,5 }, { 4,5 } }, 
Boxed->False,Axes->True] 

Fig. 12.12: ContourPlot3D[E^(3.618(xA2+yA2+zA2))-E^((1.618x+y)A2)-E^((- 1.618x+y)A2)- 
E^((1.618y+z)^Z)-E^(( - 1.618y+z)^Z)-E^((-x+ 1.618z)AZ)-EA((x+ 1.618z)^2), {x, 1.5,- 1.5 }, 
{y, 1.5,- 1.5 }, { z, 1.5,- 1.5 },MaxRecursion->2,PlotPoints-> { { 4,5 }, { 4,5 }, { 4,5 } },Boxed-> 
False,Axes->Yrue] 

Fig. 12.1.3: ContourPlot3D[E^(7.854(x^2+y^2+z^2))-(E^((- 1.618x+ 1.618y+ 1.618z)^2) 
+E^((1.618x+ 1.618y- 1.618z)A2)+E^((1.618x- 1.618y+ 1.618z)^2)+ 
E^((1.618x+ 1.618y+ 1.618z)A2)+E^((x+2.618y)A2)+EA((-x+2.618y)A2)+E^((2.618x+z)^2)+ 
E^((-2.618x+z)A2)+EA((-y+2.618z)^2)+EA((y+2.618z)^2)), {x, 1.6,-1.6}, {y, 1.6,- 1.6}, 
{ z, 1.6,- 1.6 },MaxRecursion->2,PlotPoints-> { { 5,5 }, { 5,5 }, { 5,5 } } ,B oxed->False,Axes->True] 

Fig. 12.1.4: Plot[x Sin [ Pi (x)],{x,-8,8},PlotPoints->200,Axes->True] 

Fig. 12.1.5: ContourPlot3D[z Sin[ Pi z]+ x Sin[ Pi x]+y Sin[ Pi y] -1,{x,1.2,-1.2}, 
{y, 1.2,- 1.2 }, { z, 1.2,- 1.2 },MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 

Fig. 12.1.6:ContourPlot3D[Sin[Pi((x+2.618 y))]((x+2.618 y))+ 
Sin[Pi((-x+2.618 y))]((-x+2.618 y))+Sin[Pi((y+2.618 z))]((y+2.618 z))+ 
Sin[Pi((-y+2.618 z))]((-y+2.618z))+Sin[Pi((z-2.618 x))]((-2.618x+z))+ 
Sin[Pi((z+2.618 x))]((2.618x+z))+Sin[Pi(1.618(x+y+z))](1.618 (x+y+z))+ 
Sin[Pi(1.618(x-y-z))](1.618 (x-y-z))+Sin[Pi(1.618(-x-y+z))](1.618 (-x-y+z))+ 
Sin[Pi(1.618(-x+y-z))](1.618 (-x+y-z))2, {x,.82,-.82}, {y,.82,-.82}, {z,.82,-.82 }, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } } ,B oxed->False,Axes->True] 

Fig. 12.1.7: ContourPlot3D[Sin[Pi((1.618x+y))] ( (1.618x+y))+Sin[Pi((-1.618x+y))] 
((-1.618x+y))+Sin[Pi((1.618y+z))] ( (1.618y+z))+Sin[Pi((-1.618y+z))] ( (-1.618y+z))+ 
Sin[Pi((x-l.618z))] ( (x-l.618z))§ ((x+l.618z))+2.7,{x,l.15,-1.15}, 
{y, 1.15,- 1.15 }, { z, 1.15,- 1.15 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->True] 

Fig. 12.1.8: ImplicitPlot[Cos[ Pi x] Cos[Pi (.5 x+.866 y)] Cos[Pi (-.5 x+.866 y)]==-.1, {x,- 
2,2 }, { y,-2,2 } ,PlotPoints-> 100] 
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Fig. 12.1.9: ContourPlot3D[Sin[Pi((1.618x+y))] ( (1.618x+y))+Sin[Pi((-1.618x+y))] 
((-1.618x+y))+Sin[Pi((1.618y+z))] ( (1.618y+z))+Sin[Pi((-1.618y+z))] ( (-1.618y+z))+ 
Sin[Pi((-x+l.618z))] ( (-x+l.618z))+Sin[Pi((x+l.618z))] ((x+l.618z))+3.2,{x,l.15,-1.15}, 
{y, 1.15,- 1.15 }, { z, 1.15,- 1.15 },MaxRecursion->2,PlotPoints->{ { 5,4 }, { 5,4}, { 5,4} }, 
Boxed->False,Axes->True] 

Fig. 12.1.10:ContourPlot3D[Cos[Pi((1.618x+y))] E^( (1.618x+y)^2)+ 
Cos[Pi((- 1.618x+y))] E^(( - 1.618x+y)^2)+Cos[Pi((1.618y+z))] E^( (1.618y+z)^2)+ 
Cos[Pi((-1.618y+z))] E^( (-1.618y+z)^2)+Cos[Pi((-x+l.618z))] E^( (-x+l.618z)^2)+ 
Cos[Pi((x+ 1.618z))] E^((x+ 1.618z)^2)+5.3, {x,.9,-.9}, {y,.9,-.9}, {z,.9,-.9}, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 12.1.11 a: ContourPlot3D[+E^-((x-2)^2+y^2+z^2)+E^-(x^2+y^2+z^2)+ 
E^-((x-2)^2+(y-2)^2+z^2)+E^-(x^2+(y-2)^2+z^2)+E^-((x-4)^2+(y-2)^2+z^2)+ 
E^-((x-4)^2+y^2+z^2)+E^-((x-2)^2+(y-4)^2+z^2)+E^-(x^2+(y-4)^2+z^2)+ 
E^-((x-n)^2+(y-4)^2+z^2)-. 8, {x,4.7,-.7 }, { y,4.7,-. 7 }, { z,.7,-.7 }, 
MaxRecursion->2,PlotPoints->{ { 3,5}, {3,5 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 12.1.11 b: ContourPlot3D[EA-((x-2)A2+y^2+10 zA2)+E^-(xA2+y^2+10 z^2) 
E^-((x-2)^2+(y-2)^2+ 10 z^2)+E^-(x^2+(y-2)^2+ 10 z^2)+E^-((x-4)^2+(y,2)^2+ 10 z^2)+ 
E^-((x-4)^2+y^2+ I 0 z^2)+E^-((x-2)^2+(y-4)^2+ 10 z^2)+E^-(x^2+(y-4)^2+l 0 z^2)+ 
E^-((x-n)^2+(y-4)^2+ 10 z^2)-.56, {x,5,-1 }, {y,5,-1 }, {z,.35,-.35}, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 5,3 } } ,B oxed->False,Axes->True] 
Show[%,ViewPoint-> { 0.864,-2.828,- 1.645 } ] 

Fig. 12.2.1: ContourPlot3D[EA-((x)^2)+E^-((z)^2)+E^-((y)^2)-2, {x,3,-3}, {y,3,-3 }, {z,3,-3 }, 
MaxRecursion->2,PlotPoints-> { { 5,5 }, { 5,5 }, { 5,5 } },B oxed->False,Axes->True] 

Fig. 12.2.2: ContourPlot3D[E^-((x)A2)+EA-((y)^2)-l.9,{x,.35,-.35},{y,.35,-.35},{z,1,-1}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } } ,B oxed->False,Axes->True] 

Fig. 12.2.3: ContourPlot3D[EA-((x)A2)+E^-((y)A2)+E^-((z)A2)-l.9,{x,4,-4},{y,4,-4},{z,4,-4}, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Fig. 12.2.4: ContourPlot3D[(EA-(x)^2)+(EA-(y)A2)+(EA-(z)^2)+(EA-(x-2.5)^2)+ 
(EA-(y-2.5)^2)+(EA-(z-2.5)^2)- 1.98, { x,-4,6 }, { y,-4,6 }, { z,-4,6 } ,MaxRecursion->2, 
PlotPoints-> { { 4,5 }, { 4,5 }, { 4,5 } },Boxed->False,Axes->True] 

Fig. 12.2.5: ContourPlot3D[(E^-(x)A2)+(E^-(y)^2)+(EA-(z)A2)+(E^-(x-8)^2)+ 
(E A-(y-8)^2 )+(EA-(z-8)^2)- 1.98, { X,-4,12 }, { y,-4,12 }, { Z,-4,12 },MaxRecursion->2, 
PlotPoints-> { { 5,5 }, { 5,5 }, { 5,5 } },Boxed->False,Axes->True] 

Fig. 12.2.6: ContourPlot3D[(Cos[Pi x])A8+(Cos[Pi y])A8+(Cos[Pi z])^8-1.98, 
{ x, 1.5,-.5 }, {y, 1.5,-. 5 }, { z, 1.5,-. 5 },MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->Yrue] 

Fig. 12.2.7: ContourPlot3D[ E^-(z)+EA-(x)^2+EA-(y)A2+EA-(x-4)A2+EA-(y-4)^2-1.95, 
{x,8,-4 }, {y,8,-4 }, { z,6,- 1 },MaxRecursion->2,PlotPoints-> { {7,4},{ 7,4}, {7,4} }, 
Boxed->False,Axes->True] 

Fig. 12.3.1 a: ContourPlot3D[E^-(10(y^2+(z)^2)+E^-(2 x)+E^(2 (x-ll)))-.9,{x,12,-1}, 
{y,. 1,-. 1 }, {z,. 1,-. 1 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,3 }, { 5,3 } }, 
Boxed->False,Axes->True] 
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Fig. 12.3.1 b: ContourP1ot3D[Eh-(10(yh2+(z)h2)+Eh-(2 x)+Eh(2 (x-ll)))-.9,{X,10.5,7}, 
{y,. 15,-. 15 }, { Z,. 15,-. 15 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,3 }, { 5,3 } } ,Boxed->False, 
Axes->True] 

Fig. 12.3.2: ContourPlot3D[Eh-(10(yh2+zh2)+ Eh((x - 11))+ Eh-(X+2))+ 
Eh'((yh2+ (x)h2+zh2))-.96, {X,6,-2}, {y,.45,-.45 }, {Z,.45,-.45 },MaxRecursion->2, 
PlotPoints-> { { 5,4 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 12.3.3: ContourPlot3D[Eh(z Cos[Pi xh2]+ y Sin[Pi xh2])+Eh( (zh2+yh2))'l.95, 
{ X,2,-2 }, {y,.55,'.55 }, { Z,.55,'.55 } ,MaxRecursion->2,PlotPoints-> { { 5,5 }, { 5,4 }, { 5,4 } }, 
Boxed->False,Axes->False] 

Fig. 12.3.4 a: ImplicitP1ot[10h-((x)h2)+ 2 10h'((x)h2+10h(y'15)+10h'(y'10))----0.1, 
{ X,'8,8 }, { y,4,20 } ,PlotPoints-> 100] 

Fig. 12.3.4 b: ImplicitP1ot[10h-((x)h2+10h(y-ll))+10h-((x+.l y-1)h2+10h(y-15)+ 
10h-(y- 10))+ 10h-((-X+. 1 y- 1)h2+l 0h(y- 15)+10h-(y- 10))----0.1,{X,-8,8},{y,4,20}, 
PlotPoints-> 100] 

Fig. 12.3.5:ImplicitP1ot[10h-((x)h2+10h(y-11))+.12 10h-(((x)h2+(y-15.7)h2))+ 
.12 10h-(((X+2)h2+(y-15.4)h2))+2 10h-((X+.2 y-2)h2+10h(y-15)+10h-(y-10))+ 
2 10h-((-X+.2 y-2)h2+10h(y-15)+10h-(y-10))==0.1,{X,-8,8},{y,4,20},P1otPoints->200] 

Fig. 12.3.6: ImplicitP1ot[10h-((x)h2+l 0h(y-6)+ 10h'(y+6)) +.2 10h'(('X'.9 y'5)h2+ 
10h-(y+ 15)+ 10h(y+4))+.2 10h'((X'.4 y'2)h2+ 10h'(y+ 15)+ 10h(y+4))+.2 10h'(( ". lx'y'4)h2+ 
10h(x-10)+10h-(x))+.12 10h-((X-.2 y-7.5)h2+10h-(y+20)+10h(y+10))+.15 10h'((-.lx'y" 
10)h2+ 10h'(x+ 12)+ 10h(x+2))+ 10h'((X+.4 y'2)h2+ 10h(y" 19)+ 10h'(y'5))+ 
10h-((-X+.4 y'2)h2+ 10h(y" 17)+ 10h-(y'5))+ 10h'((X+2 y'25)h2+ 10h(y-21)+ 10h-(y" 15))+ 
10h'(('X+ y'8)h2+ 10h(y-22)+ 10h-(y- 12))+ 10h-((X+ 1.5 y-27)h2+ 10h(y-21)+ 10h-(y - 17))+ 
10h-((-X+ y- 16)h2+ 10h(y-24)+ 10h-(y- 13))----0.1, {X,- 18,16}, {y,-20,27},PlotPoints-> 100] 

Fig. 12.4.1: ImplicitPlot[ Eh( - 2(X-6)h2)-y +Eh-(2 xh2)-----0,{X,8,-3},{y,-1,1 }, 
PlotPoints-> 100] 

Fig. 12.4.2 a: ImplicitPlot[-12(3+4Cosh[2x-8 .5]+Cosh[4x-64 .5])/(3 Cosh[x-28 .5]+ 
Cosh[3x-36 .5])h2+y----0, {X, 12,-6}, {y,- 1,10},PlotPoints->100] 

Fig. 12.4.2 b: ImplicitPlot[-12(3+4Cosh[2x-8 .2]+Cosh[4x-64 .2])/(3 Cosh[x-28 .2]+ 
Cosh[3x-36 .2])h2+y----0, {X, 12,-6}, {y,- 1,10},PlotPoints-> 100] 

Fig. 12.4.3 a: ImplicitPlot[ 6 (Sech[x])h2-y==0,{x,5,-5},{y,6,-1 },PlotPoints->100] 

Fig. 12.4.3 b: ImplicitPlot[ 6 (Sech[x-8])h2-y==0,{x,12,-5},{y,6,-1},PlotPoints->100] 

Fig. 12.4.4 a: ImplicitPlot[4 (Sech[x])h2+8 (Sech[x-8])h2-y==0,{x,10,-5},{y,9,-1 }, 
PlotPoints-> 100] 

Fig. 12.4.4 b: ImplicitPlot[4 (Sech[x])h2+8 (Sech[x-4])h2-y==0,{x,10,-5},{y,8,-1 }, 
PlotPoints-> 100] 

Fig. 12.4.5: ImplicitPlot[{y- ( Sech[ x])h2-( Sech[ X-3])h2-( Sech[ X-6])h2-( Sech[ X-9])h2 
----0,Eh-xh2+Eh-(x-3)h2+Eh-(x-6)h2+Eh-(x-9)h2-y----0 }, {X,-4,13 }, {y,-2,2 },PlotPoints->200, 
Axes->False] 
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Fig. 124.6:ImplicitPlot[Cos[(2/100)^.5 x]^100-y---0,{x,-3,50},{y,-1,1},PlotPoints->200, 
Axes->False] 

Chapter 13 

Fig. 13.3.1:ContourPlot3D[E^(-8 x^2)-E^(-8 (x-1)^2)+E^(-8 (x-2)^2)-E^(-8 (x-3)^2) + 
1 (E^(-8 (x-4)^2)-E^(-8 (x-5)^2)+ E^(-8 (x-6)^2))-l(E^(-8 (x-7)^2)-E^(-8 (x-8)^2) + 
E^(-8 (x-9)^2)) +E^(-8 (x-10)^2)-E^(-8 (x-11)^2) +E^(-8 (x-12)^2) - E^(-8 (x-13)^2) + 
E^(y^2+z^2)-3.5, { x, 15,-2 }, {y,3 ,-3 }, { z,3,-3 } ,MaxRecursion->2, 
PlotPoints-> { { 7,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 13.3.2:ContourPlot3D[E^(-8 x^2)-E^(-8 (x-1)^2)+E^(-8 (x-2)A2)-E^(-8 (x-3)^2) + 
�9 1 (E^(-8 (x-4)^2)-E^(-8 (x-5)^2)+ E^(-8 (x-6)^2))-l(E^(-8 (x-7)^2)-E^(8 (x-8)^2)+ 
E^(-8 (x-9)^2)) +E^(-8 (x-10)^2)-E^(-8 (x-11)^2)+E^(-8 (x-12)^2)- E^(-8 (x-13)^2) + 
E^(y^2+z^2)-3.5, {x, 15,-2 }, {y,3,-3 }, { z,3,-3 } ,MaxRecursion->2, 
PlotPoints->{ {7,4},{5,4},{5,4} },Boxed->False,Axes->True] 

Fig. 13.3.3:ContourPlot3D[E^(-8 xA2)-E^(-8 (x-1)^2)+E^(-8 (x-2)^2)-E^(-8 (x-3)^2) + 
1 (E^(-8 (x-4)^2)-E^(-8 (x-5)^2)+E^(-8 (x-6)^2))-.l(E^(-8 (x-7)^2)-E^(-8 (x-8)^2)+ 
E^(-8 (x-9)^2))+E^(-8 (x-10)^2)-E^(-8 (x-11)^2)+E^(-8 (x-12)^2) - E^(-8 (x-13)^2)+ 
E^(y^2+z^2)-3.5, {x, 15,-2 }, {y,3,-3 }, { z,3,-3 },MaxRecursion->2,PlotPoints-> 
{ { 7,4 }, { 5,4 }, { 5,4 } } ,B oxed->False,Axes->True] 

Fig. 13.3.4:ContourPlot3D[E^(-8 xA2)-E^(-8 (x-1)A2)+E^(-8 (x-2)A2)-E^(-8 (x-3)^2) + 
1 (E^(-8 (x-4)^2)-E^(-8 (x-5)^2)+ E^(-8 (x-6)^2))-.l(E^(-8 (x-7)A2)-E^(-8 (x-8)^2)+ 
E^(-8 (x-9)^2))+E^(-8 (x-10)^2)-E^(-8 (x-11)^2)+E^(-8 (x-12)^2)- E^(-8 (x-13)^2)+ 
EA(yA2+z^2)-3.5, { x, 15,-2 }, {y,3,-3 }, { z,3,-3 },MaxRecursion->2,PlotPoints-> 
{ { 7,4 }, { 5,4 }, { 5,4 } },B oxed->False,Axes->True] 

Fig. 13.3.5:ContourPlot3D[E^-(.5 EA(x)+.5(Cos[Pi x]+Cos[Pi y]+Cos[Pi z])+ 
E^(y^2+z^2)) -. 05, {x,-8,1.5 }, {y,- 1.2,1.2 }, { z,- 1.2,1.2 },MaxRecursion->2,PlotPoims-> 
{ { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 13.3.6:ContourPlot3D[E^-(.5 EA(-x)+.5(Cos[Pi x]Sin[Pi y]+Cos[Pi z]Sin[Pi x]+ 
Sin[Pi z]Cos[Pi y])+EA(y^2+z^2))-.05,{x,8,-1.5},{y,-1.2,1.2},{z,-1.2,1.2},MaxRecursion->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } },Boxed->False,Axes->True] 

Fig. 13.3.7:ContourPlot3D[E^-(.5 EA-(x)+.5(Cos[Pi x]Sin[Pi y]+Cos[Pi z]Sin[Pi x]+ 
Sin[Pi z]Cos[Pi y])+EA(yA2+zA2))+E^-(.5 E^(x)+.5(Cos[Pi x]+Cos[Pi y]+Cos[Pi z])+ 
EA(yA2+z^2)) -. 05, { x,4,-3 }, {y,- 1.2,1.2 }, { z,- 1.2,1.2 } ,MaxRecursion->2,PlotPoints-> 
{ { 5,4 }, { 5,3 }, { 5,3 } },B oxed->False,Axes->True] 

Fig. 13.3.8 a: ContourPlot3D[.5 Cos[Pi z]+(yA2+x^2)-12,{x,-4,4},{y,-4,4},{z,-4,4}, 
MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 

Fig. 13.3.8 b: ContourPlot3D[(Cos[Pi z]+Cos[Pi x]+Cos[Pi y])+(yA2+xA2)-12,{x,-4,4}, 
{ y,-4,4 }, { z,-4,4 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } } ,Boxed->False,Axes- 
>True] 

Fig. 13.3.8 e: ContourPlot3D[.6 (Cos[Pi x] Sin[Pi z]+Cos[Pi y] Sin[Pi x]+ 
Cos[Pi z] Sin[Pi y])+(y^2+x^2)-12,{x,-4,4},{y,-4,4},{z,-4,4},MaxRecursion->2, 
PlotPoints-> { { 5,4 }, { 5,4 }, { 5,4 } },Boxed->False,Axes->True] 
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Fig. 13.4.3 a: ContourPlot3D[EA-( EA(2(X+2))+.2 (yA2+zA2))+EA-(EA(-2(X-2))+ 
.2 (yA2+zA2))'EA('2((y" 1)A2+zA2+(X+3)A2-.5))-EA(-6((y-1)^2+(Z-2)A2+(X+3)A2-.5)) - 
En(-6((y - 1)A2+(Z+2)A2+(X+3)A2-. 5))'EA('2((y+ 1)A2+zA2+(X+3)A2-. 5))-En(-6((y+ 1 )A2+ 
(z-2)A2+(x+3)A2-.5))-EA(-6((y+•)A2+(z+2)A2+(x+3)A2-.5))-EA(-2((y-•)A2+zA2+(x+5)A2-.5))- 
EA(-6((y - 1 )A2+(Z'2)A2+(X+5)A2-. 5))-EA(-6((y- 1 )A2+(Z+2)A2+(X+5)A2-. 5))-EA(-2((y+ 1 )A2+ 
zA2+(X+ 5)A2-. 5))-EA(-6((y+ 1)A2+(Z-2)A2+(X+ 5)A2-. 5))-EA(-6((y+ 1 )A2+ (Z+2)A2+(X+5)A2-. 5))- 
.04,{X,-7,3 }, {y,- 1,4.1 }, {Z,-4.1,4.1 },MaxRecursion->2,PlotPoints->{ {6,4}, {6,4},{6,4} }, 
Boxed->False,Axes->True] Show[%, ViewPoint->{-1.344,-2.329, 2.054}] 

Fig. 13.4.3 b: ContourPlot3D[EA-( E^(2(x+2))+.2 (yA2+zA2))+EA-(EA(-2(X-2))+ 
.2 (yA2+zA2))-EA(-2((y-1)A2+zA2+(X+2.75)A2-.5))-EA(-6((y -1)A2+(z-2)A2+(x+2.75)A2-.5))- 
EA(-6((y - 1 )A2+(Z+2)A2+(X+2.75)A2-. 5))-EA(-2((y+ 1 )A2+zA2+(X+2.75)A2-. 5)) - 
EA(-6((y+ 1)A2+(Z'2)A2+(X+2.75)A2-. 5))-EA(-6((y+ 1)A2+(Z+2)A2+(X+2.75)A2-. 5))- 
E^(-2((y - 1 )A2+zA2+(X+4.5)A2-. 5))-EA(-6((y-1 )A2+(Z-2)^2+(X+4.5)A2-. 5))" 
En(-6((y - 1 )A2+(Z+2)A2+(X+4.5)A2-. 5))-EA(-2((y+ 1 )A2+zA2+(X+4.5)A2-. 5))- 
EA(-6((y+ 1 )A2+(Z-2)A2+(X+4.5)A2-. 5))-EA(-6((y+ 1 )A2+(Z+2)A2+(X+4.5)A2-. 5))-. 04, 
{X,-7,3 }, {y,- 1,4.1 }, { Z,-4.1,4.1 },MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } }, 
Boxed->False,Axes->True] Show[%, ViewPoint->{-1.344,-2.329, 2.054}] 

Chapter 14 

Fig. 14.3.3:ContourPlot3D[(Cos[.25 Pi ( x-y)] EA(.025 Cos[Pi z])-( Cos[.25 Pi(x+ y)])), 
{ x,4.6,-4.6 }, { y,4.6,-4.6 }, { z,2,-2 },MaxRecursion->2,PlotPoints-> { { 5,4 }, { 5,4 }, { 4,4 } }, 
Boxed->False,Axes->True] 

Fig. 14.5.1:ContourPlot3D[En(Cos[.25 Pi ( x-y)] EA(.05 Cos[Pi z])-( Cos[.25 Pi(x+ y)]))+ 
EA-((y-8)A2)+EA-((y+8)A2)- 1, { X,6,- 10 }, { y,8.3,-8.3 }, { Z,2,-2 },MaxRecursion->2,PlotPoints-> 
{ { 5,4}, { 5,4}, { 5,4} },Boxed->False,Axes->True] 
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